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c We model atherosclerotic intimal thickening as a free boundary problem.
c We perform a bifurcation analysis of an associated ordinary differential equation.
c We compare our results to experimental data from Stadius et al. (1992).
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a b s t r a c t

Atherosclerosis is an inflammatory disease of the artery characterized by an expansion of the intimal

region. Intimal thickening is usually attributed to the migration of smooth muscle cells (SMCs) from the

surrounding media and proliferation of SMCs already present in the intima. Intimal expansion can give

rise to dangerous events such as stenosis (leading to stroke) or plaque rupture (leading to myocardial

infarction).

In this paper we propose and study a mathematical model of intimal thickening, posed as a free

boundary problem. Intimal thickening is driven by damage to the endothelium, resulting in the release

of cytokines and migration of SMCs. By coupling a boundary value problem for cytokine concentration

to an evolution law for the intimal area, we reduce the problem to a single nonlinear differential

equation for the luminal radius. We analyze the steady states, perform a bifurcation analysis and

compare model solutions to data from rabbits whose iliac arteries are subject to a balloon pullback

injury. In order to obtain a favorable fit, we find that migrating SMCs must enter the intima very slowly

compared to cells in dermal wounds. This cell behavior is indicative of a weak inflammatory response

which is consistent with atherosclerosis being a chronic inflammatory disease.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Atherosclerosis is an inflammatory disease of medium-to-large
sized arteries that is often the underlying cause for many adverse
cardiovascular conditions. According to the latest statistics (Roger
et al., 2012), more than 2200 Americans died of cardiovascular
disease every day in 2008, and coronary heart disease was
responsible for about 1 out of every 6 deaths in the United States.
The prevention and treatment of atherosclerosis, and heart dis-
ease in general, is one of the most important problems in
medicine today.

The vessel wall undergoes fundamental mechanical and bio-
logical changes as atherosclerosis progresses. An artery wall
consists of three main layers: an innermost intima is surrounded
ll rights reserved.
by the media that is in turn surrounded by the adventitia. The
intima in normal, healthy arteries consists of a thin layer of
connective tissue and the endothelium, a single layer of cells that
lines the inner surface of the entire vasculature. The intima in
healthy arteries is typically only a few cell diameters thick.
However, one of the defining characteristics of atherosclerosis is
an enlarged intima; its growth is mainly attributed to smooth
muscle cell (SMC) migration and proliferation. Migration and
proliferation occur because cytokines are released into the vessel
wall when the endothelium is injured. The nature and source of
such an injury is still an active area of research, but could include
hemodynamical (Vincent et al., 2011), mechanical (Thubrikar,
2007) or biochemical (Keaney, 2000) insult. These growth factors
stimulate SMCs to enter the intima from the surrounding media
and may also promote mitosis in cells already present in the
intima.

Intimal expansion can result in either positive or negative
remodeling. In positive remodeling, the internal elastic lamina
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(IEL) surrounding the intima expands outwards while the luminal
area remains largely unchanged. This kind of remodeling is
characteristic of plaques such as Thin-Capped Fibroatheromas
(TCFAs). Such plaques are highly inflamed and characterized by a
thin cap, necrotic core and a large number of foam cells. Because
the luminal area is unchanged, these plaques are hard to detect.
They are largely asymptomatic until they rupture; when this
occurs, myocardial infarction usually ensues (Davies, 1992).

In negative remodeling, it is the luminal area that reduces
causing a constriction of the blood vessel (‘‘stenosis’’). Blood clots
may advect from upstream of the stenosis, become lodged in the
constriction and cause strokes. Negative remodeling is a feature of
so-called ‘‘eroded plaque’’ (Kolodgie et al., 2002). Such plaques
differ from TCFAs in at least three different ways. First the
endothelium is often absent in eroded plaques. Second, they are
less inflamed and contain fewer macrophages. Finally thrombi
can develop without plaque rupture. It is thought that the
thrombus gradually develops over time as a result of a chronic
wound healing response: the denuded lumen is repeatedly
eroded away and healed resulting in platelet aggregation and a
growing thrombus.

While an in silico model of atherosclerosis that incorporates
the action of cells, cytokines, hemodynamics and mechanics is not
yet available, it is becoming more common to analyze the
mechanisms behind plaque formation through mathematical
models. Typically, the models either take the form of ODEs
(ordinary differential equations) or PDEs (partial differential
equations). In ODE models such as (Bulelzai and Dubbeldam,
2012; Ougrinovskaia et al., 2010), the authors study the interac-
tion of macrophages and foam cells inside a plaque; monocytes
transform into macrophages after they adhere to the vessel wall.
Macrophages then transform into foam cells upon ingesting
oxidized low density lipoprotein. On the other hand, in PDE
models such as Fok (2011) and Ibragimov et al. (2005), the
authors consider cell densities in arterial cross-sections; the goal
is for the equations to reproduce the main features of plaque such
as its necrotic or lipid core. In Calvez et al. (2010), a more complex
model is proposed that couples hemodynamics to the transport of
different cell populations and chemical species through the
endothelium.

In this paper, we present a model of intimal thickening
represented as a free boundary problem, which makes it quite
different to the forementioned papers. The radius of the lumen
decreases due to the migration and proliferation of SMCs in the
intima and our model describes the time evolution of this radius.
We reduce the problem to a single ordinary differential equation
and analyze its behavior for short and long times. We also analyze
its steady states, perform a bifurcation analysis and finally
compare our results to data from the arteries of New Zealand
white rabbits.

The outline of this paper is as follows: in Section 2, we present
the governing equations for our problem along with a non-
dimensionalization. In Section 3 we discuss our results and
explain the biological insight that our model generates. We end
with a conclusion in Section 4.
2. Governing equations

Here we set up the problem of arterial stenosis as a free
boundary problem. We consider the problem with concentric
geometry, described with polar coordinates (see Fig. 1(a)). With
the lumen–intimal interface as a free boundary, described
through the lumen radius, our goal is to derive an evolution
equation for R̂1ðt̂Þ (where t̂ is time) in terms of cell proliferation,
death and migration that can occur within the intima.
The migration of SMCs into the intima is regulated by growth
factors and cytokines that are released when the endothelium is
injured. In fact, experiments on rat carotid artery (Clowes, 1983)
show that intimal thickening occurs only when endothelial cells
are absent from the inner surface. When the endothelial cells
regenerate, intimal thickening stops. The most potent of these
cytokines is PDGF (Platelet Derived Growth Factor) which is the
focus of our modeling effort.

The distribution of PDGF can be described by the quasi-steady
state diffusion–degradation equation

D1r
2P̂1�kP̂1 ¼ 0 on R̂1ðt̂Þo r̂o R̂2, ð1Þ

D2r
2P̂2�kP̂2 ¼ 0 on r̂4 R̂2, ð2Þ

where P̂1 is the concentration of growth factor within the intima
and P̂2 is the concentration within the media—see Fig. 1(a).
The boundary, interface and far-field conditions are

P̂1 ¼ f̂ ðŷÞ on r̂ ¼ R̂1ðt̂Þ, ð3Þ

P̂1 ¼ P̂2 on r̂ ¼ R̂2, ð4Þ

D1
@P̂1

@r̂
¼D2

@P̂2

@r̂
on r̂ ¼ R̂2, ð5Þ

P̂2-0 as r̂-1: ð6Þ

We ignore any convection of PDGF due to radial transmural flow
because our goal is to derive the simplest model that includes the
effect of SMC migration induced by cytokine gradients.

This quasi-steady state approximation is justified if the time
taken for PDGF to reach its steady state is much shorter than the
time scale of stenosis. In (1) and (2), D1 and D2 are the diffusion
constants for PDGF in the intima and media respectively and k is
its degradation rate. In (4) and (5), we have imposed continuity of
PDGF and its flux across the IEL. The function f̂ ðŷÞ is a compactly
supported function, taking only non-zero values for 9ŷ9o ŷ0=2
(see Fig. 1(a)). Biologically, f̂ can be thought of as representing an
injury to the endothelium.

What is the source of endothelial damage? Endothelial injury
could arise because of rapidly changing hemodynamical shear
stress on the endothelium: the mitotic rate of endothelial cells
appears to be higher near bifurcations of the artery (Thubrikar,
2007) where the flow may locally recirculate and be far from
laminar. Because of the injury, platelets adhere to the endothe-
lium, releasing cytokines such as PDGF. These platelets form a
solid thrombus—see Chapter 4 in Virmani et al. (2007) and
Fig. 1(b) and (c). In principle, the growth of this thrombus
depends on the local hemodynamics and the biochemistry of
clotting (Guy et al., 2007). However, in this paper, we do not
account for this thrombus explicitly. Instead, we only model its
release of PDGF. Because a thrombus is essentially a blood clot
composed of platelets and fibrin, it is resistant to deformation and
we expect that the footprint of the thrombus may stay approxi-
mately constant in time. When the lumen constricts, the angle of
injury ŷ0ðt̂Þ increases as endothelial cells are strained and
damaged.

Let ŷ0ð0Þ be the initial angle of injury, so that the initial area of
injury (per unit length of artery) is R̂1ð0Þŷ0ð0Þ. For subsequent
times, we assume that this area remains constant so
R̂1ðt̂Þŷ0ðt̂Þ ¼ R̂1ð0Þŷ0ð0Þ for t̂40. This damaged area acts as the
primary source of PDGF since platelets release PDGF when they
adhere to the site of injury. We take

f̂ ðŷ; R̂1ðt̂ÞÞ ¼
P0, 9ŷ9omin

ŷ0ðtÞ

2
,p

 !
, ŷ0ðt̂Þ ¼

R̂2ŷ0ð0Þ

R̂1ðt̂Þ

0 otherwise,

8>><
>>: ð7Þ



Fig. 1. (a) Schematic of a thickened intima, represented here as the region between two concentric circles with radii R̂1 and R̂2. P̂1 and P̂ 2 are distributions of PDGF

(Platelet Derived Growth Factor) in the intima and media respectively. (b) and (c) Stained cross-sections of eroded plaques taken from Farb et al. (1996). Scale bars

represent 0.375 mm. In (b) a thrombus labeled ‘‘T’’ can be seen as a result of endothelial injury and in (c) the thrombi are indicated with arrowheads.
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where P0 is a typical PDGF concentration at the injury site.
The arclength of injured endothelium, R̂1ðt̂Þŷ0ðt̂Þ, remains con-
stant in time until the entire endothelium is inflamed, in which
case f̂ ðŷÞ ¼ P0 for 0r ŷr2p.

An injury to the endothelium encourages adhesion of platelets
and locally increases concentrations of plasmin which is proteo-
lytic. By degrading extra-cellular matrix (ECM) plasmin frees
SMCs, allowing them to respond to chemoattractants such as
PDGF (Jackson et al., 1993). In fact, experiments on thrombocy-
topenic rats (which have o1% of the platelet count of normal
animals) show that they have fewer intimal SMCs than normal
rats (Jackson et al., 1993). In our model, we assume that SMCs
chemotax from the media up concentration gradients in released
PDGF and proliferate. Both effects can result in an expansion of
the intima.

Applying conservation of mass to the intimal region Ô ¼
fðr̂ ,ŷÞ : R̂1o r̂ o R̂2g, we have

d

dt̂

Z Z
Ô
r̂ðr̂ ,t̂Þ dÔþ

I
@Ô

Ĵ � n dŝ ¼

Z Z
Ô
½P0�r̂ðr̂ ,t̂ÞP1� dÔ, ð8Þ

where r̂ is the density of SMCs, Ĵ is the flux of SMCs on @Ô, n is
the unit outward normal on @Ô, P0 is the proliferation rate per
unit area of intima and P1 is the death rate of smooth muscle
cells which we assume to be constant with respect to space, time
and PDGF concentration. Assuming no SMC fluxes on r̂ ¼ R̂1, a
constant intimal SMC density r̂ ¼ r0 and a PDGF-dependent
proliferation rate, P0 ¼P0ðP̂1 Þ, we obtain an evolution law for
the intimal area Âðt̂Þ in terms of SMC migration from the media
and proliferation

r0

dÂ

dt̂
¼�

I
r̂ ¼ R̂2

Ĵ � n dsþ

Z Z
Ô
½P0ðP̂1Þ�r0P1� dÔ: ð9Þ

In our model the focus is on the biochemical effects of PDGF-
induced intimal expansion. The migration of cells into the intima
and their proliferation will also induce mechanical stresses in the
intima which are not included in our model, but these effects
have been treated by other researchers, for example see Amar
et al. (2011) and Goriely and Vandiver (2010).

Chemotaxis by PDGF has been quite well characterized
through a series of joint experimental and modeling approaches
(Haugh, 2006; Park et al., 2003; Schneider and Haugh, 2005). Here
we briefly describe a feasible mechanism in order to present a
simple model for PDGF-induced chemotaxis. For dermal fibroblast
wound healing assays, PDGF binds to receptors on the fibroblast
cell surface which then activate by dimerizing with each other
and autophosphorylating. In this activated state the receptors can
bind with cytosolic enzymes such as PI (phosphoinositide)
3-kinase which releases a family of secondary messengers 30-PI.
Intracellular gradients of 30-PI modulate the cytoskeleton result-
ing in cell motion.

A derivation of the familiar Keller–Segel chemotaxis law in
terms of some of the microscopic processes described above is
given in Keener and Sneyd (2009). Let P̂ be the concentration of
chemoattractant. For small gradients in P̂ , the cell speed is
derived as v¼ v0w0N0bðP̂ÞrP̂ where v0 is the maximum cell speed,
w0 is the chemotactic sensitivity and NbðP̂Þ is the number of
activated receptors as a function of chemoattractant. Hill func-
tions are usually prescribed for NbðP̂Þ. If we assume that the
binding of PDGF to its receptor is rate limiting, then we have a Hill
coefficient equal to unity and NbðP̂Þ ¼NT P̂=ðKdþ P̂Þwhere NT is the
total number of PDGF receptors on the cell surface and Kd is the
dissociation constant of PDGF/PDGF-receptor binding. Further-
more, if P̂ 5Kd, then N0bðP̂Þ �NT=Kd.

When D1 ¼D2, rP̂1 ¼rP̂2 ¼rP̂ at r̂ ¼ R̂2 and the SMC flux is

Ĵ9r̂ ¼ R̂2
¼ rsv¼

v0w0NT

Kd
rsrP̂ , ð10Þ

where rs is the pore density of the IEL. If there was no barrier at
all to SMC migration, then the mass flux of SMCs (per unit area of
IEL) into the intima would be the product of the medial SMC
density and SMC migration velocity. However, the fibrous IEL
physically separates the intima from the media; see Fig. 1(a). This
IEL is fenestrated so that SMCs and other low molecular weight
substances can pass through pores of the IEL that typically range
from 0:424 mm in diameter. Hence, the mass flux of SMCs is
modulated by the pore density.

When D1aD2 in (5), rP̂19R̂2
arP̂29R̂2

. In practice, we expect
that gradients in the PDGF concentration will change rapidly –
but smoothly – near the media–intima interface so SMCs will
respond to some weighted average of rP̂19R̂2

and rP̂29R̂2
, the

gradients inside and outside of the IEL. In this study we take

Ĵ9r̂ ¼ R̂2
¼
rsw
2
ðrP̂19R̂2

þrP̂29R̂2
Þ, w¼ v0w0NT

Kd
: ð11Þ

Finally, since the concentration of PDGF is low in a chronic
response, we use a linear approximation for the proliferation rate.
We assume that SMCs reproduce most quickly when concentra-
tions of PDGF are maximal, close to the site of injury. We take

P0ðP̂Þ ¼
Q0P̂

P0
, ð12Þ

where Q0 is the maximum proliferation rate.
Table 1 summarizes the dimensional constants of our problem.

Naturally, several parameters span a range of values. For example,
the SMC proliferation rate Q0, calculated from Fig. 4 in Tsai et al.
(1994) is highly dependent on the culture conditions. More details



Table 1
Parameter values for Eqs. (1)–(12). IEL¼Internal Elastic Lamina, PDGF¼Platelet Derived Growth Factor, SMC¼Smooth Muscle Cell.

Parameter Description Value/Range Ref

R̂2
IEL radius 1 mm –

k PDGF degradation rate 0.1 h�1 Haugh (2006)

D1 PDGF diffusion constant in intima 0.01 mm2/h Haugh (2006)

D2 PDGF diffusion constant in media 0.01 mm2/h Haugh (2006)

P0 Maximum PDGF concentration 0.1 nM Haugh (2006)

r0 SMC density in intima 800 mm�2 Virmani et al. (2007, p. 64)

rs Pore density in IEL 1000–50,000 mm�2 Tada and Tarbell (2000)

Q0 SMC proliferation rate 0.3–10 mm�2 h�1 Tsai et al. (1994)

P1 SMC death rate 6�10�3 h�1 Bennett et al. (1995)

v0 Maximum SMC migration speed 0.1 mm/h Haugh (2006)

w0 Chemotactic sensitivity 2�10�5 cm/receptor Keener and Sneyd (2009)

NT # PDGF receptors on SMC surface 105 receptors Park et al. (2003)

Kd Dissoc. const. of PDGF from receptors 1.47 nM Park et al. (2003)
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on how the dimensional constants are estimated can be found in
Appendix B.

2.1. Non-dimensionalization

We now introduce the dimensionless quantities

r¼
r̂

R̂2

, y¼ ŷ, P1,2 ¼
P̂1,2

P0
, t¼P1 t̂ , R¼

R̂1

R̂2

, A¼
Â

R̂
2

2

, ð13Þ

so that the dimensional outer radius R̂2 is mapped to a dimen-
sionless unit radius. Our dimensionless diffusion–degradation
equations are

@2P1

@r2
þ

1

r

@P1

@r
þ

1

r2

@2P1

@y2
�l2

1P1ðrÞ ¼ 0, RðtÞrro1, ð14Þ

@2P2

@r2
þ

1

r

@P2

@r
þ

1

r2

@2P2

@y2
�l2

2P2ðrÞ ¼ 0, rZ1, ð15Þ

where l1,2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=D1,2

p
R̂2. The boundary conditions become

P1ðr,yÞ ¼ f ðy;RÞ on r¼ RðtÞ, ð16Þ

P1ðr,yÞ�P2ðr,yÞ ¼ 0 on r¼ 1, ð17Þ

l2
2

@P1ðr,yÞ
@r

�l2
1

@P2ðr,yÞ
@r

¼ 0 on r¼ 1, ð18Þ

P2ðr,yÞ-0 as r-1, ð19Þ

where f � f̂ =P0 and the dimensionless evolution equation for the
intimal area AðtÞ ¼ pð1�R2

ðtÞÞ is

dA

dt
¼�a

Z p

�p

@P1

@r

����
r ¼ 1

þ
@P2

@r

����
r ¼ 1

� �
dyþb

Z p

�p

Z 1

RðtÞ
P1ðr,yÞr dr dy�AðtÞ,

ð20Þ

where Að0Þ ¼ 0,

a¼ rsv0w0NT P0

2r0R̂
2

2P1Kd

, b¼
Q0

r0P1
, ð21Þ

and

f ðy,RðtÞÞ ¼
1, 9y9omin

y0ðtÞ

2
,p

� �
, y0ðtÞ ¼ y0ð0Þ=RðtÞ,

0 otherwise:

8<
: ð22Þ

Eq. (20), coupled to the boundary value problem (14)–(19),
defines our free boundary problem: Eq. (20) is an ordinary
differential equation (ODE) for A(t) where the right hand side
depends on the solution to (14)–(19). As A(t) evolves, so does the
domain of solution of (14)–(15) and the boundary condition (16)
and (22): the quasi-steady distribution of PDGF evolves in time
along with the intimal area.

We now reduce the two coupled problems to a single ODE for
the radius R(t). This can be done by solving for P1,2ðr,yÞ explicitly
using separation of variables and directly substituting into (20);
details can be found in Appendix A. After some calculation, we
find

_R ¼ FðR;a,b,y0ð0Þ,l1,l2Þ,

:¼ �
as½R; y0ð0Þ�C1ðl1,l2Þ

RD0ðRÞ
þ

1

2

1�R2

R

 !

�
bs½R; y0ð0Þ�

RD0ðRÞl1
fC2ðl1,l2Þ½RK1ðl1RÞ�K1ðl1Þ��C3ðl1,l2Þ½RI1ðl1RÞ�I1ðl1Þ�g,

ð23Þ

subject to the initial condition Rð0Þ ¼ 1, where

s½R; y0ð0Þ� ¼min
y0ð0Þ

2pR
,1

� �
, ð24Þ

D0ðRÞ ¼ l1K1ðl2Þ½I0ðl1ÞK0ðl1RÞ�K0ðl1ÞI0ðl1RÞ�

þl2K0ðl2Þ½I1ðl1ÞK0ðl1RÞþK1ðl1ÞI0ðl1RÞ�, ð25Þ

and I1ð�Þ and K1ð�Þ are modified Bessel functions of the first and
second kind respectively. Note that D0ðRÞ40 if 0oRo1 since
I0ðl1Þ4 I0ðl1rÞ and K0ðl1rÞ4K0ðl1Þ when 0rRoro1.

The constants C1, C2 and C3 are defined in terms of l1 and l2

C1ðl1,l2Þ ¼ ðl
2
1þl

2
2Þ½K1ðl1ÞK1ðl2ÞI0ðl1ÞþK0ðl1ÞK1ðl2ÞI1ðl1Þ�, ð26Þ

C2ðl1,l2Þ ¼ l1K1ðl2ÞI0ðl1Þþl2K0ðl2ÞI1ðl1Þ, ð27Þ

C3ðl1,l2Þ ¼�l1K1ðl2ÞK0ðl1Þþl2K0ðl2ÞK1ðl1Þ: ð28Þ

In (23), F is the sum of three terms. The first term, proportional to
a, is always negative and represents stenosis due to cell migra-
tion. The second term is always positive and represents a lumen
expansion due to cell death. The final term, proportional to b,
represents intimal expansion due to cell proliferation. This term is
always negative because

C2½RK1ðl1RÞ�K1ðl1Þ��C3½RI1ðl1RÞ�I1ðl1Þ�

¼ l1

Z 1

R
D0ðrÞr dr,40: ð29Þ

The solution of the ODE (23) is therefore determined by
5 dimensionless constants: the chemotactic parameter a, the
proliferation parameter b, the initial angle of injury y0ð0Þ and
the two parameters of the steady-state diffusion–degradation
equation l1 and l2. The numerical value of these parameters
can be derived from Table 1; in Section 3.2 we will compare the
calculated values to values derived from experimental data.
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1 A saddle node bifurcation has normal form _yðtÞ ¼ rþy2 for parameter r

whereas the bifurcation in our system more closely resembles _yðtÞ ¼ rþ9y9, which

has a qualitatively similar behavior.
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3. Results and discussion

In Fig. 2 we plot solutions of the ODE (23) for different values
of a, b and y0ð0Þ. In (a) we see that as the migration parameter a is
increased, the rate of stenosis increases and the steady state value
for R(t) decreases. A larger value of a implies a larger cell flux into
the intima and therefore a faster decrease in R(t). In Fig. 2(b) and
(c) a similar effect can be seen as the proliferation parameter b
and initial angle of injury y0ð0Þ are increased. We see that when b
is large, the radius rapidly drops as SMCs quickly reproduce to
enlarge the intimal region. Likewise, when y0ð0Þ is large, more
SMCs are recruited from the media since a greater portion of the
internal elastic lamina is inflamed (as indicated by the presence of
PDGF); this is discussed below. In all three cases, a steady state is
reached as migration and proliferation of SMCs are eventually
balanced by SMC death.

An important feature of Eq. (23) which is illustrated in Fig. 2 is
that solutions exist for all tZ0. In particular, RðtÞ40 for tZ0.
If a40 and 0oy0ð0Þr2p, then

FðR¼ 1Þ ¼�
asð1ÞC1

l2K0ðl2Þ½I1ðl1ÞK0ðl1ÞþK1ðl1ÞI0ðl1Þ�
o0, ð30Þ

but

FðRÞ �
1

2R
þ

aC1þ
b
l1

�
�C2K1ðl1ÞþC3I1ðl1Þ

	
C2R lnðl1R=2Þ

-þ1, ð31Þ

as R-0þ . The term �C2K1ðl1ÞþC3I1ðl1Þ40 using (29) with
R-0þ . Since F(R) is continuous on (0, 1], by the intermediate
value theorem, there must exist 0oRno1 such that FðRn

Þ ¼ 0, i.e.
there is always (at least) one steady state solution in (0, 1). Since
F(R) is continuous, this steady state can always be reached given
the initial condition Rð0Þ ¼ 1 and solutions will exist for all tZ0.

In Fig. 3, we show a times series of snapshots of the PDGF
distribution and the resulting inflammation and vessel stenosis.
In these plots, the thick black line represents the IEL that
separates the intima from the media (compare with Fig. 1(a)).
Although we show the media to have a thickness of 1/2, the outer
boundary of the media plays no role in our model (note the far
field condition (19) is at r¼ þ1) and so this choice for the media
thickness in Fig. 3 is actually arbitrary. At t¼0, the intima has zero
area, but as SMCs migrate in, the intima grows, resulting in the
formation of ‘‘neointima’’ and forcing the lumen to narrow. In our
model, we assumed that there are no SMCs in the intima at t¼0
(this is the case with mammals such as rabbits and rats (Newby
and Zaltsman, 1999)) and so Að0Þ ¼ 0. Then initially, stenosis must
be triggered by cell migration since

_Rðt¼ 0Þ ¼�
ay0ð0Þðl

2
1þl

2
2Þ

2pl2

�
K1ðl1ÞK1ðl2ÞI0ðl1ÞþK0ðl1ÞK1ðl2ÞI1ðl1Þ

K0ðl1ÞK0ðl2ÞI1ðl1ÞþK0ðl2ÞK1ðl1ÞI0ðl1Þ
: ð32Þ

Hence the initial decrease in the radius is driven entirely by
chemotaxis. Once the intima contains a positive population of
SMCs, they can proliferate causing further intimal expansion.
At the same time, the angle of injury y0ðtÞ increases as more
endothelial cells are damaged during the constriction. When the
entire endothelium is injured, the stenosis comes to a halt as R(t)
has effectively reached its steady state, as shown in the final three
panels of Fig. 3. We now analyze these steady states.

3.1. Bifurcation study

To gain a quantitative understanding of the steady state of Eq. (23),
in Fig. 4 we plot F(R) as we change the parameters a, b and y0ð0Þ. The
function F(R) has a cusp singularity at R¼ R̄ :¼ y0ð0Þ=2p since

F 0ðR̄
þ
Þ�F 0ðR̄

�
Þ ¼

aC1þ
b
l1
fC2½R̄K1ðl1 R̄Þ�K1ðl1Þ��C3½R̄I1ðl1 R̄1Þ�I1ðl1Þ�g

R̄
2
D0ðR̄Þ

40

ð33Þ

using (29) and (26)–(28). It is clear that the jump in the derivative of F

at R¼ R̄ increases with the parameters a and b. This analysis is
confirmed in Fig. 4 when we plot F(R) for different a, b and y0ð0Þ. The
implication for solutions R(t) is that when a and/or b is large, the
radius rapidly plumments but comes to an abrupt halt near R̄ since
F(R) is a rapidly decreasing function for Ro R̄; see Fig. 2(b) for b¼ 50,
for example. In Fig. 5, we plot the steady states of (23), Rn, as a
function of the parameters a, b and y0ð0Þ. In Fig. 5(a) for small values
of the bifurcation parameter a, we see that there is a single steady
state for R(t) but as a is increased past a critical value an

1, a saddle
node bifurcation occurs1 and a second steady state appears. This
second steady state is semi-stable at a¼ an

1 but as a continues to
increase, the semi-stable node splits into a stable and unstable node.
Unstable nodes are indicated in Fig. 5 with a dashed red line. It is clear
that there is a window of values for a for which Eq. (23) has three
steady states. As a increases to a second critical value an

2, there is
a merging and annihilation of the unstable node with the original



Fig. 3. Time evolution of intimal expansion and subsequent PDGF distribution with a¼ 1:3, b¼ 5, y0ð0Þ ¼ p=4, l1 ¼ 3, l2 ¼ 3.

Fig. 4. Right hand side of (23) as (a) a increases from 0 to 1.2 in increments of 0.1, (b) b increases from 1 to 7 in increments of 0.5, (c) y0ð0Þ increases from 0.2 to 3 in

increments of 0.2. In all cases, l1 ¼ l2 ¼ 3.
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stable node leaving just a single, stable, steady state for a4an

2.
The bifurcation behavior in Fig. 5(b) is qualitatively similar. In
Fig. 5(c) we see that when y0ð0ÞZ1, the smallest steady state is
independent of y0ð0Þ, consistent with Fig. 4(c).

When ab1 or bb1, the steady state 0oRn
51. In fact, an

asymptotic analysis yields an explicit form for Rn. Since

D0ðRÞ ��C2ðl1,l2Þ ln
l1R

2
þg

� �
þOðR2

Þ, R-0þ , ð34Þ
where g¼ 0:577215 . . . is Euler’s constant, we have

Rn
�

2

l1
exp �

2

C2
aC1þ

bC3I1ðl1Þ

l1
�
bC2K1ðl1Þ

l1

� �� �
, Rn

51: ð35Þ

Since the term in the square braces is always positive, Rn is
exponentially small (but positive) when proliferation and/or
migration is dominant in the system. What are the biological
implications of these bifurcations? We discuss these below with a
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as the bifurcation parameter, but our conclusions also apply to
Fig. 5(b) and (c) with b and y0ð0Þ as the bifurcation parameters.

In (a) when aoan
1 or a4an

2 there is a single steady state but
for an

1oaoan

2, there are three steady states, one of which is
unstable. Our model predicts that the lumen of the blood vessel,
with initial radius Rð0Þ ¼ 1, will stenose until it reaches the larger
steady state. Because this steady state is stable, providing the
background parameters are unchanged, any externally induced
increase in R(t) will not change its long time behavior. For
patients with arteries severely stenosed with plaque, treatment
by balloon angioplasty (mechanical dilation of the blood vessel)
results in restenosis in 25% to 50% of patients within six months
of the procedure (Shaw et al., 1995). Although our model does not
predict the response of the vessel wall under mechanical loads
(for this, we refer to Eftaxiopoulos and Atkinson, 2005), it is not
surprising from our bifurcation analysis that restenosis occurs:
angioplasty does not change the values of a and b and does not
directly address the underlying cell dynamics of intimal
expansion.

Now suppose that an

1oaoan

2 and the system has reached its
larger steady state value. If the migration parameter is further
increased outside of the window ½an

1,an

2�, the lumen responds with
a sudden, catastrophic decrease in Rn. Biologically, such a sudden
stenosis may increase the risk of trapped blood clots and stroke.

Ideally we would like to present the bifurcations in Fig. 5 as
multi-dimensional plots, showing the steady states Rn as func-
tions of the three parameters a, b and y0ð0Þ. Since this is difficult
in practice, in Fig. 6, we superimpose several bifurcation plots
(with a and b as the bifurcation parameters) for different initial
angles of injury y0ð0Þ. Depending on the value of ða,y0ð0ÞÞ or
ðb,y0ð0ÞÞ, there can be 1, 2 or 3 steady states. Consider Fig. 6(a).
For most values of y0ð0Þ in the range 0rar2, the system has a
single steady state: only for small values of y0ð0Þ do multiple
steady states emerge. A similar situation occurs in Fig. 6(b): for a
range of b values, there is a single steady state when the initial
angle of injury is sufficiently large. When y0ð0Þ is decreased,
multiple steady states can arise.

In light of the above arguments, there are two conditions that
specify the values of ða,b,y0ð0ÞÞ for which there are two real roots
in F(R). The first is that

FðR̄;a,b,y0ð0ÞÞ ¼ 0 and F 0ðR̄
þ
;a,b,y0ð0ÞÞ40, ð36Þ

which states that the cusp of F(R) (where it has a discontinuous
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derivative) must touch the horizontal axis to give a semi-stable
fixed point; we refer back to Fig. 4. At the same time, the right
derivative must be positive to ensure a second root for R4 R̄. For a
given y0ð0Þ and b, the solution of (36) defines a functional relation
a¼ g�ðb,y0ð0ÞÞ. The second condition for the existence of two
roots is given by the pair of equations

FðR;a,b,y0ð0ÞÞ ¼ 0, ð37Þ

F 0ðR;a,b,y0ð0ÞÞ ¼ 0, ð38Þ

where prime denotes derivative with respect to R. For given b and
y0ð0Þ, the solution of Eqs. (37) and (38) give a pair a and R. In
practice, we rearrange (37) to find a¼ gþ ðb,y0ð0Þ;RÞ and then
numerically solve F 0ðR; gþ ðb,y0ð0Þ;RÞ,b,y0ð0ÞÞ ¼ 0 for R, yielding
R¼ R̂. The value of a that corresponds to the given ðb,y0ð0ÞÞ is then
defined through a¼ gþ ðb,y0ð0Þ; R̂Þ.

By plotting a¼ g7 ðb,y0ð0ÞÞ, we summarize the multiplicity of
steady states in Fig. 7. Regions in ða,y0ð0ÞÞ space with 3 roots are
colored in gray; the boundary of these regions where there are
two roots is indicated in black. As b increases, the tip of the
‘‘horn’’ region is pulled towards larger y0ð0Þ values, increasing the
range of initial angles and migration parameters that may result
in a catastrophic stenosis.

3.2. Comparison with experiments

In Fig. 8 we superimpose solutions of our model with data taken
from experiments on New Zealand white rabbits (Stadius et al., 1992).
In these experiments, a population of rabbits were fed a 2%
cholesterol diet. By regularly sacrificing the rabbits, the intimal area
of the iliac arteries was monitored over the course of about 40 days.
Values of a, b and y0ð0Þ were chosen to best-fit the data in the least-
squares sense by minimizing the residual Resða,b,y0ð0ÞÞ ¼PN

i ¼ 1 oi½Âi�Âðt̂ i;a,b,y0ð0ÞÞ�
2, where Âðt̂Þ ¼ pðR̂

2

2�R̂
2

1ðt̂ÞÞ is the inti-
mal area, ððt̂1,Â1Þ, . . . ,ðt̂N ,ÂNÞÞ are the N data points and oi are
chosen weights (see below for details). For given a, b and y0ð0Þ, each
evaluation of the residual requires the solution of Eq. (23); because
the data is dimensional, we then redimensionalize our solution with
R̂2 ¼ 1 mm and P1 ¼ 6� 10�3 h�1. MATLAB’s constrained optimiza-
tion routine fmincon was used to minimize the residual subject to
0rar0:1, 0rbr50 and 0ryr2p. Optimal a, b and y0ð0Þ were
usually found after about 10 iterations.

When fitting our model curves to the experimental data, there
are three possible approaches to take. The first (‘‘uniform’’) is to
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treat all the data points equally: oi ¼ 1 for i¼ 1, . . . ,N. However,
in the papers of Stadius et al. (1992) and Jackson et al. (1993), the
authors were adamant that SMCs only appeared after 3 or 4 days:
before this time, there were no SMCs in the intima at all. Since the
four earliest time points have much less error than the other
points, in the second type of fit (‘‘weighted’’), we give the first four
points 30� more weight when calculating the residual: oi ¼ 30
for i¼ 1, . . . ,4 and oi ¼ 1 for i¼ 5, . . . ,N. The factor of 30 is simply
chosen so that there is a visible difference from the uniform fit.
Finally, we can ignore the first four time points (‘‘delayed’’):
oi ¼ 0 for i¼ 1, . . . ,4 and oi ¼ 1 for i¼ 5, . . . ,N.

The justification for the delayed fit is that upon endothelial
injury, PDGF diffuses through the media according to the full

diffusion–degradation equation @P̂2=@t̂ ¼D2r
2P̂2�kP̂2: Eqs.

(1) and (2) are only good approximations for times t̂ 4T where
T is the time taken for the full problem to (asymptotically) reach
its steady state. Hence time points that lie within [0, T] should be
ignored as they are not described by Eqs. (1)–(9). What is the
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for each type of fit is identical across (a), (b) and (c), taking the values 0.61 for the un
value of T? If PDGF degrades very slowly (PDGF may degrade
much more slowly than the estimated k¼0.1/h in Table 1 when it
first binds to proteoglycans in the extra-cellular matrix), then this
transient time scale can be estimated from T ¼ L2=D2 where D2 is
the PDGF diffusivity in the media and L is the media thickness:
our assumption is that SMCs start to migrate only when the
distribution of PDGF has equilibrated over the entire media. There
are some wound healing experiments (Nikolic et al., 2006) that
suggest that an entire spatially extended population of cells must
first be ‘‘primed’’ before they react to chemotactic signals. Hence
we take L to be the media thickness since the entire population of
SMCs in the media must be ‘‘primed’’ before any migration occurs.
With D1 ¼ 0:01 mm2=h and L¼1 mm, we find T � 4 days, which
agrees well with the observation that SMCs only appear in the
intima after about 4 days. This delay in migration puzzled the
authors in Jackson et al. (1993); our suggested solution is that the
period before the onset of SMC migration could be due to a PDGF
transient.

In Fig. 8(a) and (b) we fit our model with a fixed value of
y0ð0Þ. In (b), to maintain a good fit when y0ð0Þ is increased, a and
b must decrease. When we allow y0ð0Þ to be determined from
least-squares optimization (Fig. 8(c)), we generally find smaller
values of a and b and initial angles of injury y0ð0Þ that are close
to 2p.

Of the three fitting methods, we find that the delayed fit yields
the smallest residual, which supports the transient PDGF hypoth-
esis discussed above. When performing the weighted fit, the value
of a is decreased. This is expected since from Eq. (32) we know
that _Rðt¼ 0Þ is directly proportional to a: when more weight is
put on the early points, the slope at t¼0 must be smaller and the
best-fit value of a must also be smaller. Unfortunately, this
method of fitting the data generally results in a larger residual.

By fitting our model to the data, we have derived numerical
values for the chemotactic and proliferation parameters a and b.
Are these values consistent with the biological and medical
literature? Table 2 shows the values of the dimensionless para-
meters, calculated from Table 1. They are derived from separate
experimental and theoretical studies on wound healing, inflam-
mation and atherosclerosis.

If y0ð0Þ is sufficiently large (\p=2 ), our fitted and calculated
values for b are similar, suggesting that the proliferation of SMCs
in intimally thickened arteries is comparable to that in cell
culture experiments. However fitted values for a in Fig. 8 are
much smaller than those from Table 2. Many of the microscopic
parameters that define a in Table 1 are taken from studies of
PDGF chemotaxis in dermal wound healing assays. Our fitted
values are at least 1000� smaller. This suggests that although
chemotaxis is common to both wound healing and intimal
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Table 2
Dimensionless parameters for Eq. (23); values are calculated from Table 1.

Symbol Definition Approx. value/range

l1
ffiffiffiffiffiffi
k

D1

s
R̂2

3

l2
ffiffiffiffiffiffi
k

D2

s
R̂2

3

a rsv0w0NT P0

2r0R̂
2

2P1Kd

14–700

b Q0

r0P1

0.06–2

y0ð0Þ – Variable
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thickening, the response in the latter is much weaker. Athero-
sclerosis is often described as a chronic inflammatory condition.
Our analysis supports this description, with SMCs migrating much
more slowly and/or in fewer numbers compared to fibroblasts in
tissue wounds.
4. Conclusion

In this paper, we presented a model for intimal thickening
which is one of the main symptoms of atherosclerosis. The model
is a free-boundary problem for the arterial radius; the resulting
stenosis is driven by the flux of smooth muscle cells (SMCs) from
the media, their proliferation, and death. Migration and prolifera-
tion of SMCs in turn is stimulated by platelet-derived growth
factor (PDGF) which is released when the endothelium is injured.

The main strength of the model is that it only contains
5 dimensionless parameters: a (migration), b (proliferation),
y0ð0Þ (initial angle of injury), l1 and l2 which are dimensionless
diffusivities in the intima and media. Solving the model also
allows us to predict how an endothelial injury spreads over time
and how PDGF penetrates into different layers of the vessel wall.

We solved our model for a wide range of parameter values. By
analyzing the steady states of the equation, we found that a
potent mechanism for vessel stenosis was the migration of SMCs
from the media leading to further wounding of the endothelium.
With the release of more PDGF, the system undergoes positive
feedback as more SMCs migrate into the intima. The contraction
of the vessel lumen stops abruptly when the entire endothelium
is injured (y0ðtÞ ¼ 2p) in which case the stenosed vessel radius
saturates at R� R̄ ¼ y0ð0Þ=ð2pÞ.

One of the insights that our model provides is that SMC
migration is crucial to trigger the onset of intimal expansion in
certain systems. Mammals such as mice and rabbits do not
normally have pre-existing intimal populations of SMCs. There-
fore, for intimal expansion to occur, smooth muscle cells must first
migrate from the media; the elaboration of extra-cellular matrix
(ECM) and the proliferation of these cells may then cause sub-
sequent enlargement of the intima. On the other hand, humans do
have small numbers of SMCs in healthy intima and in principle,
these cells could trigger intimal thickening through mitosis.

Our analysis showed that bifurcations can occur in our model
giving rise to multiple steady states. The insight generated
through our model is that even when the system has reached a
stable stenotic state (i.e. migration and proliferation of SMCs is
exactly balanced by their death and no further expansion occurs),
there are parameter regimes where a small change in cell
migration parameters or proliferation rate may give rise to
further, sudden stenosis.

Our model makes an important prediction for intimal thicken-
ing and eroded plaques: that cell chemotaxis is much weaker than
in an acute inflammatory response (e.g. the cell density and/or
migration velocity could be much smaller). We arrived this
conclusion by fitting our model to data from the stenosed arteries
of rabbits and found that the chemotactic parameter a was
several orders of magnitude smaller than expected. It should be
noted, however, that it was difficult to pin down a precise value
for a from the literature. Because there seems to be considerable
variability in the pore distribution of the internal elastic lamina,
we found a large range of values for the migrating SMC density
and therefore a large spread in possible a values.

Although our model is successful in formalizing the main
cellular processes that occur in intimal thickening, there are
several ways that it can be improved. First, we ignored mechan-
ical stresses in our model by tacitly assuming that remodeling
occurs instantly to dissipate residual stress—the governing equa-
tion for the luminal radius was derived purely by conserving
mass. Second, in Clowes (1983), the authors found that the
number of SMCs in the intima rapidly saturated: after two weeks,
intimal thickening was caused by accumulation of connective
tissue without increase in cell number. Accounting for the
elaboration of extra-cellular matrix by intimal SMCs would be a
natural extension of our current model. Third, in Jackson et al.
(1993), the authors point out from their experiments that platelet
depletion inhibits intimal thickening by suppressing migration of
SMCs, but it does not stop their replication: there are many other
growth factors besides PDGF that are important in intimal
thickening. While we assumed the proliferation rate P0 to be a
function of the local PDGF concentration, it would almost cer-
tainly depend on other growth factors as well. Also, although we
assumed the death rate P1 to be a constant of our equation, there
is evidence to suggest that PDGF actually suppresses SMC death
(Bennett et al., 1995). Finally, in our model, the angle of injury
y0ðtÞ is coupled to the lumen radius R(t) through Eq. (22). This
relation is probably too simple; a possible extension would be to
separately derive an evolution equation for y0ðtÞ in terms of local
endothelial strain and try to describe thrombus growth more
explicitly from current models of clot formation (Guy et al., 2007).
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Appendix A. Solution to Helmholtz equation

The solution to (14)–(19) is

P1ðr,yÞ ¼
X1

m ¼ 0

½amImðl1rÞþbmKmðl1rÞ�cos my

þ½cmImðl1rÞþdmKmðl1rÞ�sin my: ð39Þ

P2ðr,yÞ ¼
X1

m ¼ 0

Kmðl2rÞ½Am sin myþBm cos my�, ð40Þ

where Imð�Þ and Kmð�Þ are modified Bessel functions of the first and
second kind. The constants cm, dm, am, bm, Am and Bm must be
determined. Condition (17) implies thatX

m

½amImðl1ÞþbmKmðl1Þ�BmKmðl2Þ�cos my

þ
X

m

½cmImðl1ÞþdmKmðl1Þ�AmKmðl2Þ�sin my¼ 0, ð41Þ
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or

amImðl1ÞþbmKmðl1Þ�BmKmðl2Þ ¼ 0, ð42Þ

cmImðl1ÞþdmKmðl1Þ�AmKmðl2Þ ¼ 0: ð43Þ

Condition (18) implies that

l2amI0mðl1Þþl2bmK 0mðl1Þ�l1BmK 0mðl2Þ ¼ 0, ð44Þ

l2cmI0mðl1Þþl2dmK 0mðl1Þ�l1AmK 0mðl2Þ ¼ 0: ð45Þ

Finally, condition (16) implies that

amImðl1RÞþbmKmðl1RÞ ¼ Gm, ð46Þ

cmImðl1RÞþdmKmðl1RÞ ¼Hm, ð47Þ

for mZ0 where

G0 ¼
1

2p

Z p

�p
f ðyÞ dy, ð48Þ

Gm ¼
1

p

Z p

�p
f ðyÞcos my dy, m40, ð49Þ

Hm ¼
1

p

Z p

�p
f ðyÞsin my dy, mZ0: ð50Þ

Therefore the 6 constants am, bm, cm, dm, Am and Bm are deter-
mined by the 6�6 system
Imðl1Þ Kmðl1Þ 0 0 �Kmðl2Þ 0

0 0 Imðl1Þ Kmðl1Þ 0 �Kmðl2Þ

Imðl1RÞ Kmðl1RÞ 0 0 0 0

0 0 Imðl1RÞ Kmðl1RÞ 0 0

l2I0mðl1Þ l2K 0mðl1Þ 0 0 �l1K 0mðl2Þ 0

0 0 l2I0mðl1Þ l2K 0mðl1Þ 0 �l1K 0mðl2Þ

2
6666666664

3
7777777775

am

bm

cm

dm

Bm

Am

2
6666666664

3
7777777775
¼

0

0

Gm

Hm

0

0

2
666666664

3
777777775

, ð51Þ
so that

amðRÞ ¼ ½l1K 0mðl2ÞKmðl1Þ�l2Kmðl2ÞKm
0
ðl1Þ�GmðRÞ=DmðRÞ, ð52Þ

bmðRÞ ¼ ½�l1K 0mðl2ÞImðl1Þþl2Kmðl2ÞI
0
mðl1Þ�GmðRÞ=DmðRÞ, ð53Þ

cmðRÞ ¼ ½l1K 0mðl2ÞKmðl1Þ�l2Kmðl2ÞK
0
mðl1Þ�Hm=DmðRÞ, ð54Þ

dmðRÞ ¼ ½�l1K 0mðl2ÞImðl1Þþl2Kmðl2ÞI
0
mðl1Þ�Hm=DmðRÞ, ð55Þ

AmðRÞ ¼ ½l2I0mðl1ÞKmðl1Þ�l2Imðl1ÞK
0
mðl1Þ�Hm=DmðRÞ, ð56Þ

BmðRÞ ¼ ½l2I0mðl1ÞKmðl1Þ�l2Imðl1ÞK
0
mðl1Þ�GmðRÞ=DmðRÞ, ð57Þ

where

DmðRÞ ¼�l1Km
0
ðl2Þ½Imðl1ÞKmðl1RÞ�Kmðl1ÞImðl1RÞ�

þl2Kmðl2Þ½I
0
mðl1ÞKmðl1RÞ�K 0mðl1ÞImðl1RÞ�: ð58Þ

Note that DmðRÞ40 if l1,240 and 0oRo1. In the special case
where

f ðyÞ ¼
1, 9y9ominðy0ðtÞ=2,pÞ, y0ðtÞ ¼ y0ð0Þ=R

0 otherwise,

(
ð59Þ

we have

Gm½RðtÞ� ¼

min
y0ð0Þ

2pRðtÞ
,1

� �
, m¼ 0,

2

mp
sin min

my0ð0Þ

2RðtÞ
,mp

� �� �
, m40,

8>>><
>>>:

ð60Þ
and

Hm ¼ 0, mZ0, ð61Þ

so that cm ¼ dm ¼ Am ¼ 0 for mZ0 and

P1ðr,yÞ ¼
X1

m ¼ 0

½amImðl1rÞþbmKmðl1rÞ�cos my, ð62Þ

P2ðr,yÞ ¼
X1

m ¼ 0

BmKmðl2rÞcos my, ð63Þ

For the snapshots in Fig. 3, 50 terms in the above expansions
were used.
Appendix B. Estimates of parameters
	
 Diffusivities D1 and D2:
It is difficult to establish definite values for PDGF diffusivities
in different regions of the vessel wall from existing literature.
However, the transport properties of the intima and media
should be different because they have different composition,
with the media having a greater density of SMCs. The diffu-
sivity of PDGF in tissue is estimated to be 0.01 mm2/h in
Haugh (2006); this value is lower than the diffusivity in
aqueous solution since PDGF is expected to be less mobile in
tissues. Also, diffusivities in normal granular and neoplastic
tissues (which have an abundance of cancer cells) are com-
pared for different solutes in Chary and Jain (1989) and
Gerlowski and Jain (1986). The smaller diffusivity of neoplastic
tissues becomes apparent only for large molecular weight
substances such as dextran (� 150 kDa) (Gerlowski and Jain,
1986), while the diffusivities of substances such as albumin
(� 70 kDa), are very similar (Chary and Jain, 1989). We there-
fore set up the problem for general D1aD2; however when
presenting results, we take D1 ¼D2 ¼ 0:01 mm2=h since PDGF
has a molecular weight of about 30 kDa.

	
 PDGF concentration P0: In Appendix C of Haugh (2006), the

author estimates the typical concentration of PDGF in a dermal
wound to be 0:1�0:2 nM. Also, in theoretical studies of wound
healing (Olsen et al., 1995), typical PDGF concentrations of
10 ng/ml are used. Since PDGF has a molecular weight of
� 30 kDa, 10 ng/ml is equivalent to a molar concentration of
0.33 nM which is in rough agreement with Haugh (2006).

	
 Pore density of internal elastic lamina rs: Smooth muscle cells

migrate into the intima through pores in the internal elastic
lamina (IEL). We can estimate the density of migrating cells by
the pore density in the IEL. In Tada and Tarbell (2000), the
authors simulate fluid flow through a regular array of circular
IEL pores. Two parameters in their IEL model are f, the pore
area fraction and d the pore diameter. The distance between
two pores is d

ffiffiffiffiffiffiffiffiffiffiffi
p=4f

p
from which we estimate the pore density

as 4f=pd2. With f ranging from 0.001 to 0.036 (Tada and
Tarbell, 2000) and d¼ 1 mm, we find rs ¼ 0:0013�0:046 mm�2.

	
 SMC proliferation rate Q0: The proliferation of rat aortic smooth

muscle cells in vitro under the effects of homocysteine is
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studied in Tsai et al. (1994). Data for cell number (per unit
area) as a function of time is shown in Fig. 4 of this paper; the
proliferation rate Q0 is estimated from the slope of these
curves.

	
 SMC death rate: P1 The apoptosis of human vascular smooth

muscle cells is studied in Bennett et al. (1995). In these
experiments, 8:771:8% or 16:872:7% of the initial SMC
population apoptosed within 24 h, depending on the serum
used to culture the cells. Assuming exponentially decaying
SMC numbers, having 83% to 91% of the initial cell population
remaining after 24 h corresponds to k ranging from
4� 10�3 to 8� 10�3 h�1. In our study we take the mean value
k¼ 6� 10�3 h�1. The authors also note that this death rate is
much larger than that of normal coronary and aortic vascular
SMCs and that PDGF generally suppresses apoptosis of SMCs
(in our model, the death rate is independent of PDGF).

	
 Chemotactic sensitivity: w0 In chapter 13.4.1 of Keener and

Sneyd (2009), the authors present a microscopic model of
leukocyte chemotaxis. For rabbit leukocytes responding to the
attractant formyl–methionyl–methionyl–methionine (FMMM),
they take w0 ¼ 2� 105 cm/receptor.
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