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ABSTRACT

Atherosclerosis is a disease which can cause a narrowing of the blood vessels

therefore reducing the blood flow. It is one of the leading causes of death in the

world. Under-standing the behavior and dynamics of the vessel wall before and af-

ter atherosclerosis has been a motivation for many studies. We investigate this phe-

nomenon as a combi-nation of mechanical deformation of the vessel wall along with

cell and chemical dynamics that occur within.

In chapter 2 of this thesis, we investigate this phenomenon as a pure mechanical

deformation to learn how growth anisotropy affects the deformation of the arterial

wall. We consider the vessel wall as a growing hyperelastic material with three layers.

To describe tissue growth, we use morphoelasticity as the mathematical framework.

Then we investigate the effect of anisotropic growth on arterial wall remodeling in

five different cases: pure radial, pure circumferential, pure axial, isotropic and general

anisotropic growth. We speculate that the nature of anisotropy is inclined towards the

growth direction that requires the least amount of energy. We propose a scheme that

minimizes the energy with respect to the displacement and growth anisotropy.

In chapter 3, we utilize our results to see the effect of the most energetically

favorable growth on an essential mechanical property of the vessel wall: the opening

angle which is a measure of residual strain. We use a general 3D domain and investigate

the changes in the opening angle with respect to growth in each separate direction. We

notice that the growth in the circumferential direction has a more significant effect on

the opening angle than the other two directions. We also compare the opening angle

and the strain in the most energetically favorable anisotropic case with an isotropic

growth regime. Due to the geometry of the cross section (specifically the axial length

of the domain) the anisotropic and isotropic growth show similar results.

xiv



Finally in chapter 4, we use an integrated model that also includes cell and

chemical dynamics that occur within the arterial wall. The growth tensor now is

a function of Platelet Derived Growth Factor (PDGF). In this part, we explore the

distribution of oxidized lipids, macrophages, foam cells, oxygen and necrotic cells in

the intima at each growth step via a system of partial differential equations. Altogether,

this allows us to observe intimal thickening as a result of PDGF-induced vessel growth

along with histological changes within the wall such as the development of necrotic

zones. Our simulations show results similar to the images acquired from ultrasound

scans.
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Chapter 1

INTRODUCTION

1.1 Atherosclerosis

Our cardiovascular system is one of the most vital systems in our body respon-

sible for many important tasks among which are: transportation of nutrients, oxygen,

hormones and blood cells to our body organs as well as fighting diseases and stabilizing

our body temperature and pH. Blood vessels are the pathways for blood and consist

of three layers; intima, media and adventitia, see Figure 1.1. The blood flows in the

lumen and the interface that separates lumen from the intima is called the endothelium

which consists of a thin layer of cells called endothelial cells. These cells have many

functions such as homeostasis, hormone trafficking, protecting the intima from harmful

substances in the blood flow and white blood cell recruitment. Cardiovascular disease

(CVD) has always been a major challenge in the medical realm. Not only does it

impose a threat to global health but it also carries a heavy economic burden. Accord-

ing to the American Heart Association, in 2016, CVD cost America $555 billion. By

2035, the cost will skyrocket to $1.1 trillion [2]. It has affected more than 121 million

people in 2016 in the United States and about 48% of adults [7]. Atherosclerosis is

one manifestation of CVD, which causes the arteries to narrow due to plaque build-up.

This disease dates back more than 3500 years and it has been observed in Egyptian

mummies from 1580 BCE [98] and it has been the subject of many medical articles

[50, 40, 22, 23, 80]. Atherosclerosis can cause angina and might lead to more serious

problems such as heart-attack, stroke or even death. Atherosclerotic lesions present

different structures and stages. Necrosis is one of these stages and it happens as a

result of cell death due to injury or lack of nutrients and oxygen. However, Necrosis

1



(a) (b)

Figure 1.1: (a) Three layer schematic structure of arteries. The boundary A is the endothelium and
the lumen is where the blood flows. (b) A healthy coronary artery cross section courtesy of Diego et
al. [20].

and cell death are not the same, but cell death is a precursor to necrosis. It takes

some time for the dead cells to become necrotic. They have to go through irreversible

genetic changes to qualify as necrotic cells [62].

Early atherosclerotic lesions divide into three subcategories [98]:

• Pathologic intimal thickening: There is an abundance of smooth muscle cells

(SMC) in this plaque in addition to the presence of proteoglycan1 matrix and

focal accumulation of extracellular lipid.

• Fibrous cap atheroma: During early necrosis, macrophages infiltrate into lipid

pools with an overlying fibrous cap2. During later stages of necrosis, one can

observe matrix loss and extensive cellular debris.

• Thin cap fibroatheroma: In this stage a thin, fibrous cap (< 65 µm) is infil-

trated by macrophages and lymphocytes with rare or few SMCs and a relatively

large underlying necrotic core; intraplaque hemorrhage/fibrin may be present.

1 A compound consisting of a protein bonded to glycosaminoglycan groups, present especially in
connective tissue.

2 The fibrous cap is a layer of fibrous connective tissue, which is thicker and less cellular than the
normal intima, found in atherosclerotic plaques.
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See page 39 of [98] for diagrams.

More advanced lesions present acute thrombi3. Most acute coronary syndromes

are caused by luminal thrombi, which arise from three different plaque morphologies:

rupture, erosion and calcified nodules

• Ruptured plaque: These plaques have a significant necrotic core that causes

thrombus as a result of physical contact with platelets. This happens after a

mechanical rupture in the thin fibrous cap. In fact, ruptured plaques are a

natural progression from thin cap fibroatheromas and can cause acute events

such as myocardial infarction (MI).

• Eroded plaque: Unlike rupture, eroded plaques have little to no necrotic core

and the fibrous cap remains thick and intact. The thrombosis happens on top of

a smooth muscle cell and proteoglycan-rich plaque. This thrombus is often called

a white thrombus as opposed to the red thrombus caused by rupture.

• Calcified nodule: The least common type of plaques are calcified nodules.

These lesions contain calcified plates and bony nodules that erupt into a lumen.

The intima contains few endothelial cells.

See page 22 of [98] for pictures.

Atherosclerosis is an intricate biological phenomenon that involves many bio-

chemical factors. Low blood flow imposed shear stress plays an essential role in trig-

gering atherosclerosis [57, 66, 19, 63]. Healthy endothelial cells produce a certain

amount of nitric oxide (NO) which is a vasodilator. Decrease in laminar shear stress

reduces the production of this chemical which leads to endothelial dysfunction. This

increases the permeability of the endothelium to low density lipoproteins (LDL) as

well as the production of Vascular Cell Adhesion Molecule-1 (VCAM-1). These adhe-

sive molecules start an inflammatory process by binding with Intracellular Adhesion

3 A blood clot formed within the artery which impedes blood flow.
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Molecule-1 (ICAM-1) on the surface of leukocytes present in the blood stream. At-

tached to the endothelium, leukocytes penetrate the vessel wall in response to chemoat-

tractant (MCP-1) present in the intima. Once inside, macrophage colony stimulating

factor (M-CSF) causes them to go through morphogenesis and turn into macrophages.

LDLs that have infiltrated the intima go through oxidization and turn into oxidized

LDLs. Macrophages cause inflammation and release more chemoattractant. They also

consume oxidized LDLs and turn into foam cells, see Figure 1.2. SMCs can also migrate

into the plaque from the underlying media and consume oxidized LDLs but at a much

lower rate than the macrophages. The death of SMCs, foam cells and macrophages all

contribute to a necrotic core, one of the defining characteristics of a vulnerable plaque

(rupture-prone plaque) [57, 98].

Figure 1.2: Schematic of atherosclerosis histology. The pink region here and the internal elastic

lamina correspond to the intima and boundary B in Figure 1.1.
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The plaque build-up in atherosclerosis is often associated with a thickened in-

tima. Intimal thickening (IT) is one of the most important factors in assessing cardio-

vascular risk and one of the most common methods in measuring the progression of

atherosclerosis. However, it is quite different from atherosclerosis as in IT the associated

lesions are less inflamed since inflammatory agents like macrophages are almost non

existent inside the intima. IT is considered to be an important precursor to atheroscle-

rosis [51, 96, 69]. Thickened intimas are often thought as the “soil” for atherosclerosis.

This phrase was coined by Schwartz [86].

1.2 Literature Review

There are many studies that try to understand the cell and chemical dynamics

of intimal thickening and atherosclerosis. Here we briefly introduce a few different

points of view. One well known example is Hao and Friedmans study [41]. They had

most of the key players including a velocity field which was the result of movement

of macrophages, T-cells and smooth muscle cells into the intima. This procedure pro-

moted intimal thickening. Their model however, did not consider the mechanical prop-

erties of the intima and neglected the other two layers of the vessel wall. Chalmers et al.

used differential equations to purely explore the dynamics of early atherosclerosis [15].

Their model considered the concentration of LDLs, chemoattractants, Endothelium-

Stimulating (ES) cytokines, macrophages and foam cells. All of their simulations were

done in one dimension and their result provided qualitative and quantitative insight

into the effect of LDL penetration in the inflammatory response. In 2017, Chalmers

et al. further investigated the effect of High Density Lipoproteins (HDL) in plaque

regression [14]. They observed that increasing HDL influx regresses plaques with a low

density of foam cells and slows the growth of plaques with a high density of foam cells.

El Khatib et al. suggested that inflammation propagates in the intima as a reaction

diffusion wave [21]. They concluded that in the case of intermediate LDL concentra-

tions there are two stable equilibria: one corresponding to the disease free state and

the other one to the inflammatory state while the traveling wave connects these two
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states. Fok investigated the effect of the spatial distribution of oxidized LDL on the

location and size of the necrotic core [24]. He predicted the location and size of the

necrotic core due to the chemotaxis of macrophages towards sources of oxidized LDLs

and their death due to lack of oxygen. Cobbold et al. investigated the deposition of

cholesterol as a result of LDL oxidation using a system of ODEs [18]. In their system,

they considered the concentration of antioxidants specifically vitamin E and vitamin

C, HDL, LDL and free radicals. They showed that vitamin E supplementation is not

as beneficial as HDL and vitamin C for hindering the oxidation process.

Blood vessels present mechanical behaviors that are interesting to many re-

searchers in different disciplines. Investigating the mechanical properties of the blood

vessels is an essential step towards understanding cardiovascular diseases. Fung, the

founder of modern biomechanics has many contributions to this field. One of his

important findings was the formulation of residual stress (remaining stress in a load-free

arterial cross section) as a function of the opening angle. He noticed that when load-free

cross sections of arteries were cut radially they sprang open. With this being evidence

of residual stress, he proposed a formula to relate the opening angle of the cut sector to

the residual stress in the load free cross section [16]. Thereafter, the concept of residual

strain/stress attracted many researchers. Humphrey and Taber investigated the stress-

modulated growth and residual stress of arteries using the concept of opening angles

[92]. In their research they speculated that vascular heterogeneity must be a result

of changes in the orientation and mechanical properties of collagen fibers. In a more

experimental study, Greenwald et al. measured the distribution of residual strain in the

artery wall [35]. They designed two sets of experiments. In the first one they eliminated

collagen and elastin by chemical methods and destroyed SMCs by freezing them. They

concluded that lack of elastin increased the opening angle while the collagen fibers

and SMCs had no effect. In the other experiment, they removed different layers of

the arterial wall from the outer surface by lathing frozen cross sections. After thawing

them they observed that the more they lathed the bigger the opening angle became. In

2005, Holzapfel et al. determined the mechanical properties of coronary artery layers
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with nonatherosclerotic intimal thickening [46]. In their study, they experimented on

thirteen hearts, from 3 women and 10 men which were harvested within 24 hours

of death. Then they created coronary artery cross sections and cut them along the

axial direction to obtain flat rectangular sheets. Thereafter, by exposing the sheets to

tensile stresses, they were able to infer layer-specific mechanical parameters later used

in their strain energy function. This function was able to capture the stiffening effect of

collagen fibers that exist in each layer. This energy function is often called Holzapfel-

Gasser-Ogden (HGO). Many researchers have used the HGO model to simulate and

investigate arterial biomechanics. Olsson and Klarbring used this model to predict

the residual stresses in a cylindrical artery as a result of growth and remodeling of the

fiber angle [73]. They chose deviations from homeostatic pressure to be the trigger that

initiates the growth. Also deviations from principle stress directions were considered

as the cause of fiber remodeling.

Cardiovascular research is not limited to the arterial wall. Blood flow plays a

big role in arterial biomechanics. Changes in the laminar shear stress or concentration

of different chemicals inside the bloodstream are some of the crucial factors that can

affect the biomechanical and histological behavior of the arteries. Study of laminar

flow inside a cylindrical tube goes back to 1840 when Poiseuille proposed his famous

formula [75]. After that, numerous researchers have studied the dynamics of different

fluids in different vessels or the interaction between the fluid and the vessel. Some

early examples are: calculating the blood flow velocity in animal arteries in-vivo, us-

ing an electric circuit [60] and finding an analytic solution for the flow of a viscous

fluid in femoral arteries [10]. Sherwin et al. used two different discretization methods;

discontinuous Galerkin and Taylor-Galerkin with different terminal boundary condi-

tions for their 1D blood flow simulation [87]. They saw that using terminal resistance

produced a dicrotic notch4 which is an important feature of the pressure waveform in

4 In the arterial pulse waveform, one pulse consists of a sharp increase corresponding to the systolic
pressure, then a decline called systolic decline followed by the diastolic decrease. The transition from
the systolic decline and diastolic runoff however, does not happen smoothly. There is a cusp that
connects them which is known as the dicrotic notch.
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the cardiac cycle. In another study, Quarteroni et al. coupled lumped and distributed

models of blood flow [76]. Lumped models, are widely adopted in blood flow mod-

eling with the help of ODEs and DAEs. One can often see the use of hydraulic or

electric circuits in the literature to assist with duplicating physiologic or pathologic

situations in this type of models. For example, they can divide a big cardiovascular

system into smaller parts with blood flow inputs, outputs and resistances which can

be modeled by electric or hydraulic circuit components. Distributed models, such as

Navier-Stokes equations focus on more local phenomena. Quarteroni et al. were the

first to couple these approaches, in the way that the lumped model provided estimates

for the boundary conditions of the distributed model. There are many models that

target the blood flow inside the heart. Peskin studied the blood flow inside the heart

using a moving immersed boundary method and compared the results of natural and

prosthetic valves [74]. This is an example of a fluid-structure interaction model where

the blood and the blood vessel exert forces on each other. Liu and Marsden proposed

a model that couples the dynamics of a viscous fluid to a hyperelastic solid in a unified

computational framework [58].

In 1987, Seymour Glagov discovered an important behavior of arteries by ex-

perimenting on a section of the left main coronary artery in 136 hearts obtained at

autopsy [34]. He found that arteries remodel as the plaque grows. This is done by radial

enlargement (or outward remodeling) of the lumen area to compensate for growth of

the plaque. This compensation will continue until the lesion reaches about 30% stenosis

defined by

Stenosis =
Intima Area

Intima Area + Lumen Area
. (1.1)

and then the lumen area starts shrinking (inward remodeling) as the plaque grows.

Intima area in equation (1.1) is the area enclosed by the boundaries A (endothelium)

and B (internal elastic lamina (IEL)) in Figure 1.1 and the denominator of (1.1) is

the area enclosed by B (IEL). Stenosis is a common measurement of plaque burden in

cardiovascular research.
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Figure 1.3: (a) Remodeling behavior depends on whether stenosis (eq. 1.1) is less than or greater

than 30%. With the same data, Glagov et al. were also able to fit a piecewise linear curve with a

jump in derivative at about 30% [34]. In this case, the curve gently increases when stenosis is less

than 30% and decreased when the stenosis was more than 30%. (b) Schematic showing what happens

to the vessel wall inferred from Glagov’s data.

Fok explored the growth in a 2D annulus subject to a uniform isotropic growth

tensor [25]. Although these assumptions are not realistic the results seem to follow the

general characteristics of Glagov remodeling. In other words, it captures the compen-

sation phase followed by an inward remodeling of the lumen at about 30% stenosis, see

Figure 1.3.

Glagov phenomenon is crucial for diagnostic purposes. Since coronary angio-

graphy can only visualize the lumen the extent of the plaque burden in the arterial wall

might be underestimated during the compensation phase. In this phase the intima-

media interface, also known as internal elastic lamina (IEL) is pushed outward increas-

ing the IEL area. This outward remodeling of IEL cannot be captured via angiography,

see Figure 1.4. Therefore, understanding this attribute of the blood vessels is cru-

cial for devising new methods for determining the severity of arterial diseases such as

atherosclerosis. This phenomenon has been the subject of biological and mathematical

9



studies ever since [52, 53, 64, 25].

Figure 1.4: Angiography will not be able to distinguish between cases 1 and 2. However, according

to formula (1.1) the stenosis in case 2 is larger than case 1.

1.3 Mechanical aspect and Morphoelasticity

Figure 1.5: Deformation of domain Ω via the deformation vector field ϕ(X,Y, Z). Every point

(X,Y, Z) in the reference domain gets mapped to a point in the deformed domain ω by ϕ(X,Y, Z).
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In continuum mechanics the deformation field ϕ is a vector field that maps every

point in the reference domain to a point in the deformed domain, see Figure 1.5. We

can define a displacement field u corresponding to each deformation field:

u(X, Y, Z) = ϕ(X, Y, Z)− (X, Y, Z) (1.2)

Then the deformation of a solid is given by a tensor called the deformation gradient

defined by:

F = ∇ϕ = I +∇u (1.3)

where I is the identity matrix.

In 1994, Rodriguez et al. proposed a mathematical framework for dealing with

growth in elastic tissues [78]. This framework is what we now call morphoelasticity

and has been used in many studies about growing elastic materials [84, 4, 6]. In

this framework, if a tissue deformation is caused by growth the assumption is that it

first undergoes a pure volumetric growth associated with a growth tensor (G) before

being strained. The strain acts as an elastic response via an elastic tensor (Fe) to

accommodate for the pure volumetric growth. In other words, if we consider the

tissue consisting of smaller elements, first these element grow as a response to the pure

growth. This might cause an “overlap” in neighboring elements which results in an

incompatible configuration. The elastic response acts as a correction to accommodate

the volumetric growth and creates a compatible continuous grown configuration, see

Figure 1.6. This translates into the mathematical decomposition of (1.3) into the

following matrix multiplication:

F = FeG. (1.4)
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Figure 1.6: Deformation gradient decomposition based on morphoelasticity. Configurations in red

are incompatible due to overlapping elements.

This treatment of deformation by growth has some limitations: 1) Morpho-

elasticity is not compatible with growth from a grown domain because of the non-

commutativity of elastic and growth tensors. 2) Growth must happen from the refer-

ence domain and in the case of a large growth the numerical method may not converge

to a solution. We elaborate on both of these issues below.

Ideally we would want to grow from a grown domain, but this is not generally

possible as we now discuss. Elastic tensors do not necessarily commute with the growth

tensors which is required to get a single equation like (1.4) for morphoelasticity. The

final configuration 3 (acquired by growing from the reference domain) is not in general

the same as configuration 2 (acquired by growing from the grown domain 1), see Figure

1.7.
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Figure 1.7: Going from the reference state to state 2 we apply F∗1F1 = F∗e1G
∗
1Fe1G1. However, F∗e1

and G1 do not necessarily commute. Therefore, in general F∗1F1 = F∗e1G
∗
1Fe1G1 cannot be written

as F2 = Fe2G2 which is required in the Morphoelasticity framework.

In the case when all the elastic and growth tensors are diagonal, incremental

growth can be implemented. In the case that G∗1 and Fe1 do commute we will have

F∗1F1 = F∗e1Fe1G
∗
1G1. Therefore, by letting Fe2 = F∗e1Fe1 and G2 = G∗1G1 we get

F∗1F1 = F2.

Now consider a simple problem of a growing domain in a Cartesian coordinate

system with the growth tensor

G = diag(1 + Σ, 1 + Σ, 1 + Σ)

where Σ is a constant. Diagonal entries correspond to growth in the X, Y and Z

direction and G = I corresponds to no growth. Since for finite element simulation we

use Newton’s method, a good initial guess is necessary. For small deformations, the

reference configuration provides a good initial guess. However, in the case of a large

deformation the reference configuration is not a good initial guess and can cause the

numerical iteration to diverge.
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A general sketch of our algorithm that gives us the deformed domain is as fol-

lows:

>>Let uguess = 0

>>Let Ψ(∇u, det(G)) be the energy of the elastic solid. (see next chapter)

>>for i = 1, 2, · · · , n:

>> let G = I + (i/n) ∗ Σ

>>Find the displacement u that makes Ψ(∇u, det(G)) stationary for

every test function using Newton’s method and initial guess uguess

>>Let uguess = u and i = i+ 1

Each of the intermediate steps (where i ≤ n) are acquired by growing from the reference

domain but using the solution from the previous step as the guess (uguess). Therefore,

taking smaller steps improves the convergence of the Newton iteration since the next

step displacement is close to uguess acquired from the previous step.

1.4 Aim of this thesis

In this thesis we use a finite element method based on morphoelasticity to study

the growth of atherosclerotic plaques. The three layers of the vessel wall are modeled

with HGO-type strain energy functions with different mechanical parameters. All of

our numerical simulations are carried out in a FEniCS framework [55].

Although there are various studies involving arterial growth in two dimensions,

anisotropic growth in 3D has not been explored in much detail. Therefore, most of

our results are new and consider a three dimensional arterial domain. First we provide

results that show isotropic growth is not the most energetically favorable case and

produces results that are not close to Glagov’s result qualitatively. On the other hand,

anisotropic treatment of the problem matches Glagov’s data better (Figure 1.3(a)).

After establishing a method to get the most energetically favorable anisotropic growth,

we investigate the effect of growth on the opening angle and the strain. Finally, we
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include the biology of plaque in our model. We propose a method to couple morphoe-

lastic growth in the arterial wall to the presence of a growth factor such as PDGF and

we explore its effect on the histology and formation of the necrotic core.
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Chapter 2

ATHEROSCLEROSIS MODEL IN CYLINDRICAL COORDINATES

In this chapter we consider a three layered three dimensional axisymmetric

arterial domain. As mentioned in section 1.2 morphoelasticity is our mathematical

framework and it allows us to decompose the deformation gradient F into a pure

growth tensor G (which we prescribe) and an elastic response Fe (which has to be

found), as in equation (1.4).

We start with a functional that accounts for the total energy due to the volu-

metric deformation caused by growth and external boundary loading (blood pressure)

[26]:

E =
3∑
i=1

(∫
Ωi

JgiWi dV

)
︸ ︷︷ ︸

Energy due to volumetric strain caused by growth

+
p

3

∫
∂Ω1

JF−TN · u dS︸ ︷︷ ︸
Energy due to blood pressure

, (2.1)

where Ωi for i = 1, 2, 3 corresponds to the intima, media and adventitia respectively.

The boundary ∂Ω1 is the endothelium and N is its unit outward normal vector, see

Figure 2.1. The vector u is the displacement defined by (1.2) and p is the blood

pressure. We have the following Jacobians

J = det(F) (2.2)

Jei = det(Fei) (2.3)

Jgi = det(Gi). (2.4)

Growth here is a volumetric growth that occurs only inside the intima. Therefore,

Jgi = 1 for i = 2, 3. Deformation of the arteries causes change in strain energy Wi in
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each layer. This strain energy is the sum of energy stored due to the isotropic (Ψiso)

and the anisotropic (Ψaniso) changes in each of the layers [44]:

Wi = Ψi
iso + Ψi

aniso (2.5)

Ψi
iso =

µi
2

(I1 − 3) +
ν

1− 2ν
µi(Je − 1)2 − µi ln Je (2.6)

Ψi
aniso =

ηi
βi

{
eβi[ρi(I4−1)2++(1−ρi)(I1−3)2] − 1

}
(2.7)

where i = 1, 2, 3 corresponds to intima, media and adventitia; µi, ηi are stress-like

parameters; and βi, ρi are dimensionless. Arterial tissue is a nearly incompressible

material due to its high water content. Incompressibility condition in mechanics is

equivalent to Je = 1. By taking the Poisson ratio ν close to 0.5 we are significantly

increasing the contribution of the second term in (2.6). Therefore, when minimizing

the total energy (2.1) the minimization will strongly penalize Je 6= 1 which enforces

the near incompressibility of the material. We also define

I1 = Tr(Ce) = Tr(FT
e Fe) (2.8)

I4 = b(R,Z)TCeb(R,Z) (2.9)

where Ce = FT
e Fe is the right Cauchy-Green tensor1 and I1 is its first invariant.

The right Cauchy-Green tensor is a symmetric positive definite tensor. It is then

independent of the frame and all of its eigenvalues are positive2. To incorporate the

direction for which the collagen fibers are aligned in each of the layers we use b(R,Z)

which is a unit vector. The value of I4 represents the normalized length of deformed

fibers (I4 = 1 means the fibers are unstretched). Because of the crimped structure of

collagen it is regarded as not being able to support compressive stresses [45]. The role

1 The reason it is called the right Cauchy-Green tensor is because Fe is on the right side of the
formula.

2 The Cauchy-Green tensor for the elastic response being characterized by a positive definite tensor
has a great advantage. This will prevent the material vector differentials from rotating more than 90
degrees.

17



of the collagen fibers is included in the (I4 − 1)2
+ term in equation (2.7) which will be

triggered only if I4 > 1:

(I4 − 1)2
+ =

(I4 − 1)2 if I4 > 1

0 if I4 ≤ 1

(2.10)

(a)

(b)

(c)

Figure 2.1: (a) Mathematical reference domain with subdomains and boundary labels. (b) Math-

ematical deformed domain with subdomains and boundary labels. We use lower case letters for the

deformed domain. (c) Plan view of the artery and the orientation of representative fibers. Vector b

is defined for each layer by (2.30) and the values of ϕ for each layer are given in Table 2.1.
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We are interested in finding a solution to the following boundary value problem

∇ · σ = −f̂ , on ω (2.11)

σn = −pn, on ∂ω
(1)
1 (2.12)

σn = 0, on ∂ω
(2)
3 (2.13)

σn|
∂ω

(2)
1

+ σn|
∂ω

(1)
2

= 0, (2.14)

σn|
∂ω

(2)
2

+ σn|
∂ω

(1)
3

= 0. (2.15)

where the tensor σ is the Cauchy stress tensor, f̂ is the body force, ω =
3⋃
i=1

ωi for

i = 1, 2, 3 is the three layered domain after deformation and ∂ω
(1)
i is the inner boundary

and ∂ω
(2)
i is the outer boundary of the i-th layer after the deformation. We consider p

to be the only boundary load, which in our case is the blood pressure. We denote the

outward unit normal vector to the deformed boundary by n, see Figure 2.1(b). Given

that stenotic coronary arteries generally experience very little axial pre-stretch [29, 85]

we add two traction free boundary conditions for the end surfaces

σn = 0, on ∂ωL (2.16)

σn = 0. on ∂ωR (2.17)

Even though (2.11)-(2.17) seem like a typical boundary value problem, since morphoe-

lasticity is not compatible with growth from a grown domain (refer to section 1.3),

we prefer working with the reference domain, Ω. Thus we use a system that utilizes

∂Ω for its boundary condition rather than ∂ω, see Figure 2.1(a). Therefore, by ap-

plying Nanson’s pull back formula [44] and using the first Piola-Kirchoff stress tensor,

(2.11)-(2.17) turn into
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∇ ·T = −f , on Ω1, Ω2, Ω3 (2.18)

TN = −pJF−TN, on ∂Ω
(1)
1 (2.19)

TN = 0, on ∂Ω
(2)
3 (2.20)

TN|
∂Ω

(2)
1

+ TN|
∂Ω

(1)
2

= 0, (2.21)

TN|
∂Ω

(2)
2

+ TN|
∂Ω

(1)
3

= 0, (2.22)

TN = 0, on ∂ΩL (2.23)

TN = 0, on ∂ΩR (2.24)

where the first Piola-Kirchoff stress is

T = Jg
∂W

∂Fe

G−T , (2.25)

see [1, 102]. Also f(X, Y, Z) = J f̂ [38] and N is the outward unit normal vector to the

reference boundary, see Figure 2.1(a). For solving this problem we use a weak form

that is equivalent to (2.18)-(2.24).

2.1 Weak formulation in cylindrical coordinates

In this chapter we consider an axisymmetric cylindrical domain Ω with three

subdomains Ωi for i = 1, 2, 3 to represent the artery. Let R, Θ and Z be the radius,

polar angle and axial distance of a point in the reference domain in cylindrical coor-

dinates and r, θ and z be the corresponding quantities in the deformed domain. We

consider (R,Θ, Z) as a generic point in the reference domain and (r, θ, z) as the one

in the deformed domain. Suppose ϕ is the deformation field that maps the reference

domain into the deformed domain and u is the corresponding displacement field given

in (1.2). Then, from equation (1.3), the deformation gradient is

F = I +∇u (2.26)
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where

F =


∂r
∂R

1
R
∂r
∂Θ

∂r
∂Z

r ∂θ
∂R

r
R
∂θ
∂Θ

r ∂θ
∂Z

∂z
∂R

∂z
∂Θ

∂z
∂Z

 (2.27)

However, in the axisymmetric case r and z are independent of Θ and θ is independent

of R and Z, which simplifies the deformation gradient into

F =


∂r
∂R

0 ∂r
∂Z

0 r
R

0

∂z
∂R

0 ∂z
∂Z

 (2.28)

hence

J = det(F) =
r

R

(
∂r

∂R

∂z

∂Z
− ∂r

∂Z

∂z

∂R

)
(2.29)

The fiber direction vectors in each undeformed layer take the form

bi(R,Z) = cos(ϕi)êΘ + sin(ϕi)êZ (2.30)

where i = 1, 2, 3 corresponds to intima, media and adventitia and ϕi is the angle from

Figure 2.1(c) for each layer. Also êΘ and êZ are the circumferential and axial basis

vectors in the reference configuration. Furthermore, Ti = Jgi
∂Wi

∂Fei
G−Ti for i = 1, 2, 3.

Using (2.5)-(2.9) and (2.29)-(2.30) we have:

∂Wi

∂Fei

= µiFei +
2µiν(Jei − 1)Jei

1− 2ν
F−Tei − µiF

−T
ei

(2.31)

+ 4ηi
{
ρiFeibib

T
i (I4 − 1)+ + (1− ρi)Fei(I1 − 3)

}
eβi[ρi(I4−1)2++(1−ρi)(I1−3)2]

The biology of our problem suggests that the growth occurs only inside the intima.

Therefore, Gi = I and Jgi = 1 when i = 2, 3 (in the media and adventitia). On the

other hand we consider G1 = diag(gα(t, Z), gβ(t, Z), gγ(t, Z)) with

gα(t, Z) = 1 + αt exp(−aZ2) (2.32)

gβ(t, Z) = 1 + βt exp(−aZ2) (2.33)

gγ(t, Z) = 1 + γt exp(−aZ2) (2.34)
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corresponding to radial, circumferential and axial growth respectively. The variable t

is time which is in years throughout this chapter. We include the exponential functions

in Z to model the effect of local growth in the axial direction. Furthermore, we want

growth to increase linearly in time but at different rates and this is the reason for

including α,β and γ. In other words, these parameters α,β and γ allow us to explore

the effect of anisotropic growth on Glagov remodeling and in the case of isotropic

growth we will have α = β = γ. The parameter a determines the locality of growth.

We denote the radii of the boundaries between the lumen, intima, media, adventitia

and the external tissue in the reference domain by A1, A2, A3 and A4 respectively. Also

the value L specifies the half-length of the artery cross section such that −L < Z < L.

See Table 2.1. We are now ready to propose a weak form for (2.18)-(2.24).

Theorem 1. Suppose a constant pressure load p is applied to the inner boundary ∂Ω
(1)
1

of a three layered arterial domain Ω =
3⋃
i=1

Ωi with piecewise smooth boundaries. For

simplicity we denote the outward unit normal vectors N|
∂Ω

(k)
i

, N|∂ΩL
and N|∂ΩR

by

N
(k)
i , NL and NR for i = 1, 2, 3 and k = 1, 2, respectively. Assume that the domain

has a finite length 2L and is traction free at both ends and f ∈ L2(Ω) and Gi for

i = 1, 2, 3 are growth tensors defined on the intima, media and adventitia respectively.

Then defining Jgi = det(Gi), the displacement field u ∈ C 2(Ω) that solves (2.18)-(2.24)

also satisfies

2π
3∑
i=1

∫ L

−L

∫ Ai+1

Ai

[(
Jgi

∂Wi

∂Fei

G−Ti : ∇v

)
− f · v

]
R dR dZ

+2πpA1

(∫ L

−L
JF−TN

(1)
1 · v dZ

)
= 0 (2.35)

for every v ∈ C 2(Ω), where ∂Wi

∂Fei
is defined in (2.31), J is defined in (2.29) and F is

defined by (2.26) and (2.28).

Proof. Let v ∈ C 2(Ω). By multiplying both sides of (2.18)-(2.24) by v and integrating
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over their respective domains we get the following∫
Ω

(∇ ·T) · vdx = −
∫

Ω

f · vdx, (I)∫
∂Ω

(1)
1

TN
(1)
1 · vds = −

∫
∂Ω

(1)
1

pJF−TN
(1)
1 · vds, (II)∫

∂Ω
(2)
3

TN
(2)
3 · vds = 0, (III)∫

∂Ω
(2)
1

TN
(2)
1 · vds+

∫
∂Ω

(1)
2

TN
(1)
2 · vds = 0, (IV)∫

∂Ω
(2)
2

TN
(2)
2 · vds+

∫
∂Ω

(1)
3

TN
(1)
3 · vds = 0, (V)∫

∂ΩL

TNL · vds = 0, (VI)∫
∂ΩR

TNR · vds = 0. (VII)

Adding equations (I)-(VII) and using Ω =
3⋃
i=1

Ωi gives us

−
3∑
i=1

[∫
Ωi

(∇ ·Ti) · vdx

]
−
∫

Ω

f · vdx +

∫
∂Ω

(1)
1

pJF−TN
(1)
1 · vdx +

∫
∂Ω

(1)
1

TN
(1)
1 · vds

+

∫
∂Ω

(1)
2

TN
(1)
2 · vds+

∫
∂Ω

(1)
3

TN
(1)
3 · vds+

∫
∂Ω

(2)
1

TN
(2)
1 · vds+

∫
∂Ω

(2)
2

TN
(2)
2 · vds

+

∫
∂Ω

(2)
3

TN
(2)
3 · vds+

∫
∂ΩL

TNL · vds+

∫
∂ΩR

TNR · vds = 0. (2.36)

Now using the divergence theorem on the sum results in

−
3∑
i=1

[∫
Ωi

(∇ ·Ti) · vdx

]
=

3∑
i=1

[∫
Ωi

(Ti : ∇v)dx

]
−
∫
∂Ω

(1)
1

TN
(1)
1 · vds−

∫
∂Ω

(1)
2

TN
(1)
2 · vds

−
∫
∂Ω

(1)
3

TN
(1)
3 · vds−

∫
∂Ω

(2)
1

TN
(2)
1 · vds−

∫
∂Ω

(2)
2

TN
(2)
2 · vds

−
∫
∂Ω

(2)
3

TN
(2)
3 · vds−

∫
∂ΩL

TNL · vds−
∫
∂ΩR

TNR · vds.

(2.37)
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Then we replace (2.37) in (2.36) to get

3∑
i=1

[∫
Ωi

(Ti : ∇v)dx

]
−
∫

Ω

f · vdx +

∫
∂Ω

(1)
1

pJF−TN · vds = 0. (2.38)

Finally, we switch to cylindrical coordinates

2π
3∑
i=1

[∫ L

−L

∫ Ai+1

Ai

[(Ti : ∇v)− f · v] R dR dZ

]
+ 2π

(∫ L

−L
pJF−TN · v R dZ

)∣∣∣∣
R=A1

= 0.

Notice that since there is no dependence on Θ due to axisymmetry we have integrated

with respect to Θ producing the 2π coefficients. Using the definition Ti = Jgi
∂Wi

∂Fei
G−Ti

we get (2.35) for every v ∈ C 2(Ω).

Note: In this thesis we assume that the body forces are negligible. Therefore,

(2.35) becomes

2π
3∑
i=1

∫ L

−L

∫ Ai+1

Ai

(
Jgi

∂Wi

∂Fei

G−Ti : ∇v

)
R dR dZ + 2π

(
p

∫ L

−L
JF−TN · v R dZ

)∣∣∣∣
R=A1

= 0

(2.39)

for every v ∈ C 2(Ω).

We use Table 2.1 for parameter values. All the values are proposed by [46] as a

result of experimenting on 13 hearts from 3 women and 10 men post mortem.
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Symbol Units Value

µ1 kPa 27.9

µ2 kPa 1.27

µ3 kPa 7.56

ν Dimensionless 0.49

η1 kPa 263.66

η2 kPa 21.60

η3 kPa 38.57

β1 Dimensionless 170.88

β2 Dimensionless 8.21

β3 Dimensionless 85.03

ρ1 Dimensionless 0.51

ρ2 Dimensionless 0.25

ρ3 Dimensionless 0.55

ϕ1 Degrees 60.3

ϕ2 Degrees 20.61

ϕ3 Degrees 67

A1 mm 1.26

A2 mm 1.47

A3 mm 1.89

A4 mm 2.31

L cm 3.36

Table 2.1: List of parameter values used in this thesis.

Ultimately, we need to find a displacement field u that gives us a deformation

gradient F in (2.26) and (2.28) which gives us the elastic tensors Fei = FG−1 for each

layer by (1.4) which leads to the first Piola-Kirchoff stress tensors Ti for each layer

that satisfies (2.39) for sufficiently smooth v.
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We use FEniCS as our computing platform for finite element simulations in this

thesis. FEniCS is a powerful open source package that can be utilized by languages

such as C++ and Python [55]. For this problem we use a 2D mesh in (R,Z) with about

11000 triangles, see Fig 2.2. In our codes we use a nonlinear Newton solver which uses

a GMRES linear solver with an incomplete LU preconditioner for each iteration. A

relative and absolute error of 10−9 is defined for all of the codes used in this thesis.

Shear locking is a phenomenon in finite element simulation that is caused due

to the use of linear elements. The linear elements are unable to capture the curvature

caused by bending. These kinds of elements increase the effective stiffness of the prob-

lem. In other words, the simulation ends up with less displacement than it should.

We believe that in some cases the growth in the intima can impose a weak bending

effect on the media which might lead to shear locking. Therefore, to be safe we used

quadratic elements. This is a common remedy for shear locking. This way we approx-

imate the displacement field by second order Lagrangian elements which leads to a

linear approximation for the strain. Also increasing the number of elements along the

thickness of the domain is another common remedy for shear locking [103].

Although the problem is computationally intensive, the University of Delaware’s

Caviness cluster was able to find solutions in about 12 hours. Caviness is a distributed-

memory linux cluster with 126 compute nodes (4536 cores, 24.6 TB memory) and a

Lustre storage of approximately 200 TiB of usable space. Thanks to access to a high

performance computing resource we were able to simulate growth for values of t as

large as 3 decades in (2.32)-(2.34).

In the special case where η = 0 in (2.6) for each layer, validation was done by

comparing the results of our Fenics code with a 1D solution (solved using Matlab), see

the appendix in [26].

2.2 Assumptions

For the rest of this chapter we consider the blood pressure to be the average

value between systolic and diastolic blood pressure with p = 16 kPa = 120 mmHg.
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Atherosclerosis is always associated with hypertension and our choice is equivalent to

hypertension stage II blood pressure according to the American Heart Association, see

Table 2.2. We assume that the artery is in the pressurized state at t = 0, see Figure 2.2.

The blood pressure causes the vessel to dilate and the length of the artery decreases

to conserve volume. Signs of coronary artery disease rarely occur in young adults (age

< 40) [93] and stenosis larger than 50% is often observed in adults older than 60 [33].

Therefore, we assume in our model atherosclerosis starts around age 35 and continues

until 65, and we run our simulations from t = 0 to t = 30 years accordingly.

Blood pressure category Systolic (mm Hg) Diastolic (mm Hg)

Normal < 120 < 80

Elevated 120− 129 < 80

High blood pressure

(Hypertension) Stage I
130− 139 80− 89

High blood pressure

(Hypertension) Stage II
≥ 140 ≥ 90

Hypertensive crisis ≥ 180 ≥ 120

Table 2.2: Blood pressure category by American Heart Association.

2.3 The effect of pure growth in each direction

First we start with investigating the effect of pure growth in each of the radial,

circumferential and axial directions. We can roughly see in Figure 2.3 the effect of

such growth. We believe that their different behaviors will give insight on how each

component of the growth tensor contributes to the overall process of remodeling. We

provide graphs such as lumen area as a function of stenosis and lumen area as a function

of time using the spatially dependent version of (1.1):

Stenosis(Z) =
Intima Area(Z)

Intima Area(Z) + Lumen Area(Z)
(2.40)

27



where Stenosis(Z), Intima Area(Z) and Lumen Area(Z) correspond to the stenosis,

intima area and lumen area at axial position Z respectively. In addition, we explore

changes in the fiber angles and total energy.

Figure 2.2: Top: The unpressurized reference domain. Middle: The reference domain after applying
the blood pressure of 16 kPa. Bottom: Mesh sample for −0.58 ≤ Z ≤ 0.58. Mesh is denser where
growth is larger.

2.3.1 Pure radial growth

Let us assume that the intima grows according to the growth tensor Gα =

diag(gα(t, Z), 1, 1). This means that the intima grows radially by gα(t, Z) from (2.32)

and there is no growth in the circumferential and radial direction.

According to Figure 2.3(a) the radial growth almost exclusively contributes to

inward thickening of the intima. As expected the inward remodeling is greater when
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(a) (b) (c)

Figure 2.3: Evolution of the domain for −0.58 ≤ Z ≤ 0.58 subject to (a) pure radial growth with
(α, β, γ) = (1, 0, 0), (b) pure circumferential growth with (α, β, γ) = (0, 1, 0) and (c) pure axial growth
with (α, β, γ) = (0, 0, 1). The material point at A moves to the right under the effect of axial growth.
Parameter a in (2.32)-(2.34) is taken to be 14.29.
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closer to the center of growth Z = 0 and consequently the artery undergoes more

stenosis there, see Figure 2.4. We refrained from including more cross sections since

far away from Z = 0 the growth function has little to no effect and therefore the lumen

area stays the same. We will also see that pure radial growth does not greatly affect

the total energy, see section 2.4.

Figure 2.4: Left : Lumen area against stenosis. Star denotes the time t = 0. Right : Lumen area in

time. With pure radial growth close to the center of growth Z = 0 the remodeling is strictly inward.

2.3.2 Pure circumferential growth

Now we assume that growth is purely in the circumferential direction. Therefore

the growth tensor takes the form Gβ = diag(1, gβ(t, Z), 1).

According to Figure 2.3(b), pure circumferential growth mostly contributes to

the outward remodeling of the vessel. There is a slight intimal thickening and increase

in stenosis but compared to the radial growth it is negligible, see Figure 2.5. Also one

can see that the lumen area plateaus in Figure 2.5 for large t which may be due to

the effect of stiffening collagen fibers. The intima slightly thickens in this case which

explains the oscillation in Figure 2.5.
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Figure 2.5: Left : Lumen area against stenosis. Star denotes the time t = 0. Right : Lumen area in

time. With pure circumferential growth close to the center of growth Z = 0 the remodeling is mostly

outward.

2.3.3 Pure axial growth

Finally we do the same investigation when growth is purely in the axial direction.

Therefore we take the growth tensor to be Gγ = diag(1, 1, gγ(t, Z)).

Pure axial growth mainly contributes to axial elongation, see Figure 2.3(c). We

see a short outward remodeling followed by a significant inward remodeling for this

type of growth, see Figure 2.6. However, unlike the pure radial growth, remodeling

is not exclusively a result of intimal thickening. As one can see in Figure 2.3(c), the

intima thickness is not significant but we can see a mild inward buckling of the arterial

wall which reduces the lumen area.

We have seen the effects of growth in the radial, circumferential and axial di-

rections. Now we explore the energy change associated with each of these growth

modes.
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Figure 2.6: Left : Lumen area against stenosis. Star denotes the time t = 0. Right : Lumen area in

time. With pure axial growth close to the center of growth Z = 0 the remodeling is mostly outward

with no significant increase in stenosis.

2.4 Growth and energy change

In this section we are interested in calculating the energy change in the artery

due to each growth direction. We want to see which growth direction is more energet-

ically favorable. We revisit the equation (2.1) but in cylindrical coordinates

E = 2π
3∑
i=1

∫ L

−L

∫ Ai+1

Ai

JgiWi R dR dZ︸ ︷︷ ︸
Energy due to volumetric strain caused by growth

+ 2πA1
p

3

∫ L

−L
JF−TN

(1)
1 · u dZ︸ ︷︷ ︸

Energy due to blood pressure

. (2.41)

In Theorem 1 we showed how to derive the variational form (2.35) from the strong forms

(2.18)-(2.24). The following theorem establishes a relationship between the variational

from (2.35) and the energy functional (2.41).

Theorem 2. The displacement field u ∈ C 2(Ω) that satisfies the weak equation

2π
3∑
i=1

∫ L

−L

∫ Ai+1

Ai

(
Jgi

∂Wi

∂Fei

G−Ti : ∇v

)
R dR dZ+2πpA1

(∫ L

−L
JF−TN

(1)
1 · v dZ

)
= 0

(2.42)
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for every v ∈ C 2(Ω) also makes (2.41) stationary. Note that equation (2.42) is just

equation (2.35) in the special case when f = 0.

Proof. For a proof refer to [26].

Now to observe the change in energy purely imposed by growth in each direction

we compute the total energy (2.41) for the three cases in sections 3.1.1, 3.1.2 and

3.1.3. The result is shown in Figure 2.7. We extract the energies induced by each

growth direction at times t = 5, 10, 15, 20, 25, 30 from Figure 2.7, and show them in

Table 2.3 Assuming that intima growth stems from cell division, the amount of energy

needed for the cells to divide in the radial direction is much less than the energy in

the circumferential and axial directions. In other words, it takes about 3 years for

the axial growth to produce the same energy as the radial growth does in 30 years.

For circumferential growth, it is 5 years. Therefore, growing in the axial direction is

energetically the least favorable while growing in the radial direction is energetically

the most favorable. This observation motivates the need for an anisotropic treatment

of the growth process.

PPPPPPPPPPPPPP
Direction

Time
t=5 t=10 t=15 t=20 t=25 t=30 Average

Radial 0.3669 0.3670 0.3670 0.3671 0.3671 0.3672 0.3670

Circumferential 0.3671 0.4648 0.7930 1.452 2.435 3.701 1.5355

Axial 0.4075 0.6262 1.1760 2.1140 3.3940 4.9520 2.1116

Table 2.3: Energy in µJ for 6 time values.
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Figure 2.7: The changes in total strain energy for growth in each direction.

2.5 Isotropic Growth vs General Anisotropic Growth

Finite element simulation of a fully incompressible material is not possible using

the strain energy with Ψiso from (2.6). Since ν = 0.5 for fully incompressible materials

the second term in (2.6) will be undefined. Instead, it is common to use a two field

method for such problems. In this method the coefficient ν
1−2ν

µi is replaced by a vari-

able p which in solid mechanics is called “hydrostatic pressure”. In mathematics, it is

nothing but a Lagrange multiplier that enforces Je = 1 in the minimization. There-

fore, not only does this method solve for displacement but it also finds a hydrostatic

pressure, thus the name two field method [70].

Motivated by the previous section, here we discuss a method to choose an

anisotropic growth that is energetically most favorable. We hypothesize that such

method will give a growth tensor that has a large weight in the radial component. Our

method is inspired by the aforementioned two field minimization for incompressible

materials. However, instead of minimizing for a displacement and pressure field we

minimize with respect to displacement and growth. Mathematically, we want to find
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u and (αt, βt, γt) that minimizes (2.41) subject to

Jg1 = f(t), at Z = 0 (2.43)

where αt, βt, γt are the parameters in (2.32), (2.33), (2.34). The subscript t is to

emphasize that the minimization happens at each time-step to produce a displacement

vector field and three growth parameters. The constraint (2.43) can be imposed by

letting γt be a function of αt and βt as follows

γt =

f(t)
(1+αtt)(1+βtt)

− 1

t
, (2.44)

This ensures that (2.43) will hold. The function f(t) is set by the user in this scheme

to determine the desired volumetric growth at each step (in our simulations we use

f(t) = 1 + 2.7t).

After this, we show the importance of using an anisotropic growth scheme as op-

posed to an isotropic scheme. For the isotropic growth tensor diag(1+ξtt exp(−aZ2), 1+

ξtt exp(−aZ2), 1 + ξtt exp(−aZ2)) we choose ξt such that

ξt =
3
√
f(t)− 1

t
(2.45)

This choice of ξt will ensure that the Jacobian of the growth tensor for both cases are

equal at Z = 0 at each time t. Figure 2.8 shows 1 + ξtt as well as 1 + αtt, 1 + βtt and

1 + γtt acquired form the two field minimization problem conditional on (2.43).

From Figure 2.8, one can see that this minimization scheme produces a growth

regime in which the radial component is dominant. This is not surprising since the

energy is very insensitive to radial growth, see Figure 2.7. The axial direction as

expected from Figure 2.7 is the most strictly controlled growth direction.

Now using the growth parameters from Figure 2.8 at each time step, we acquire

the evolution of the domain in time, see Figure 2.9. We observe a mild buckling effect

in the isotropic case which can be due to the axial stress in each layer. In addition,

the intima is thickened but the narrowing of the lumen is not completely a result of

intimal thickening in this case. It is clear that buckling contributes to the narrowing

35



process. On the other hand, for anisotropic growth with approximately the same

Jg, we can clearly observe an intimal thickening close to the center of growth as the

main contributor to the encroachment. Figure 2.10 shows that the isotropic growth

induces much less stenosis compared to the anisotropic growth. On the other hand,

the behavior of the lumen area vs stenosis curves in the anisotropic case (specifically at

Z = 0) look very similar to Glagov’s original data [34]. Finally, a comparison between

the energies from the isotropic and anisotropic growth shows that the latter is much

more energetically favorable, see Figure 2.11.

Figure 2.8: Changes in anisotopic growth parameters αt, βt, γt and isotropic growth parameter ξt.

In addition, we investigate the changes in the fiber angles and values of I4 in

(2.9). The latter can be thought as a measurement of stiffness for each layer. In both

isotropic and anisotropic cases, the fiber angle in the intima increases the most, see

Figure 2.12(a) and (c). However, Figures 2.12 (b) and (d) show that I4 does not change

significantly in the intima in both cases. Physically this means the fibers do not change

their length in the intima, only their orientation. In addition, Figures 2.12 (b) and (d)

show that the isotropic case eventually has a stiffer adventitia but a more compliant

media than the anisotropic case. Therefore, the intima in the anisotropic case finds it
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easier growing inward than pushing against a stiffer media to grow outward. Therefore,

the intima in the anisotropic case finds it easier growing inward than pushing against

a stiffer media to grow outward. This is supported by the difference in the sizes of the

inward bulges in the two cases in Figure 2.9.

(a) (b)

Figure 2.9

Evolution of the domain for −0.58 ≤ Z ≤ 0.58 subject to (a) isotropic growth with ξt from Fig. 2.8,

(b) general anisotropic growth with (αt, βt, γt) from Fig. 2.8. Parameter a in (2.32)-(2.34) is taken to

be 14.29.
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Figure 2.10: Left : Comparison between the lumen area against stenosis for both isotropic and

anisotropic growth. Star denotes the time t = 0. Right : Comparison between the lumen area in

time for both isotropic and anisotropic growth. Dashed lines correspond to isotropic and solid lines

correspond to anisotropic growth.

Figure 2.11: Changes in the strain energy produced by isotropic and anisotropic growth in time.
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(a) (b)

(c) (d)

Figure 2.12: Top: These graphs belong to the case of isotropic growth with ξt from Fig. 2.8. (a)

Changes in the minimum and maximum fiber angles. (b) Changes in the maximum of I4 in each

layer.

Bottom: These graphs correspond to the anisotropic growth with (αt, βt, γt) from Fig. 2.8. (c)

Changes in the minimum and maximum fiber angles. (d) Changes in the maximum of I4 in each

layer.
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2.6 Conclusion

In this chapter we investigated an axisymmetric growing artery using morpho-

elasticity. First we were curious to see the effect of growth in each direction separately.

This allowed us to associate each aspect of the Glagov remodeling phenomenon with

growth in a certain direction. We observed that the radial growth is the main culprit in

encroachment of the vessel while circumferential growth is responsible for the outward

remodeling. In the case of axial growth, we saw both types of remodeling. However, the

inward remodeling was partly a result of arterial wall buckling. We also saw that radial

growth thickens the intima without changing the thickness of the other two layers. The

circumferential growth thins the media and thickens the intima slightly, and the axial

growth slightly thickens the intima, thins the media and stretches the artery axially.

We hypothesized that if the growth tensor is determined by an energy minimiza-

tion, radial growth would emerge to become dominant. We suggested a displacement-

growth two field minimization framework to test our hypothesis. As we expected due

to the large energy produced by axial and circumferential growth this prescription

suppresses the effect of these growth directions. In other words, for the growth tensor

G = diag(1 + αtt exp(−aZ2), 1 + βtt exp(−aZ2)), 1 + γtt exp(−aZ2))

the parameters αt, βt and γt follow αt > βt > γt for the most part.

To further enforce the need for an anisotropic treatment of our problem we

investigated an isotropic growth with the growth tensor

G = diag(1 + ξtt exp(−aZ2), 1 + ξtt exp(−aZ2)), 1 + ξtt exp(−aZ2))

The parameter ξt is chosen such that the maximum Jacobian of growth (which happens

at Z = 0) for both cases is exactly the same for each time step t. Our result is that,

the anisotopic growth is much more energetically favorable than the isotropic case

for the same amount of volumetric growth. Furthermore, on a plot of lumen area vs

stenosis, we saw more stenosis for the most energetically favorable anisotropic growth

than isotropic growth. This was expected due to the dominance of growth in the radial

direction and the increased effective stiffness of the media layer in the anisotropic case.
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Many studies have shown that smooth muscle cell (SMC) proliferation is the

reason for intimal thickening ([37], [89], [27] and [68]). In addition, there are studies

that suggest that SMC proliferation is regulated by changes in the circumferential

stress in the vessel wall [101] or changes in wall shear stress induced by blood flow

([94] and [39]). Although it is acknowledged that atherosclerosis proceeds because

of growth in the intima, few authors have studied the nature of the anisotropy in

the growth tensor when they model this phenomenon. Our approach was to choose

an anisotropic growth tensor based on minimizing the strain energy. The result was a

radially dominant growth, consistent with experiments on radial construction in arterial

walls [36]. According to [36], smooth muscle cells (SMCs) have to re-orient themselves

to become “bricks” in the vessel wall. Cells in different layers re-orient themselves at

different times, so that there is a re-orientation wave that radiates outwards. This

radial patterning is probably due to a platelet derived growth factor (PDGF) wave

that itself has a strong radial component. In chapter 4 we will use a simple model for

the distribution of PDGF and we use it to define a growth tensor. However, it would

be more interesting to compute the effective growth tensor from experiments [36] and

compare them with our model predictions.

Even though our growth tensor was found using the mathematical tool of energy

minimization, we hope that biological experiments can also motivate specific choices

for the form of G and therefore the functional form of αt, βt and γt. With advances in

nanospring technology, it may eventually be possible to measure the energy associated

with growth in radial, circumferential and axial directions [49]. We believe that finding

a practical way to control or change the anisotropy of growth might be the key to

slow down or even reverse inward remodeling which is responsible for affecting local

hemodynamics and promoting medical conditions such as angina.
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Chapter 3

ATHEROSCLEROSIS MODEL IN THREE DIMENSIONS

In biomechanics, residual stress and strain are the stress and strain that still re-

main within an artery even after all the external forces have been removed. It is known

that residual stress/strain plays an important role in studying atherosclerosis. For ex-

ample, Ohayon et al. 2007 showed that without residual stress the maximum strain

for the fibrous cap is overestimated, [71]. Also as mentioned in the introduction the

distribution of shear stress in the vessel wall can cause endothelial dysfunction which

triggers the plaque formation inside the intima. However, residual stress can reduce

the stress concentration (due to deformation) at the inner wall of the vessel in-vivo,

[17]. These and many other studies attest to the importance of residual stress/strain.

For a long time the arterial cross sections excised from a subject were considered

to be stress free. However, Vaishnav and Vossoughi, showed that by creating a radial

cut on an arterial cross section it springs open [95]. This shows that arterial rings

are still under stress even after boundary loadings such as blood pressure have been

removed. Later in 1989, Fung and Liu defined the opening angle for an annular arterial

cross section to be the angle between the two lines that join the midpoint of the inner

arc and its tips [28], see Figure 3.1.
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Figure 3.1: A radial cut on an annular arterial cross section causes it to spring open. This is evidence

for residual stress. The angle shown in 2 is the opening angle.

There is not a lot known about the source of residual stress/strain. However, in

this chapter we will show that intimal growth can directly affect the opening angle for

an artery.

3.1 Assumptions and methods

In this chapter we focus on a general 3D model of a growing artery in Cartesian

coordinate system. The geometry of the intima is extracted from Kubo’s intravascular

ultrasound (IVUS) images1 [54]. Then we add a media and adventitia layer (with

realistic thicknesses [46]) to construct a three layered arterial wall, see Figure 3.2. The

height of the domain is 1 centimeter so that −0.5 ≤ Z ≤ 0.5. We further assume that

our simulation starts from a stress free configuration even though the intima is already

thickened, see Figure 3.2. This is because we do not have any information about stress

distribution in Kubo’s baseline IVUS images.

1 This choice is solely to avoid too many different domains throughout this thesis and also maintain
a visual connection with the next chapter
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Since our domain is not symmetric we cannot use cylindrical coordinates like

chapter 2. Therefore, Cartesian coordinates system is the natural choice. There is

no reason to assume growth in a general 2D cross section is aligned with the x and y

directions. To overcome this issue, we will use a transformation which we will discuss

later.

We consider (X, Y, Z) to be a generic point in the reference domain and (x, y, z)

as the one in the deformed domain. Now supposing u is the displacement vector that

maps the reference domain into the deformed domain, the deformation gradient from

(2.26) takes the form

F =


∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

 (3.1)

Figure 3.2: Left: IVUS image of a coronary artery cross section. Right: Our three-layer domain.

We also have to give a formula for the fiber direction b(X, Y, Z) in Cartesian

coordinates. We follow the procedure proposed by Fok and Gou [26]. Wang et al.
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also use a similar approach to find the fiber direction in the human left ventricle [99].

Suppose b(X, Y ) is the projection of the fiber direction onto the XY -plane. If (X, Y )

is a point on any of the boundaries then b(X, Y ) is the unit tangent vector at (X, Y ).

If (X, Y ) is an inner point of a layer we take b(X, Y ) to be a weighted average of the

tangents on the inner (vA) and outer (vC) boundary of the layer, see Figure 3.3.

(b1, b2) =
|BA|vC + |BC|vA
|BA|+ |BC|

(3.2)

where point A is the closest point to B on the inner boundary and point C is the closest

point to B on the outer boundary. After acquiring the X and Y coordinates from (3.2)

to get b(X, Y, Z) we use the following formula

b(X, Y, Z) =
(b1, b2,

√
b2

1 + b2
2 tanϕ)√

(b2
1 + b2

2)(1 + tan2 ϕ)
(3.3)

where ϕ is given in Table 2.1 for each layer, see Figure 3.3. Furthermore, we use the

Cartesian version of (2.35) without any body forces or blood pressure loading:

Find u ∈ C2(Ω) such that
3∑
i=1

∫∫∫
Ωi

(
Jgi

∂Wi

∂Fei

G−Ti : ∇v

)
dV = 0 ∀v ∈ C2(Ω) (3.4)

and the energy associated with the growth and deformation (2.41) will be

E =
3∑
i=1

∫∫∫
Ωi

JgiWidV (3.5)

where Jgi = Gi and Gi is the identity tensor when i = 2, 3 since there is no growth

in the media and adventitia. The formula for ∂Wi

∂Fei
is still (2.31) and Ωi corresponds to

intima, media and adventitia for i = 1, 2, 3. We use the same parameters from Table

2.1 except A1-A4 are now described by parametric functions f1(Θ)-f4(Θ) measured in

mm and L = 1 cm. To see how we acquire these functions from the IVUS images

refer to the appendix. The number of tetrahedron elements in this chapter is 25500

(see Figure 3.4) and we use quadratic basis elements to avoid locking. Mesh is finer in

the intima than media and adventitia, since the growth is located in the intima and it

undergoes the most deformation.
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Figure 3.3: Top: Side view and front view of a family of fibers. The fiber direction at an inner point

B is the average of inner and outer boundary unit tangent vectors at the points closest to B. The

weight is determined by the distance between points. Bottom: The fiber orientations in each layer at

a cross section of our 3D domain.
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Figure 3.4: A sample mesh.

3.1.1 Coordinate system transformation

Since our domain is not axisymmetric we cannot use cylindrical coordinates

in the same way we did in chapter 2. However, there is a similar coordinate sys-

tem which is point-wise defined and is common in mechanical engineering. This

coordinate system is called the fiber coordinate system (R,Φ,Z) with basis vectors

eR(X, Y, Z), eΦ(X, Y, Z), eZ [32, 56, 100] . The vector eZ is parallel to the axial di-

rection and it is spatially independent, eΦ(X, Y, Z) is parallel to the projection of the

fiber onto the XY plane at each point (X, Y, Z) and eR(X, Y, Z) is in the direction of

eΦ(X, Y, Z)× eZ
2. In this chapter we refer to eR, eΦ and eZ as radial, fiber and axial

direction, see Figure 3.5.

2 for convenience, from now on we refrain from stating the dependence of eR and eΦ on (X,Y, Z).
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Figure 3.5: Fiber coordinate system at a point (X,Y, Z). Red arrow pointing outside of the domain

is eR, blue arrow is eΦ and the purple arrow is eZ .

Since growing in the X and Y direction for a tube shaped domain like ours is

not intuitive, we prefer to describe our growth tensor in a way that fits our geometry

better. We utilize the fiber coordinate system for this purpose. We introduce a growth

parameter tensor in the fiber coordinate system as follows:

M =


αt 0 0

0 βt 0

0 0 γt

 (3.6)

with αt, βt and γt being time dependent growth parameters in radial, fiber and axial

direction. We need to construct the corresponding growth tensor in Cartesian coordi-

nates using (3.6). The transformation tensor uses the fiber direction (3.2) and has the

form

T =


cos(θ(X, Y )) − sin(θ(X, Y )) 0

sin(θ(X, Y )) cos(θ(X, Y )) 0

0 0 1

 (3.7)
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where θ(X, Y ) = arctan

(
b2

b1

)
for b1 and b2 from (3.2). Now we have a growth tensor

in Cartesian coordinates, which is used in (3.4) in the intima:

G = I + (TMTT ) ∗ f(X, Y, Z)t (3.8)

where I is the identity tensor and f(X, Y, Z) is given by

f(X, Y, Z) = exp
{
−a[(X −X0)2 + (Y − Y0)2 + (Z − Z0)2]

}
(3.9)

For this chapter we take a = 4.5 and (X0, Y0, Z0) = (0,−0.8, 0). Figure 3.6 shows

where the growth is located.

Figure 3.6: Local growth centered at (X0, Y0, Z0) = (0,−0.8, 0).

3.1.2 Results

First we investigate the effect of growth on the opening angle in each fiber

coordinate direction. We create radial cuts directly on the opposite side of where the

growth is centered, see Figure 3.7. To get a purely radial growth all we have to do is

to let M = diag(αt, 0, 0) and then use formula (3.8). Similarly by M = diag(0, βt, 0)
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and M = diag(0, 0, γt) in (3.8) we acquire growth in fiber and axial directions. For

simplicity we take αt, βt and γt to be 1 for each case. Also we take Jg = 1 + 2.7t.

Figure 3.7 shows deformed arterial sections after 3 decades of growth.

(a) (b)

(c)

Figure 3.7: (a) Schematic of the fiber coordinate system in the reference uncut domain at a random

point and a point on the site of the radial cut. Red, blue and purple arrows correspond to radial,

fiber and axial directions in the fiber coordinate system. (b) The hinge of the opening angle is at the

intersection of the endothelium with the plane x = 0. (c) Deformed arterial sections due to growth in

the (i) radial direction, (ii) fiber direction and (iii) axial direction.

According to Figure 3.7 one can see that growth in the fiber direction has the

biggest effect on the opening angle. Axial growth on the other hand does not change
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the opening angle significantly. This was expected since mathematically the radial

cut is created via a plane that belongs to span{eR(X, Y, Z), eZ}, see Figure 3.7(a) .

Maybe an analogy between opening angles and opening doors can illustrate our point.

Opening a door is much easier when the force exerted and the surface of the door are

orthogonal. The smaller the angle between these two, the more difficult it is to move

the door. Now for all (X, Y, Z) the fiber direction creates the biggest angle with the cut

surface and therefore creates the biggest opening angle, see Figure 3.7(b). According

to this argument one might expect the axial and radial growth to create much less

opening (probably none), but we should not forget that the radial direction is spatially

dependent, the growth is localized and the geometry is not symmetric. All of these

factors contribute to the opening angle in the axial and radial directions.

Using the two field method from chapter 2 we minimize (3.5) to find a dis-

placement field u and a triple (αt, βt, γt) for the growth tensor in (3.8) with Jacobian

constraint of Jg = 1+2.7t. In addition, we compute the corresponding isotropic param-

eter ξt using (2.45). Using the triple (αt, βt, γt) and ξt (refer to (2.45)) the maximum

growth tensor entries for isotropic and anisotropic growth are shown in Figure 3.8. The

radial growth is once again the dominant direction of growth. However, we must keep

in mind that the geometry in this chapter is very different from the one in chapter 2.

A shorter artery requires less energy to grow axially, thus 1 +γtt looks more significant

than the one in chapter 2, see Figure 2.8.
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Figure 3.8: Changes in growth tensor entries in time.

Figure 3.9: Anisotropic growth. Top: Changes in the opening angle. Bottom: Evolution of the

intact domain. The hinge of the opening angle is the intersection of the endothelium with the plane

x = 0, see Figure 3.7(b)
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Figure 3.10: Isotropic growth. Top: Changes in the opening angle. Bottom: Evolution of the intact

domain. The hinge of the opening angle is the intersection of the endothelium with the plane x = 0,

see Figure 3.7(b).

Figure 3.11: Left: The opening angle as a function of time. Right: The opening angle as a function

of stenosis. Stars mark every 0.1 decade.

Figures 3.9 and 3.10 show the opening angle for four time steps and their intact

counterparts in 3D. The anisotropic growth opens the angle slightly more than the
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isotropic growth. Figure 3.11 shows the opening angle as a function of time and stenosis

for anisotropic and isotropic cases. Kubo’s IVUS image baseline has a thickened intima

and that is why stenosis in Figure 3.11 starts around 47%. These results show that not

only does the most energetically favorable anisotropic growth cause more stenosis with

less energy, but it also leads to a slightly bigger opening angle. A longer domain is

going to result in a more significant difference. In that case, our method will suppress

the axial growth more strictly in the anisotropic case (like in chapter 2). Therefore,

the 1 + ξtt in Figure 3.8 will look less like the average of 1 + αtt, 1 + βtt and 1 + γtt.

So far, we have seen the effect of anisotropic and isotropic growth regimes on

the opening angle. Now we want to compare the strains for each case. It is a natural

choice in experiments to compute the strains in fiber coordinate system. We use the

components of TTFeT as the strain measures in each direction in the fiber coordinate

system. Tensor T is the transformation in (3.7) and Fe is the elastic response tensor

from (1.4). The entries
(
TTFeT

)
11

,
(
TTFeT

)
22

and
(
TTFeT

)
33

correspond to the

strain in the radial, fiber and axial direction respectively.
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Figure 3.12: Strains in radial, fiber and axial directions for anisotropic growth.
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Figure 3.13: Strains in radial, fiber and axial directions for isotropic growth.
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Figures 3.12 and 3.13 show the strain in each direction for the anisotropic and

isotropic growth respectively. Both figures show that strain in the fiber direction

engages the whole domain while in the radial and axial directions higher strains are

more localized. Figure 3.14 compares the maximum strain as a function of the opening

angle in each direction for anisotropic and isotropic case. One can see that strain in

the fiber direction is the smallest in both cases. This might be due to the collagen

fibers resisting the strain. In addition, isotropic growth generally results in slightly

larger strains. This agrees with intuition since anisotropic growth occurred as a result

of minimizing the total energy.

Figure 3.14: Maximum strains in radial, fiber and axial directions for anisotropic (solid) and isotropic

(dashed) growth.

3.2 Conclusion

In this chapter we investigated the effect of growth on residual stain. Residual

strain/stress has attracted many researchers and ignoring it could lead to inaccurate

predictions for when plaque caps can rupture. The opening angle is a well-known

experimental method to measure the residual stress/strain. The cross sectional rings
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of arteries spring open after a radial cut is made, even after excision and removing all

the external loads. This attests to the existence of residual stress/strain inside load free

sections. The opening angle is measured as the angle of the opened sector and there

are numerous studies that estimate residual stress/strain using this angle. In our study

we used a general domain that is extracted from real IVUS images to show the effect of

growth on the opening angle. With the use of fiber coordinate system we first studied

the effect of growth in a single direction on the opening angle. We noticed that growth

in the fiber direction had the most significant effect on the opening angle while growth

in the axial direction had the least effect. Thereafter, we compared an energetically

optimal anisotropic growth acquired from displacement-growth minimization method

to an isotropic growth with the same Jacobian. We observed the effect of growth for

both cases by plotting the opening angle against time and stenosis. For the anisotropic

case the opening angle went from 0 to about 76 degrees when the stenosis went from

47% to about 66% and for the isotropic case it went from 0 to 73 degrees for a change

of stenosis from 47% to 64%. Then we calculated the strain for both cases in the

fiber coordinates direction. We realized that the strain in the fiber direction engages

the whole domain while the strain in the radial and axial direction is more localized.

Furthermore, the strain in the isotropic case is slightly larger than the anisotropic case

which confirms the fact that the anisotropic growth is more energetically favorable.

However, all of our results such as strains and the opening angle for the anisotropic

growth and isotropic growth were very close. This was due to the geometry we studied.

Specifically, due to the short length of the arterial cross section our minimization

scheme did not suppress the axial grow significantly which led to a growth regime that

was similar to the isotropic case.

The results in this chapter can help experimentalists estimte the amount of

residual strain at different stages of atherosclerosis by measuring the stenosis. The

limitation for us however, was the mechanical information about the reference domain.

It is rather unrealistic to assume that our already thickened domain is at zero-strain

state (or starts with zero opening angle). However, there is no reason that this method
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cannot be applied to a numerically pre-stressed domain.

Ruptured plaques introduce many medical challenges and they account for 55-

60% of luminal thrombosis occurences [98], when the thin fibrous cap overlying the

necrotic core yields. The residual strain/stress plays an important role in determining

the yield stress/strain for the fibrous cap. The findings of this study suggest that by

controlling the growth in the vessel wall one can significantly suppress the accumulation

of residual strain in the arteries and possibly postpone the luminal thrombosis.
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Chapter 4

ATHEROSCLEROSIS IN 3D WITH HISTOLOGY

In this chapter we study the effect of growth on histology of atherosclerotic

plaques with an emphasis on the formation of the necrotic core. Understanding the

evolution of the necrotic core is very important in controlling and preventing acute

coronary syndromes caused by ruptured plaques. During rupture a luminal thrombo-

sis forms as a result of direct contact between platelets in the bloodstream and the

thrombogenic content of necrotic core. According to an analysis on ruptured plaques,

80% of necrotic cores were larger than 1.0 mm2 and occupied more than 10% of the

plaque area in 90% of lesions. In fact, in 65% of the cases, the necrotic core can occupy

up to 25% of the lesion [98]. Not only does the necrotic core contribute to advanced

stages of atherosclerosis such as rupture but also its presence in earlier stages such as

Thin-cap fibroatheroma and fibrous cap atheroma is significant, see Table 4.1.

Plaque Type

Dimension
Fibrous Cap

Atheroma

Thin-cap

Fibroatheroma

Acute Plaque

Rupture

Necrotic Core Area (mm2) 1.2 ± 2.2 1.7 ± 1.1 3.8 ± 5.5

Percentage of the lesion

occupied by Necrotic Core
15 ± 20 23 ± 17 34 ± 17

Table 4.1: Size of necrotic core in advanced plaques. See pages 22 and 39 of [98] for diagrams.

In chapter 1 we illustrated the histology of atherosclerosis. In this chapter we

introduce a mathematical model that helps us simulate the dynamics of macrophages,

60



chemoattractants such as MCP-1, oxygen, oxidized LDLs (Ox-LDL) and the necrotic

core. Even though atherosclerosis is more intricate and involves more cellular and

chemical interactions, we will see that our model will produce results consistent with

medical scans.

To connect the histology with the mechanical growth we introduce a growth

factor called platelet derived growth factor (PDGF). This growth factor can be pro-

duced by endothelial cells or the platelets in the bloodstream. Endothelial dysfunction

or injury can stimulate endothelial cells to produce PDGF [81]. Platelets in the blood

stream can attach themselves to a lesion site and release PDGF. This will promote the

smooth muscle cell recruitment at the site of the injury and, as a result, growth. This

chemical is also known to be responsible for directed cell movement in the arterial wall

[82, 36].

Intravascular ultrasound (IVUS) imaging is a method that helps clinicians see

inside the arteries. It is done via a catheter with an ultrasound transducer attached

to the end of it. By sending this end to the desired location they acquire visual data

pertinent to the arterial wall. This method can provide images of the intima, media

and the external elastic membrane (media-adventitia interface). This technology is

even able to recognize plaque composition by doing spectral analysis on backscattered

ultrasound [11]. The data gathered is later compared against the spectrum of plaques

where the histology was determined independently by a clinician [67], see Figure 4.1.

There are other technologies such as magnetic resonance imaging (MRI) [42], radionu-

clide imaging [72] and intravascular thermography [97] that can help with the detection

of coronary diseases. However, we focus on IVUS images in this thesis.
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Figure 4.1: IVUS images taken from Kubo et al. 2010 [54]. The baseline and follow-up images were

acquired within a year of each other. Gray scale images are the original IVUS images and the colored

ones are acquired after spectrum classification of plaque structure. The red corresponds to necrotic

regions and the white speckles are signs of calcification. Green shows fibrotic regions free of necrosis

and calcification and yellow represents the fibrofatty regions. Blue arrows show the orientation of the

catheter head. White arrows mark the location of Thin Cap Fibroatheromas (TCFA).
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Despite being useful there are some disadvantages to using IVUS. The price of

a disposable catheter alone can be between $600 and $1000 and taking IVUS images

requires an invasive procedure. These reasons coupled with the side effects patients

may experience generally prevents doctors from acquiring multiple images. This means

that there is a large time span between images and we do not have a clear picture of

what is happening to the plaque during this time. Mathematical models, specifically

those that take into account both the histology of the plaque and the arterial wall

deformation, can help us bridge this gap.

In this chapter we will provide a mathematical framework based on histology

driven morphoelasticity to show the effect of growth on necrosis and other cell and

chemical dynamics. Then we propose 4 biological mechanisms to explain the progres-

sion of plaque in each case of Figure 4.1.

4.1 Methods and assumptions

We work with five domains which correspond to 5 baseline domains in Figure

4.1. Refer to the appendix for more information about the method we used to create

these domains. Since the IVUS images only include the intima layer for each case,

similar to chapter 31 we added medial and adventitial layers with fixed thicknesses to

each domain, see Figure 4.2.

For all of our simulations we used the same blood pressure as chapters 2,3

(p = 120 mmHg). Blood pressure is the reason that some of the lumina in Figure

4.2 are larger. In other words, the computer generated domains are picked in a way

that after imposing the blood pressure the result still looks fairly similar to the IVUS

baselines2. However, this is not precise and some of the simulated lumen areas are

larger than the ones in the IVUS images.

1 The domain A in Figure 4.1 is the same domain we used through out chapter 3.

2 IVUS images are taken in-vivo and in the presence of blood pressure.
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Figure 4.2: First column: IVUS images. Second and third columns: computer generated domains.
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4.1.1 System of PDEs

Now we define a system of PDEs that governs the dynamics of macrophages,

chemoattractants (such as MCP-1), oxygen and the necrotic core, see Figure 1.2. In

addition, we use a combination of Gaussian functions that describes the distribution

of Ox-LDLs and a separate PDE that models the distribution of PDGF. It is known

that macrophages produce growth factors that contain at least two forms of PDGF

[88]. Also PDGF is responsible for SMC proliferation and the intimal growth happens

as a consequence of that [77, 91]. In our model we do not consider SMCs as a separate

variable. Instead we connect the distribution of PDGF to the growth tensor directly.

Theoretically, our model can expand to include more PDEs that govern more aspects

of atherosclerosis but computationally it can become very costly. One solution might

be the use of parallel algorithms which is a future plan for this study.

The model that we use in this thesis is

∂N

∂t
= D1∆N + γ(C)M − d1N (4.1)

∂M

∂t
= D2∆M −∇ · (χM∇(L+Q))− γ(C)M (4.2)

∂Q

∂t
= D3∆Q− d2Q+ λ1LM (4.3)

∂C

∂t
= D4∆C − d3C − λ2CM + f(x, t) (4.4)

L(x, t) =
K∑
i=1

Li(t) exp
(
−si|x− x

(i)
0 (t)|2

)
(4.5)

which is solved in the grown domain with the boundary conditions:

∂N

∂n1

= 0 on ∂ω1 (4.6)

M = M0(t) on ∂ω1 (4.7)

∂Q

∂n1

= 0 on ∂ω1 (4.8)

C = C0(t) on ∂ω1 (4.9)

(4.10)
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∂N

∂n2

= 0 on ∂ω2 (4.11)

∂M

∂n2

= κM on ∂ω2 (4.12)

∂Q

∂n2

= 0 on ∂ω2 (4.13)

∂C

∂n2

= 0 on ∂ω2 (4.14)

whereN,M,Q,C correspond to the density of necrosis, macrophages, chemoattractants

and oxygen respectively. Constants D1 − D4 are their diffusivities, d1-d3 are decay

rates, χ is the chemotactic coefficient for macrophages, λ1 is the rate of production

of chemoattractants as a result of Ox-LDL consumption by macrophages and λ2 is

the rate at which macrophages consume oxygen. We denote the endothelium and IEL

by ∂ω1 and ∂ω2 respectively and let n1 and n2 represent their outward unit normal

vectors, see Figure 4.5. The parameter κ is the rate of outflux of macrophages through

boundary ∂ω2. The function f(x, t) corresponds to sources of oxygen within the intima

at the point x = (x, y, z). This models the development of vasa vasora which we will

elaborate on. We assume the dynamics of (4.1)-(4.4) is very fast but the dynamics in

(4.5), (4.7), (4.9) and f(x, t) is slow in comparison. The time scale for relaxation to

mechanical equilibrium is also assumed to be very short. Therefore, we solve equations

(4.1)-(4.4) to steady state and we do not provide any initial conditions. For information

about the values of f(x, t), Li(t), si, x0(t), M0(t) and C0(t) and all the other parameters

see Tables 4.2-4.6 and 4.7.

Equation (4.5) is given in terms of Gaussians to give the author freedom in

changing the level and location of Ox-LDLs. The first terms on the right hand side of

equations (4.1)-(4.4) model the diffusion of their corresponding variable. The second

term in (4.1) and the last term in (4.2) relate the death of macrophages to the formation

of the necrotic core. The rate of death is γ(C) which is a function of C given by

γ(C) = γmin + (γmax − γmin)

(
Cm
crit

Cm
crit + Cm

)
, (4.15)

where m is the Hill coefficient and Ccrit is a parameter that determines the resilience
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of macrophages to low arterial oxygen tension3. Equation (4.15) models the death of

macrophages due to hypoxia4 [24]. The normoxic death rate γmin is the death rate

for macrophages in an oxygen-sufficient environment and γmax is the hypoxic death

rate in an oxygen-limited environment. It has been observed that oxygen saturation

in the intima plays an essential role in progression of atherosclerotic plaques [48, 90].

Because oxegyn is significantly consumed by many cells (including tissue cells and

mocrophages), oxygen distribution is not deeply difussed in the intima. Bjornheden et

al. show that tissue hypoxia is present in deep portions of the atherosclerotic plaque

[8], see Figure 4.3. By solving equations (4.1)-(4.4) on a thin (intimal thickness < 30

µm) and thick (intimal thickness > 30 µm) domain we were able to show regions of

necrosis form when local intimal thickness is more than 30 µm (the diffusive lengthscale

of molecular oxygen) and macrophage density in the intima is larger than about 105

cells/cm3, see Figure 4.4.

Figure 4.3: Arrows show the areas with the most intense fluorescence, indicating the presence of

NITP, a marker of hypoxia, [8].

We consider equations (4.1)-(4.4) to be in steady state. This is because the

3 Partial pressure of oxygen in arteries is directly related to oxygenation.

4 Hypoxia in atherosclerosis pertains to the death of cells such as macrophages due to lack of oxygen.

67



PDEs have to be solved at each mechanical growth step and the timescale for me-

chanical growth of the domain is much larger than the timescale of cell and chemical

dynamics. Also atherosclerotic processes such as changes in Ox-LDL density (governed

by equation (4.5)), inflammation (M0(t)), oxygenation (C0(t)) and formation of vasa

vasora5 (f(x, t)) are chronic events, occuring very slowly over many years or decades,

[5, 57, 65].

Figure 4.4: (MC = Macrophage Cells). A simulation showing the effect of macrophage density and

intima thickness on necrosis. The parameters used for this simulation are similar to the parameters

from case B in Table 4.7 except low density of MC corresponds to M0(t) = 4.6 × 103 cells/cm
3

and

high density of MC corresponds to M0(t) = 4.6 × 105 cells/cm
3
. We have manually changed the

thickness of the domain to show the effect of intimal thickening on necrosis.

Top: No necrosis in the intima with thickness < 30 µm and macrophage density 105 cells/cm
3
. Middle:

No necrosis in the intima with thickness > 30 µm and macrophage density < 105 cells/cm
3
.Bottom:

Necrotic intima with thickness > 30 µm and macrophage density > 105 cells/cm
3
.

5 Vasa vasora are small microvessels inside the walls of thick arteries which provide oxygen and
nutrition supplies for the arterial wall.
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Figure 4.5: PDGF produced by platelets of endothelial cells promote cell proliferation at the site of

an injury or endothelial dysfunction.

4.1.2 PDGF equation

For the distribution of PDGF we use a separate PDE. The decoupling of the

PDGF from the rest of the cells and chemicals is done to reduce the computation time.

We consider a simple PDE for the distribution of PDGF which is solved in the grown

domain:
∂P

∂t
= D5∆P − d4P (4.16)

where D5 is the diffusivity and d4 is the natural decay rate of PDGF. We use the

following Dirichlet boundary conditions:

P =

P0 On Γ ⊂ ∂ω1

0 On ∂ω1 \ Γ

(4.17)

where ∂ω1 is the endothelium and Γ is the part of it which is dysfunctional or injured.

PDGF can be produced by the endothelial cells or by platelets from the bloodstream

that attach themselves to the site of injury, see Figure 4.5.

Like the other PDEs, equation (4.16) will be solved for the steady state, using

the parameters in Table 4.7. After solving (4.16) in steady state we define:

gk = exp

(
αk

∫ t

0

Pm

Pm + Pm
0

dt′
)

(4.18)
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where α1 = 1, α2 = 0.25, m = 4 and P0 = 1.12 × 10−5 mol/L (these constants were

chosen for convenience). Then we will have the growth tensor in the fiber coordinate

system defined as

G =


g1 0 0

0 g2 0

0 0 1

 (4.19)

We have decided to neglect the growth in the axial direction, because IVUS images

which we aim to recreate are cross sections of the artery.

Using PDGF to construct the growth tensor is very subtle. In chapter 1 we

mentioned that the growth tensor is always applied to the reference domain in order to

satisfy the morphoelasticity requirement (1.4) and incremental growth is only possible

if growth tensors can commute with the elastic tensors (which does not generally hap-

pen in our case). This can cause a problem since the arterial wall is always grown with

respect to the reference domain but equation (4.16) must be solved in the deformed

domain. To overcome this issue, we first solve the PDGF equation to get the distri-

bution in the deformed domain. Suppose the deformation vector field is ϕ(X, Y, Z).

Then the map ϕ−1(x, y, z) imposed on the deformed domain will give us the reference

domain. Next, we map the distribution of PDGF in each tetrahedron (triangle if in

2D) to a tetrahedron in the reference domain with the same cell index. This way we

will have a spatially dependent PDGF distribution in the reference domain that we

can use to update (4.19) at each time.

Now that we have a growth tensor we can set up the mechanical problem in the

same way as chapter 3. Similarly, we find a u ∈ C2(Ω) such that

3∑
i=1

∫∫∫
Ωi

(
Jgi

∂Wi

∂Fei

G−Ti : ∇v

)
dV + p

∫∫
A

JF−TN
(1)
1 vdS = 0 ∀v ∈ C2(Ω) (4.20)

and we solve (4.1)-(4.4) and (4.16) in the deformed domain for each growth time step.

All of the tensors, vectors and constants are defined similar to those in chapter 3.

Figure 4.6 shows a sketch of our algorithm.
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Figure 4.6: Flowchart of our algorithm.

4.2 Mechanisms

Before presenting the results we discuss 4 mechanisms that pertain to the param-

eters in our problem. Although many factors are involved in producing the outcomes

from Kubo’s IVUS images here we focus on the following:
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1. Changes in Ox-LDL distribution, L0(t), x0(t): It has long been hypothesized

that modified LDLs are atherogenic since they are mainly responsible for the

appearance of the foam cell phenotype [12]. The Ox-LDL density and location

inside a plaque are governed by (4.5) whose time evolution we control directly in

the model.

2. Changes in inflammation, M0(t): We define inflammation in the endothelium

as the density of macrophages adsorbed on the layer. Mathematically we control

this density by the Dirichlet boundary condition (4.7). Biologically, an increasing

M0(t) corresponds to an endothelium that becomes more inflamed over time.

3. Development of vasa vasora, f(x, t): Vasa vasora are a network of small

vessels that supply the arterial walls with resources such as oxygen and glucose.

Sources of oxygen are controlled in our model through the function f(x, t) in

equation (4.4).

4. Increasing oxygenation, C0(t): We use this mechanism in only one case. Ar-

terial oxygenation can depend on intercirculatory mixing, hemoglobin concentra-

tion and other systemic factors [61]. For example, exercise can increase the blood

flow to the tissues and hemoglobin concentration [9] and it has been shown to

increase arterial oxygenation in patients with chronic heart failure [43, 83]. We

control C0(t) using the Dirichlet boundary condition (4.9).

For information about the values of the functions corresponding to each mechanism

see Tables 4.2-4.6. To mimic the outcome of an IVUS image we use thresholding, see

Figure 4.7.
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Figure 4.7: Threshold value 1.4× 106 cells/cm3 represented by a plane. Densities above this value

(above the plane) are considered necrotic.

4.2.1 Case A

In this case we try to match Figure 4.1 (A) qualitatively. Kubo et al. de-

scribes this case as transition from Thin Cap FibroAtheroma (TCFA) to Thick cap

FibroAtheroma (ThCFA). One can see that the follow up state in 4.1 (A) has a thicker

layer overlying the necrotic core. Figures 4.8 and 4.9 show the result of our simulations

in baseline and follow-up states. Also the mesh is added to show the effect of PDGF

on the element size.
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Figure 4.8: Typical 3D plaque model results. Baseline concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima. For

PDGF concentration, the media and adventitia are also indicated along with the finite element mesh.

Figure 4.9: Typical 3D plaque model results. Follow-up concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima. For

PDGF concentration, the media and adventitia are also indicated along with the finite element mesh.

See tables 4.2 -4.7 for parameter values.
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For better comparison Figure 4.10 shows the cross section at Z = 0 for the

necrotic core in the baseline and follow-up state. We can see that in our simulation

TCFA has turned into ThCFA. These results are acquired using mechanisms 2 and 4.

The inflammation is increasing and the macrophages chemotax towards sources of Ox-

LDL and chemokine. But the intima close to the lumen is getting more oxygenated, see

Figure 4.9. More oxygen in the intima will reduce the macrophage death from hypoxia

and therefore, NC will be more isolated from the lumen. See Table 4.2 for the values

of the time dependent parameters for this case.

Figure 4.10: Necrotic core in baseline and follow-up state for the intimal cross section at Z = 0.

Function Meaning Value Units

L(x, y, z) Distribution of Ox-LDL 2 exp
[
−0.05

(
x2 + (y + 1.3)2 + z2

)]
mg/cm3

M0(t)
Macrophage density

in endothelium

Linear in t and increases from

4.60× 105 to 4.64× 105
cells/cm3

C0(t)
Oxygen

Boundary Condition

Linear in t and increases from

5.6× 10−5 to 11.2× 10−5
mol/L

f(x, y, z)
Oxygen Sources

within intima
0 mol/L/day

Table 4.2: Time-dependent parameters for Case A. The time variable t changes from 0 to 12 months.
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4.2.2 Case B

From now on we focus on the 2D cross sections. Kubo et al. explains Figure 4.1

(B) as a TCFA that turns into a fibrous plaque. For our simulations we assumed that

the injury has been healed and the LDLs infiltration reduces in time (L0(t) goes from

0.7 to 0). Consequently the concentration of Ox-LDL will decrease. This will result in

less macrophages entering the intima. All of these dynamics lead to a vanishing NC,

see Figures 4.11 and 4.12. In summary, we used mechanisms 1 and 2. However, our

model is unable to capture the thinning of the intima. We believe for such an outcome

one needs to consider the NC as a separate mechanical domain with its own mechanical

properties. See Table 4.3 for the values of the time dependent parameters for this case.

Function Meaning Value Units

L(x, y, t) Distribution of Ox-LDL

(
0.7− 0.7t

12

)
exp

[
−0.14

(
(x− 0.1)2 + (y + 1.2)2

)]
mg/cm3

M0(t)
Macrophage density

in endothelium

Linear in t and decreases from

5.2× 105 to 1.2× 105
cells/cm3

C0

Oxygen

Boundary Condition
5.6× 10−5 mol/L

f(x, y)
Oxygen Sources

within intima
0 mol/L/day

Table 4.3: Time-dependent parameters for Case B. The time variable t changes from 0 to 12 months.
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Figure 4.11: Typical 2D plaque model results. Baseline concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima. No

PDGF concentration has been considered for this case.

Figure 4.12: Typical 2D plaque model results. Follow-up concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima.

PDGF is absent for this case. See tables 4.3-4.7 for parameter values.
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Figure 4.13: Typical 2D plaque model results. Baseline concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima. For

PDGF concentration, the media and adventitia are also indicated along with the finite element mesh.

Figure 4.14: Typical 2D plaque model results. Follow-up concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima. For

PDGF concentration, the media and adventitia are also indicated along with the finite element mesh.

See tables 4.4-4.7 for parameter values.
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4.2.3 Case C

Kubo et al. describes this case as a TCFA remaining unchanged, although

the location of the necrotic core in contact with the lumen changes. The arrows in

Figure 4.1 (C) show the locations of TCFAs. We only use mechanism 1 to mimic this

behavior. By changing x0(t) from equation (4.5) we can change the location of Ox-LDL

concentration. This will cause macrophage chemotaxis to change direction accordingly

which will result in the movement of NC, see Figures 4.13 and 4.14. There are also

corresponding changes in chemoattractant and macrophage density. See Table 4.4 for

the values of the time dependent parameters for this case.

Function Meaning Value Units

L(x, y, t) Distribution of Ox-LDL exp

[
−0.7

((
x+ 0.9− 21t

20

)2

+

(
y + 0.5− t

20

)2
)]

mg/cm3

M0

Macrophage density

in endothelium
4× 105 cells/cm3

C0

Oxygen

Boundary Condition
5.6× 10−5 mol/L

f(x, y)
Oxygen Sources

within intima
0 mol/L/day

Table 4.4: Time-dependent parameters for Case C. The time variable t changes from 0 to 12 months.

4.2.4 Case D

Case D has been described as Pathological Intimal Thickening (PIT) transition-

ing into TCFA by Kubo et al. Figure 4.1 (D) shows a thickened intima at the baseline

state free from NC. In the follow-up state a scythe shaped NC appears close to the

lumen. Our simulations use mechanisms 1 and 2. The Ox-LDL concentration follows

a combination of Gaussians with increasing density. The location of Gaussians was

chosen in order to resembel the scythe shaped necrosis in 4.1 (D). Since there is no

Ox-LDL in the baseline state most of the fields are zero, see Figure 4.15. The inflamma-

tion naturally increases in time as a response to Ox-LDL increase. There are low levels
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of oxygen throughout the intima and PDGF concentrations are maximal at 1 and 7

o’clock. This growth regime introduced some convergence issues and we had to increase

the number of elements. Figure 4.16 shows the follow-up state to our simulation. The

NC appears in a scythe shape with a TCFA from 3 to 5 o’clock. The distributions of

Ox-LDL and macrophages are similar due to the macrophage chemotaxis which results

in a scythed shaped NC. Regions of the intima with more macrophages have lower

levels of oxygen which corresponds to the consumption of oxygen by macrophages. For

this case L(t) is the sum of Gaussian functions:

L(x, y, t) =
10∑
i=1

Li(t) exp

(
−si

((
x− x(i)

0

)2

+
(
y − y(i)

0

)2
))

(4.21)

Refer to Appendix B (Table B.1) for the values of Li(t), si and (x
(i)
0 , y

(i)
0 ). For the

values of the rest of time dependent parameters for this case, See Table 4.5.

Function Meaning Value Units

L(x, y, t) Distribution of Ox-LDL See eq. (4.21) and Appendix B mg/cm3

M0(t)
Macrophage density

in endothelium

Linear in t and increases from

0 to 1.7× 105
cells/cm3

C0

Oxygen

Boundary Condition
N/A mol/L

f(x, y)
Oxygen Sources

within intima
6.7 mol/L/day

Table 4.5: Time-dependent parameters for Case D. The time variable t changes from 0 to 12 months.
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Figure 4.15: Typical 2D plaque model results. Baseline concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima. For

PDGF concentration, the media and adventitia are also indicated along with the finite element mesh.

Figure 4.16: Typical 2D plaque model results. Follow-up concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima. For

PDGF concentration, the media and adventitia are also indicated along with the finite element mesh.

See tables 4.5-4.7 for parameter values.
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Figure 4.17: Typical 2D plaque model results. Baseline concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima. For

PDGF concentration, the media and adventitia are also indicated along with the finite element mesh.

Figure 4.18: Typical 2D plaque model results. Follow-up concentrations of NC, Chemoattractant,

oxLDL, MC and and oxygen are outputted as spatially dependent fields distributed in the intima. For

PDGF concentration, the media and adventitia are also indicated along with the finite element mesh.

See tables 4.6-4.7 for parameter values.
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4.2.5 Case E

Finally, case E from Figure 4.1 is described as ThCFA becoming TCFA. The

largest NC densities in the baseline state at 2 o’clock and 5 o’clock show some separation

from the lumen. In the follow-up state however, we can see a TCFA at 1 to 2 o’clock.

For our simulations we use mechanism 4. The Ox-LDL distribution is given by a

combination of Gaussians and there are oxygen sources in the intima (due to vasa

vasora), see Figures 4.17 and 4.18. If it was not for vasa vasora oxygen would have

been consumed quickly inside of the intima. The distribution of macrophages is affected

by the location of Ox-LDL. For this case both functions L(x, y) and f(x, y, t) are given

by:

L(x, y) =
5∑
i=1

Li exp

(
−3

((
x− x(i)

0

)2

+
(
y − y(i)

0

)2
))

(4.22)

f(x, y, t) =
21∑
j=1

fj(t) exp

(
−sj

((
x− x(j)

1

)2

+
(
y − y(j)

1

)2
))

(4.23)

Refer to Appendix B (Table B.2) for the values of Li, fj(t), si, (x
(i)
0 , y

(i)
0 ) and (x

(j)
1 , y

(j)
1 ).

Less chemoattractant in the follow-up state is due to the decrease in the number of

macrophages as a result of hypoxia. The PDGF window is located at 6 o’clock. The

necrotic core appears at 1 to 2 o’clock adjacent to the lumen similar to the IVUS image.

For the values of the rest of time dependent parameters for this case, see Table 4.6.

Function Meaning Value Units

L(x, y) Distribution of Ox-LDL See eq. (4.22) and Appendix B mg/cm3

M0

Macrophage density

in endothelium
4.2× 105 cells/cm3

C0

Oxygen

Boundary Condition
N/A mol/L

f(x, y, t)
Oxygen Sources

within intima
See eq. (4.23) and Appendix B mol/L/day

Table 4.6: Time-dependent parameters for Case E. The time variable t changes from 0 to 12 months.
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4.3 Conclusion

In this chapter we proposed an integrated model of atherosclerosis. A system

of PDEs was considered for modeling the dynamics of macrophages, chemoattractants,

oxygen and necrotic core concentrations. The distribution of Ox-LDLs was given as

a Gaussian (or a combination of Gaussian) functions to give us more freedom in con-

trolling their concentration and location. In addition, we used a PDE to model the

dynamics of PDGF concentration. This PDE was decoupled from the rest of the PDEs

and we used its solution to construct our mechanical growth tensor. All of the PDEs

in this problem were solved in their steady states since their timescale is much smaller

than the mechanical growth timescale.

Morphoelasticity requires us to apply the growth to the reference domain. How-

ever, the PDGF solution is found in a deformed domain. To overcome this issue, we

mapped back the values of PDGF field in each element to the same element in the

reference domain. This way we were able to get a spatially dependent growth tensor

with respect to the distribution of PDGF in the reference domain.

We introduced our integrated model on 5 domains extracted from medical IVUS

images [54]. We defined 4 time dependent biological mechanisms corresponding to our

model: changes in Ox-LDL distribution, changes in inflammation, development of vasa

vasora and increasing oxygenation. By manipulating the terms in our model pertaining

to these mechanisms we were able to qualitatively mimic the follow-up state of the

plaque in the IVUS images from their baseline state. In summary, we were able to

see that despite increasing inflammation TCFA can convert to ThFCA by increasing

oxygenation. A TCFA can turn into a fibrous plaque by healing the injured sites on

the endothelium and gradually reducing the infiltration of LDLs into the intima and

consequently reducing inflammation. Also a TCFA location can change by changing

the location of Ox-LDL source in the intima. Furthermore, a PIT can exacerbate and

turn into TCFA by increasing infiltration of LDLs and macrophages. Finally, ThFCA

can become TFCA by controlling the location of vasa vasora. In all of these simulations,

oxygen sources and the shape of Ox-LDL distribution had a significant effect on the
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shape of the necrotic core. One caveat of this model is neglecting the mechanical

properties of the necrotic core. Necrotic cores are known to have different mechanical

properties than the fibrotic plaques they reside in [13, 47, 59]. We speculate that this

difference can contribute to the thinning of the intima as a result of a vanishing necrotic

core (Case B from Kubo’s paper).

Although atherosclerosis has been modeled by many researchers, we believe

that our integrated approach reproduces some medically relevant observations. We

showed that in addition to a certain amount of inflammation the intima needs to

be thick enough for the formation of a necrotic core. However, the time needed for

the simulation in our current model increases dramatically with each PDE added to

our histological system of PDEs. This can prevent us from making a more realistic

biochemical model of atherosclerosis. The author believes that parallelizing the current

algorithms can help resolve this issue.

Due to the physical strain that the catheterization puts on patients there are not

many patient specific IVUS images available. There is usually a baseline image and a

follow-up image taken about a year later. Our models can help medical researchers gain

some insight about the plaque morphology during this time. In addition, our simulation

allows us to speculate on different mechanisms that lead to different follow-up images.
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Chapter 5

CONCLUSION

In this dissertation, we have investigated biomechanical and biochemical aspects

of atherosclerosis. At first we studied the mechanics of a local plaque growth inside

a cylindrical domain. By using morphoelasticity as our mathematical framework and

a Holzapfel type strain energy, we explored the effect of growth in each cylindrical

direction on Glagov remodeling and strain energy. We saw that the radial growth is

the main reason for the arterial encroachment while the circumferential growth mainly

contributed to outward remodeling. We also observed that the radial direction is the

most energetically favorable direction of growth. Thereafter, we proposed a novel

method motivated by the common pressure-displacement minimization method for

incompressible materials. But instead of the pressure field, we minimized the energy

with respect to growth parameters and displacement. The result was an anisotropic

growth with the radial direction as the dominant direction of growth. We compared

this anisotropic growth with an isotropic case with the same growth Jacobian and we

saw that the anisotropic case introduced more luminal stenosis than the isotropic case.

This radially dominant anisotropic growth was in line with experimental results.

Next, we investigated the effect of growth on the residual strain. When cut

radially, the cross sections of arteries spring open. This proves the existence of residual

stress/strain inside unloaded cross sections. The angle of the opened sector after the

radial cut is called the opening angle and has been used by many researchers to estimate

the residual stress/strain. We used a general domain extracted from IVUS images to see

the effect of growth on the opening angle. We started with growth in a single direction.

We saw that growth in the fiber direction creates a larger opening angle than the other

two directions. Then we compared the most energetically favorable anisotropic growth
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scheme (acquired by our two field minimization) with an isotropic growth with the

same Jacobian. We saw that for both cases, strain in the fiber direction was spread

out though the whole domain while it was more localized in the other two directions.

Due to the geometry of our problem, we saw that the opening angle and strains for

the isotropic and anisotropic growth were almost the same. However, having a longer

arterial cross section will have the minimization scheme suppress the growth in the

axial direction more significantly. Therefore, the difference between the two cases will

become more apparent. Our results from chapter 2 and 3 show that plaques can cause

significant stenosis and residual strain even when the associated energy is low.

We believe our approach can help experimentalists estimate the residual strain

for an artery as a function of stenosis. Also since growth in the fiber direction produces

the largest opening angle among the other directions of growth, we think by controlling

the growth in this direction one might be able to postpone the plaque rupture.

Finally, we proposed an integrated model of atherosclerosis. We developed a

model that takes into consideration the histological aspect of atherosclerotic plaque as

well as the mechanical aspect. For the histology we used a system of PDEs describing

the dynamics of macrophages, chemoattractants, oxygen and the necrotic core. We also

included a Gaussian function for the distribution of Ox-LDLs. In addition, we described

the dynamics of PDGF using a PDE which was decoupled from the aforementioned

system of PDEs. The solution to this PDE (mapped back into the reference domain)

was used to construct a growth tensor which was used to grow the artery from its

reference configuration. We used 5 IVUS images from Kubo’s paper [54] to construct

our domains. We proposed 4 different mechanisms pertaining to time dependent terms

in our model to explain the follow-up plaque states from Kubo’s study. The four

mechanisms were: changes in Ox-LDL distribution, changes in inflammation, develop-

ment of vasa vasora and increasing oxygenation. All these factors are thought to be

important in affecting atherosclerosis in different stages. We were able to mimic the

plaque follow-up states qualitatively using these mechanisms. We believe that the

histological part of our algorithm has some room for improvement. By adding more
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factors and maybe coupling the PDGF equation with the rest of the PDEs we can have

a clearer understanding of the development of plaques.

This dissertation opens many doors for future work. Numerical or algorith-

mic improvement of the simulations can lead to a deeper understanding of the plaque

histology. Right now, we manually inscribe the location of growth but incorporating

fluid-solid interaction models can make the simulations more realistic. More specifi-

cally, we could introduce a simple Newtonian Poiseuille flow inside the lumen of a 2D

cross section. This determines sites of lower flow velocity which would lead to endothe-

lial dysfunction and the histological and mechanical responses discussed in this thesis.

Furthermore, we could evolve the necrotic core using a level set method and integrate

the resulting model into image processing algorithms to analyze patient-specific data.

The necrotic core could have its own mechanical properties and act as a separate do-

main. This might help explaining the thinning of the intima in the event of a necrotic

core decline. Finally, we hope this work can stimulate further collaboration between

clinicians and mathematicians.
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Appendix A

DOMAIN AND MESH GENERATION

In chapters 2 and 3 we started using general domains extracted from IVUS

images. To create these domains for simulations we take the following steps:

1. Find a list of point coordinates on the boundaries of the arteries in the IVUS

images.

2. Find a the best fit trigonometric polynomial for these points.

3. Use GMSH spline to create the boundaries.

4. Use GMSH to create mesh and sent it to python for simulations.

To find a list of point coordinates on the boundaries we upload the image on the web-

site https://automeris.io/WebPlotDigitizer [79].

This website creates an excel file with the coordinates than can be uploaded to Matlab.

From there we were able to use Matlab to find the coefficients of the best fit trigono-

metric polynomial for each boundary. Below are the equations for the endothelium

and IEL for case A:

f1(Θ) = 0.7512 + 0.0124 cos(Θ) + 0.0414 cos(2Θ) + 0.0120 cos(3Θ) + 0.01111 cos(4Θ)

− 0.0061 cos(5Θ)− 0.0008 cos(6Θ)− 0.00001 cos(7Θ) + 0.0033 cos(8Θ) + 0.0217 sin(Θ)

− 0.0197 sin(2Θ)− 0.0027 sin(3Θ)− 0.0084 sin(4Θ)− 0.0135 sin(5Θ)− 0.0034 sin(6Θ)

− 0.0001 sin(7Θ)− 0.0048 sin(8Θ) (A.1)
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f2(Θ) = 1.0284 + 0.0362 cos(Θ)− 0.0557 cos(2Θ) + 0.0190 cos(3Θ)− 0.0185 cos(4Θ)

+ 0.0038 cos(5Θ) + 0.0045 cos(6Θ)− 0.0002 cos(7Θ) + 0.0006 cos(8Θ)− 0.1984 sin(Θ)

− 0.0173 sin(2Θ)− 0.0008 sin(3Θ)− 0.0133 sin(4Θ)− 0.0026 sin(5Θ)− 0.0066 sin(6Θ)

− 0.0029 sin(7Θ) + 0.0064 sin(8Θ) (A.2)

where 0 ≤ Θ ≤ 2π. For the boundary between media and adventitia and the outer

boundary we just add two different constants to f2(Θ). After finding these equations

we are ready to feed them to our mesh generator. GMSH is an open source 3D finite

element mesh generator with a built-in CAD engine and post processor [30, 31].GMSH

has a user friendly graphical interface that allows the user to create simple meshes.

It also has its own script language which enables us to create complicated boundaries

like the ones above. Therefore, we use equations (A.1) and (A.2) in GMSH script to

sample boundary points. Then with the use of GMSH function Spline we can create

continuous closed curves resembling the boundaries in the IVUS images, see Figure

A.1.

Figure A.1: A sample 3D domain and its meshed version in GMSH environment

All the GMSH scripts have .geo extension and the mesh will be saved with a

.msh extension. This is the key feature that enables us to use these meshes on FEniCS.

Upon installing FEniCS on a Linux or Mac computer the following command will be

added to the terminal commands.
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dolfin-convert Your-GMSH-Output.msh Mesh.xml

This command will convert your mesh and all of its facet and physical elements into

files with .xml extension. This is the extension that can be imported on FEniCS. To

see a sample of .geo, .msh and .xml files refer to the github address:

https://github.com/nmirzaei/ATHEROSCLEROSIS-IN-3D-WITH-HISTOLOGY

/tree/master/A 2D

After simulations are done via FEniCS the results are saved in .vtu or .pvd. These are

the extensions used by the software Paraview. This is an open source free software with

many visualization and post processing tools [3]. It is also compatible with python and

can export data in .csv format (with comma separated values) for further processing.

102

https://github.com/nmirzaei/ATHEROSCLEROSIS-IN-3D-WITH-HISTOLOGY/tree/master/A_2D
https://github.com/nmirzaei/ATHEROSCLEROSIS-IN-3D-WITH-HISTOLOGY/tree/master/A_2D


Appendix B

PARAMETERS FOR GAUSSIAN FUNCTIONS

Below you can find the parameters for equations (4.21)-(4.23) from chapter 4.

i Li(t) si (x
(i)
0 , y

(i)
0 )

1 0.77 (t/12) 20 (0.115,−0.534)

2 t/12 20 (0.324,−0.409)

3 t/12 20 (0.406,−0.164)

4 0.9 (t/12) 30 (0.752,−0.353)

5 0.9 (t/12) 30 (0.771,−0.057)

6 0.9 (t/12) 45 (0.682, 0.195)

7 0.55 (t/12) 50 (0.577, 0.405)

8 0.19 (t/12) 55 (0.484, 0.525)

9 0.13 (t/12) 55 (0.426, 0.594)

10 0.1 (t/12) 60 (0.397, 0.608)

Table B.1: Parameters for equation (4.21).

103



i Li (x
(i)
0 , y

(i)
0 ) j fj(t) sj (x

(j)
1 , y

(j)
1 )

1 0.77 (0.66, 0.71) 1 11.2 (1− t/24) 40 (0.33, 0.64)

2 0.77 (1.00,−0.20) 2 11.2 (1− t/12) 40 (0.45, 0.41)

3 0.56 (0.04,−1.11) 3 11.2 (1− t/36) 40 (0.34, 0.94)

4 0.56 (0.64,−0.85) 4 11.2 40 (0.85, 0.93)

5 0.42 (−0.67,−0.95) 5 12.32 20 (0.89,−0.43)

6 9.52 40 (0.29,−0.76)

7 9.52 (1− t/24) 35 (0.11,−0.85)

8 9.52 35 (−0.24,−0.90)

9 9.52 (t/24) 40 (−0.11, 0.74)

10 9.52 40 (0.11, 0.58)

11 7.84 (t/12) 60 (0.25, 0.35)

12 7.84 (t/12) 60 (0.32, 0.18)

13 7.84 (t/12) 30 (0.90, 0.47)

14 7.84 (t/12) 40 (1.00, 0.08)

15 16.8 (t/12) 40 (0.81,−0.76)

16 1.12 (t/12) 40 (0.43,−1.00)

17 9.52 (t/12) 40 (−0.58,−0.83)

18 11.2 (t/12) 40 (0.33, 0.07)

19 4.48 (t/12) 60 (0.31,−0.2)

20 4.48 (t/12) 60 (0.96,−0.06)

21 5.6 (t/12) 60 (0.52,−0.63)

Table B.2: Parameters for equation (4.22) and (4.23).
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