Modeling Phage in a Predator-Prey System

PAK-WING FOK (UNIVERSITY OF DELAWARE)

JOHN DENNEHY (QUEEN'S COLLEGE, CITY UNIVERSITY OF NEW YORK)

Goal of this workshop

- > Expose you to elements of mathematical modeling
- ➤ Learn about an interesting biological system
 - Complex enough to be interesting
 - Simple enough to be described by a few equations
- > Experience the frustration and elation that math biologists go through!
- ➤ Math modeling as an "art"
 - Lots of effects! Which ones do you include?
 - Choice of mathematical expressions
 - Interaction with experimentalists and motivation from their results

What is a Phage?

It is a virus that infects bacteria

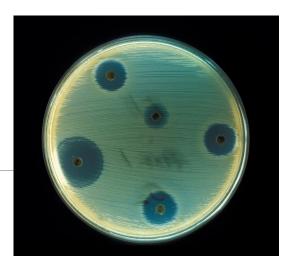
Examples: T4 phage, Lambda phage

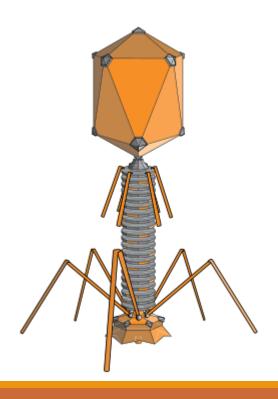
Discovered by Frederick Twort (1915) and Felix d'Herelle (1917)

Present in large quantities in sea water (~108 virions/ml)

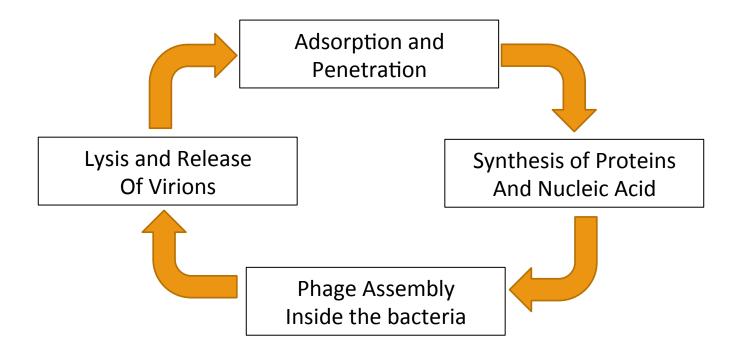
Interesting side note on phage therapy:

- Used to treat bacterial infections in Russia and Georgia
- Second World War: treatment of bacterial diseases like gangrene and dysentery
- Possible advantages over antibiotics?



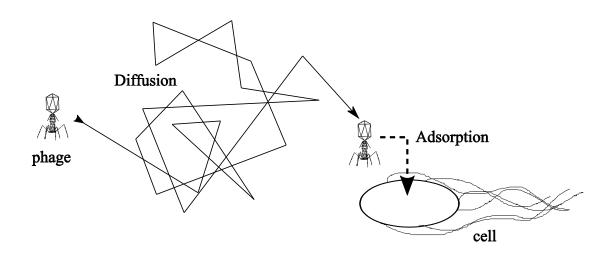


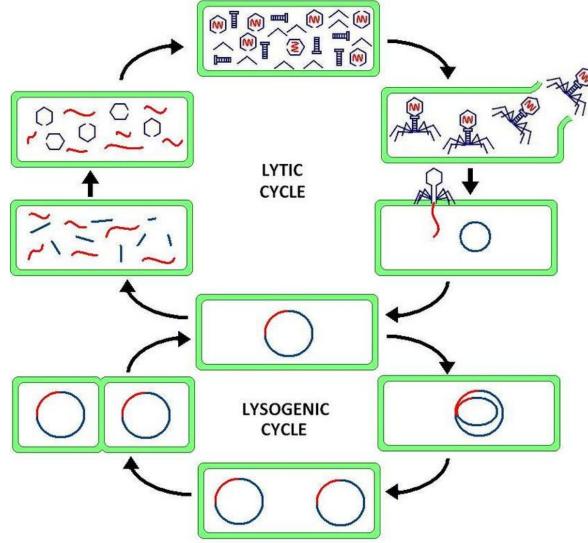
Phage Lifecycle



Lysis vs. lysogeny:

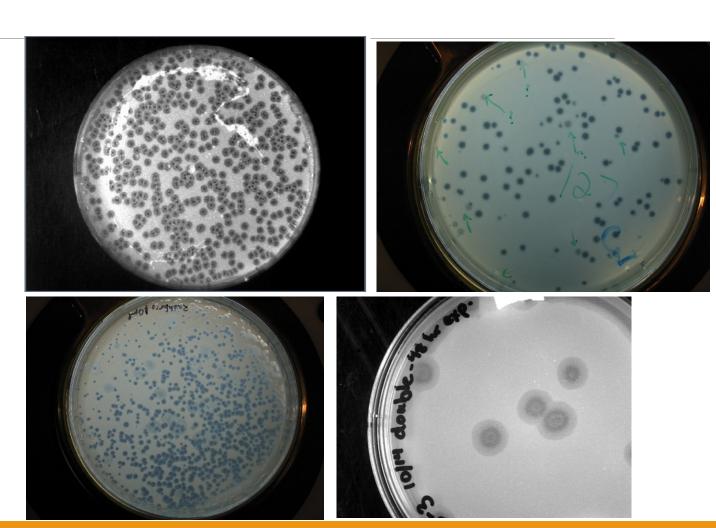
Lysis: bursting/breakdown of cell by bacteriophage Lysogeny: transmission and proliferation of phage genetic material





Bullseye Patterns ("plaques")

- ➤ The proliferation of phage can be realized through experiment
- Center of plaque = site of first infection
- ➤ Plaques grow in time
- ➤ Plaques are radially symmetric
- ➤ Plaques with different phages grow at a different rates



Experimental Protocol

Towards a mathematical model

Observations:

- 1. The spread of the bullseye pattern is mostly deterministic
- 2. Strong radial symmetry
- 3. The patterns vary in SPACE and TIME

Dependent variables:

R (space), n (time)

Independent variables:

Bacteria density, phage density

 $U_n(R)$: Density of bacteria at time n

 $V_n(R)$: Density of phage at time n

Mathematical Formulation

$$V_{n+1}(R) = V_n(R) + F(U_n, V_n)$$

 $U_{n+1}(R) = U_n(R) + G(U_n, V_n)$

change in phage density between times n and n+1

change of bacteria density between times n and n+1

Can you figure out plausible forms for F and G by thinking about the biology of plaque formation?

What are "good" choices for F and G?

- There are infinitely many choices for F and G.
- Good choices lead to agreement with experiment!
- Physical principles motivate certain functional forms. But biology is messy and often it is unclear if the assumptions underlying the physical laws hold.
- Choosing good F and G is an artform
 - Experience with modeling helps
 - Good knowledge of mathematics, physics and biology helps

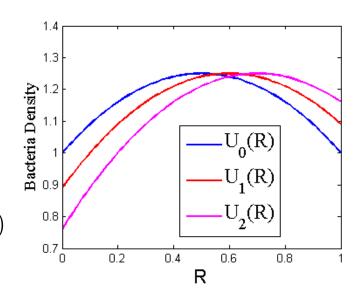
Model Equations

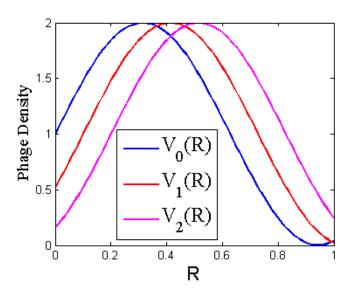
$$V_{n+1}(R) = V_n(R) + F(U_n, V_n)$$

$$U_{n+1}(R) = U_n(R) + G(U_n, V_n)$$

 $U_0(R)$ and $V_0(R)$ are given functions (initial conditions)

Find sequence of functions $\{U_1, U_2, U_3, ...\}$ $\{V_1, V_2, V_3, ...\}$





Main elements of a mathematical model

- 1) Diffusion (spreading) of phage from regions of high density to low density
- 2) Infection of bacteria by phage and subsequent release of new phages after lysis
- 3) Growth of bacteria due to nutrients
- 4) Death of bacteria due to infection and lysis by phage

Work in groups and discuss these points:

- 1. Which items in 1) -4) should be incorporated into F, which should be incorporated into G?
- 2. Are there additional effects that could be incorporated?
- 3. Should there be explicit dependence on *R* and *n* in F and G?
- 4. What are reasonable forms for $U_0(R)$ and $V_0(R)$?

My solution

$$V_{n+1}(R) = V_n(R) + \text{(new phages formed + spread of existing phages)}$$

 $U_{n+1}(R) = U_n(R) + \text{(bacteria proliferation + bacteria death)}$

There are 4 terms to which we need to assign mathematical functions

Guiding principles for constructing a mathematical model

- 1. Occam's razor: Keep things simple!
- 2. You should be able to motivate the functional forms of your terms through simple reasoning
- 3. It's OK to have constants/parameters in your model whose values you don't know (but could be measured by further experiments). But try not to have too many.
- 4. Complicated functional forms have many unknown parameters, which can make them a poor choice for models.
- 5. Think about whether each of the terms INCREASE or DECREASE the local density.

Predator-Prey/Lotka-Volterra Models

Classical math bio model for interacting animal populations

Invented by Alfred Lotka (1910-1920) and studied by Vito Volterra (1926):

- "Contribution to the Theory of Periodic Reactions," J. Chem Phys. 14, 3 (1910)
- "Elements of Physical Biology," Williams and Wilkins (1925)
- "Variazioni e fluttuazioni del numero d'individui in specie animali conviventi," Mem. Acad. Lincei Roma (1926)

Coupled system of ordinary differential equations:

$$\frac{dx}{dt} = rx - axy$$

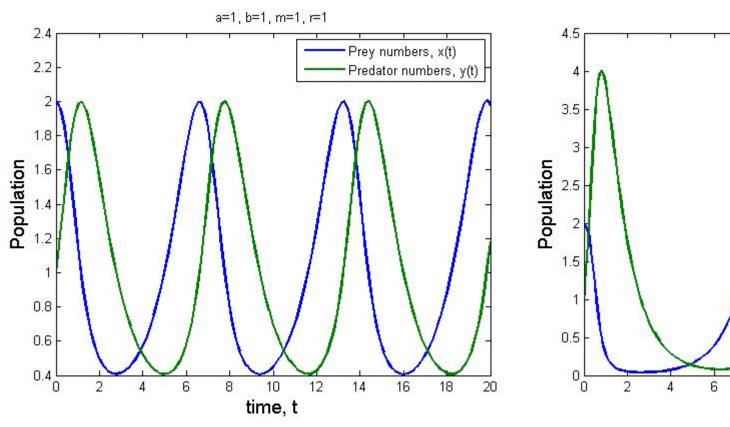
$$\frac{dy}{dt} = -my + bxy$$

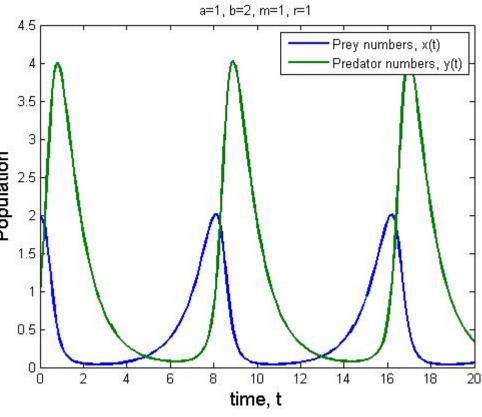
x(t): population of prey (e.g. rabbits)

y(t): population of predators (e.g. foxes)

r, m, a, b: model parameters

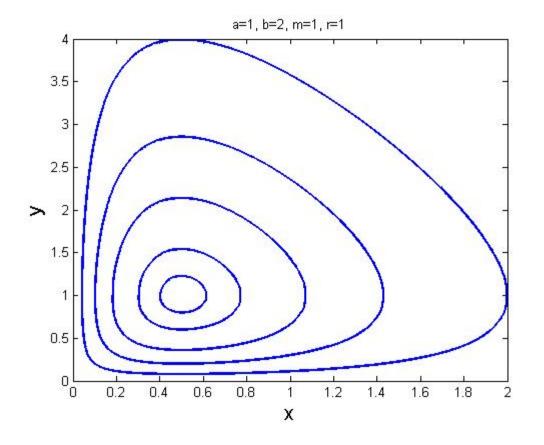
Numerical Solutions to Lotka-Volterra





Phase Plane Diagram

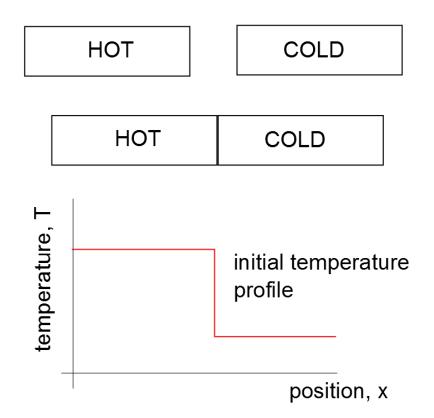
- Closed orbits in x-y space: extinction is not possible! Unrealistic?
- 2. Periodic solutions
- 3. Predator and Prey are out of phase
- 4. Extensions:
 - a) Stochastic Predator-Prey models
 - b) Immigration/emigration effects
 - c) Multiple species



Read Handout

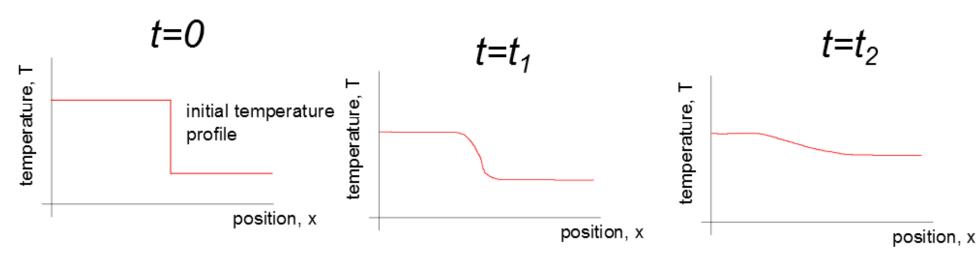
Diffusive spreading

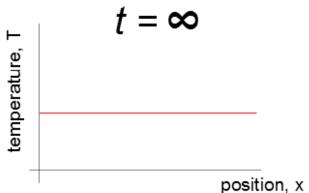
Suppose a hot metal rod is put into thermal contact with a cold metal rod.



What happens at later times?

Smoothing effect of diffusion





- 1. Diffusion smears out sharp changes in the temperature profile.
- 2. The more *concave* or *convex* the profile the faster it smooths out!
- 3. The Laplacian operator $(=d^2/dx^2 \text{ in 1D})$ is an indication of convexity/concavity of u(x).