
Noname manuscript No.
(will be inserted by the editor)

A Linearly Fourth Order Multirate Runge-Kutta
Method with Error Control

Pak-Wing Fok

Received: date / Accepted: date

Abstract To integrate large systems of locally coupled ordinary differential equa-
tions (ODEs) with disparate timescales, we present a multirate method with error
control that is based on the Cash-Karp Runge-Kutta (RK) formula. The order
of multirate methods often depends on interpolating certain solution components
with a polynomial of sufficiently high degree. By using cubic interpolants and an-
alyzing the method applied to a simple test equation, we show that our method is
fourth order linearly accurate overall. Furthermore, the size of the region of abso-
lute stability is increased when taking many “micro-steps” within a “macro-step.”
Finally, we demonstrate our method on three simple test problems to confirm
fourth order convergence.

Keywords Multirate · Runge-Kutta · Interpolation

1 Introduction

In this paper, we present a fourth order linearly accurate multirate method with
error control, that is suited for integrating large systems of locally coupled ordinary
differential equations (ODEs) whose solutions exhibit different time scales. The
method is based on a Cash-Karp Runge-Kutta (RK) formula [16] with “latent”
and “active” components coupled together through a third order interpolant. The
latent components are assumed to be non-stiff while the active components may
or may not be stiff.

A multirate method is one that can take different step sizes for different com-
ponents of the solution [8]. When might such a need for different time steps arise?
One situation where multirate methods may be more efficient than single rate ones
is when a few of the components contain time singularities or move on short time
scales. In this case, explicit single rate methods may use a small global time step
for all the components, whereas a multirate one could employ small time steps just
for singular/fast ones, therefore improving the speed and efficiency of solution.

P.-W. Fok
412 Ewing Hall, University of Delaware, Newark, DE 19716, USA
E-mail: pakwing@udel.edu

2 Pak-Wing Fok

Multirate methods typically partition the solution into “active” and “latent”
components. The active (latent) components are integrated using “micro” (“macro”)
steps and the integrators used for the micro and macro steps do not have to be the
same; however they must be coupled together. How this coupling can be achieved
without reducing the method order is the topic of most investigations.

Early multirate schemes were studied by Andrus [1], and Gear and Wells [8].
Kvaerno and other authors [9,3,5] advocate the use of Multirate Partitioned
Runge-Kutta formulas (MPRK). The distinguishing feature of this class of meth-
ods is that macro- and micro-integrators are coupled through the intermediate
stage function evaluations. In [12], a multirate θ-method is studied; different val-
ues of θ give rise to forward Euler, backward Euler and Trapezoidal integrators
and different orders of interpolation were tried. It was found that poorly chosen
interpolants could give rise to order reduction or solution instability. Multirate
methods are often based on existing integrators. Multirate RK has already been
discussed above. However, equipped with suitable interpolants, researchers have
successfully implemented multirate versions of Rosenbrock [18,17], Adams [6] and
BDF [20] methods. Further treatments can be found in [2,13–15,21], and the ref-
erences therein.

The overall order of a multirate method usually depends on the accuracy of
interpolation. Multirate methods have generally been restricted to low order due
to difficulties in constructing suitable interpolants. However, in [17], a fourth or-
der Rosenbrock method was developed and in [4], extrapolated multirate methods
were studied. The advantage of the methods in [4] is that they are easily paral-
lelized. While the base methods are low order (either explicit or implicit Euler
along with zeroth order interpolation), they can be used to find very accurate
numerical solutions via Richardson extrapolation.

Our method shares some similarities with the MPRK methods [9,3] in the
sense that RK methods are the base schemes used to advance the solution. How-
ever, our method is 4th order whereas the authors in [9,3] investigate 2nd and
3rd order (embedded) methods. Furthermore, we use interpolation to couple the
micro- and macro-integrators. Because we can generate dense output for the latent
components, we can implement error control and adaptive time stepping in the
micro-integrator; the number of micro-steps within a macro-step is free to vary
between macro-steps. Because we use a “slowest first” strategy, adaptive time
stepping in the macro-integrator is independent of the micro-integrator and can
be implemented without additional complications. Our method also shares simi-
larities with [18] in that active components are detected by examining the error of
each component. However, in our method, automatic step size selection is simple
to implement and follows standard protocols [16].

In section 2 we give the details of the numerical method. In section 3, we inves-
tigate the order and absolute stability of our method. We discuss the important
issue of interpolation in section 4 and validate our code and present our results in
section 5. Finally, we summarize our findings with a conclusion in section 6.

2 Algorithm

The goal of our method is to efficiently solve large systems of ordinary differential
equations whose solutions evolve on very different time scales. In this paper, we

A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control 3

k1 k2

k3

k4 k6 k5

l1*

l2*

l3*

l4*

l6*

l5*

tn tn+1tn+1/4 tn+2/4 tn+3/4

latent

yn+2/4

xn+2/4
^

active

Fig. 1 Intermediate stage function evaluations and timeslabs in a Cash-Karp RK multirate
scheme with m = 4 micro-steps and tn+1 − tn = h. The kj and l∗j denote intermediate stage

function evaluations within a macro-step and micro-step respectively. Symbols with hat accents
are calcuated through interpolation.

consider systems that can be represented as

Ẋ = f0(t,X,x), (1)

ẋ = f1(t,X,x,y), (2)

ẏ = f2(t,x,y), (3)

where for integers N0, N1, N2 and N = N0 +N1 +N2, the vectors X ∈ RN0 , x ∈
RN1 , y ∈ RN2 ; f0 : (R+×RN0×RN1) 7→ RN0 , f1 : (R+×RN0×RN1×RN2) 7→ RN1

and f2 : (R+ × RN1 × RN2) 7→ RN2 . Furthermore, we assume that N0 ≫ N1, N2.
Following [9,3], we have broadly grouped our solution components into “latent”
(X, x) and “active” (y) components. The latent components X (which are the
majority of the latent components) and the active components y are decoupled:
Ẋ does not depend on y and ẏ does not depend on X. However, the evolutions of
X and y are not independent in the sense that they are indirectly coupled with
each other through a small subset of latent components x.

Systems such as (1)-(3) actually arise in many applications. For example, when
partial differential equations are discretized using the method of lines, the result
is usually a large system of locally coupled ordinary differential equations. In this
case, a small number of active solution components, y, may change on a fast time
scale while the remaining latent ones, X ∪ x, change relatively slowly. Further-
more, because the system is locally coupled, the active components only influence
(through their rate functions) a small subset of latent components, x. For our
method to be competitive, we stress that the ODE system must be locally cou-
pled (i.e. the stencil of dependence in the rate function must be localized) and
the solution must contain only a small number of active components at any given
time.

Our algorithm advances the latent components (X,x) using a single macro-
step of size h. It advances the active components y using the same time stepper
with micro-steps of smaller size. The partioning into latent and active components
will, in general, be time-dependent, i.e. the set of latent and active components
can change from macro-step to macro-step. The description of the algorithm be-
low and analysis assumes a fixed micro-step of size h/m where m is an integer.
Because both latent and active components are advanced using embedded RK,

4 Pak-Wing Fok

the extension to implement error control and adaptive time stepping, based on
estimation of the local truncation error, is straightforward [16]. Our multirate RK
algorithm to advance one macro-step is described below. The coefficients ai, bij ,
cj and c̃j are the standard Cash-Karp RK coefficients; see Table 1.

1. For an integer n, fix a time point tn and compute the intermediate stage
function evaluations for latent and active components over a macro-step of
size h:

Ki = hf0

tn + cih, Xn +

i−1∑
j=1

aijKj , xn +

i−1∑
j=1

aijkj

 , (4)

ki = hf1

tn + cih, Xn +

i−1∑
j=1

aijKj , xn +

i−1∑
j=1

aijkj , yn +

i−1∑
j=1

aijlj

 ,(5)

li = hf2

tn + cih, xn +

i−1∑
j=1

aijkj , yn +

i−1∑
j=1

aijlj

 , (6)

for i = 1, . . . , 6. In (4)-(6), Ki ∈ RN0 , ki ∈ RN1 and li ∈ RN2 .
2. Advance all latent components:

Xn+1 = Xn +
6∑

i=1

biKi (fourth order), (7)

xn+1 = xn +
6∑

i=1

biki (fourth order), (8)

X̃n+1 = Xn +
6∑

i=1

b̃iKi (fifth order), (9)

x̃n+1 = xn +
6∑

i=1

b̃iki (fifth order). (10)

Our method does not use local extrapolation, so eqs. (7) and (8) advance the
solution while (9) and (10) are used to calculate the corresponding error.

3. For ℓ ∈ {0, 1, . . . ,m− 1}, advance the active components through

yn+(ℓ+1)/m = yn+ℓ/m +
6∑

d=1

bdl
∗
d, (11)

ỹn+(ℓ+1)/m = yn+ℓ/m +
6∑

d=1

b̃dl
∗
d. (12)

4. The intermediate stage function evaluations within a micro-step are computed
through

l∗d =
h

m
f2

tn+ ℓ
m

+
cdh

m
, x̂

n+
ℓ+cd
m

, yn+ ℓ
m

+

d−1∑
j=1

adjl
∗
j

 , (13)

A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control 5

for d = 1, . . . , 6. In (13), we interpolate only the latent components that are
coupled to active components via the formula

x̂n+χ = xn + k1χ+
χ2

2

(
−8k1

3
+

25k4

6
− 3k5

2

)
+
χ3

6

(
10k1

3
− 25k4

3
+ 5k5

)
, (14)

for any 0 < χ < 1. We will derive (14) in section 4.

i ci aij bi b̃i

1 0 2825
27648

37
378

2 1
5

1
5

0 0

3 3
10

3
40

9
40

18575
48384

250
621

4 3
5

3
10

− 9
10

6
5

13525
55296

125
594

5 1 − 11
54

5
2

− 70
27

35
27

277
14336

0

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

1
4

512
1771

j = 1 2 3 4 5 6

Table 1 Table of coefficients for Cash-Karp embedded Runge-Kutta formula. The coefficients
bi and b̃i are used for fourth and fifth order formula respectively. See [16] for details.

Figure 1 summarizes the algorithm and shows the macro timesteps (indexed
by n in our algorithm) along with their intermediate stage function evaluations
(indexed by i), and m = 4 micro timesteps (indexed by ℓ) along with their interme-
diate stage function evaluations (indexed by d). For a single rate scheme with no
interpolation, the integrators (11) and (12) are fourth and fifth order respectively.
Because the multirate scheme interpolates using (14), eq. (12) actually reduces
to fourth order. However, the error can still be estimated from ||yn+(ℓ+1)/m −
ỹn+(ℓ+1)/m||. Because we are specializing to locally coupled systems, l∗d, d =
1, . . . , 6, in eq. (13) only has to be computed for N2 components and interpolation
(14) only has to be done for N1 components (recall that both N1, N2 ≪ N0).

We now discuss some technical details of our method.

Dynamic Partioning: The partitioning into latent and active components is
done by estimating the local truncation error (LTE) for each component of the
solution. Therefore the solution components labeled as X, x and y can change
from macro-step to macro-step. Components whose errors are larger than δ ×
(maximum error) (where δ ≪ 1) are flagged as active and are corrected through
a second integration using the micro-integrator (see below). In the numerical ex-
amples discussed later on, δ can range from 10−12 to 10−2. When δ = 1, there are
no active components and our method effectively reduces to a single rate method.
The remaining unflagged components are classified as latent. The flag vector –
consisting of ones (active) and zeros (latent) – is then searched to find boundary

6 Pak-Wing Fok

indices [rj , sj] for j = 1, 2, . . . , ν which define ν zones of activity. Zones of activity
may consist of just a single solution component j in which case rj = sj .

For coupled ODEs with a local stencil of size q, an odd integer, zones of activity
must be separated by at least (q − 1)/2 latent components. If active zones are
separated by fewer than (q − 1)/2 components, they are combined into a single
active zone and latent components within the zone are integrated along with the
other active components using the micro-integrator. In a pentadiagonal case with
q = 5, we have u̇j = Fj(uj−2, uj−1, uj , uj+1, uj+2) for some rate function Fj and a
single active component uj in the bulk can be integrated a second time at relatively
little cost if the two latent components on either side uj±1, uj±2 are interpolated.

In section 5, we study examples with a single zone of activity, although our
methods easily generalize to multiple zones. In this case, for a given integer P , we
may expand the zone of activity from [r, s] to [r − P, s + P] to be conservative.
(This strategy ensures that borderline active/latent components are always clas-
sified as active.) The integer P must also be chosen so that indices of interpolated
components lie between 1 and N . For example, with two interpolated components
on either size of the active zone, upon determining [r, s] we conservatively update
with r ← max(r− P, 3) and s← min(s+ P,N − 2). In the numerical examples of
section 5, we take P = 10.

Macro-Integration: After taking a trial macro-step and flagging the active
components, the algorithm checks if the unflagged errors are smaller than a preset
tolerance. If they are, the trial step is successful and the macro-step size is scaled
up according to the largest unflagged error. If there are latent components which
have error larger than the preset tolerance, the trial step is unsuccessful and has
to be retaken. In this case the macro-step size is scaled down according to the
largest unflagged error.

Micro-Integration: Although the method is described above for m micro-
steps each of size h/m, in practice we implement (11)-(13) with error control/adaptive
time stepping. The number of micro-steps in each macro-step can vary from macro-
step to macro-step and the micro-step size can also vary within a macro-step. The
micro-step size is chosen so that the accumulated errors from the m micro-steps is
less than a preset tolerance and the error from one macro-step is also controlled to
be less than this tolerance. Whether a single macro-step is taken for a latent com-
ponent, or m micro-steps are taken for an active component, the error committed
is approximately the same.

A flowchart summary of our method is given in Figure 2.

3 Consistency and Order

Analysis of Single Rate Method. We first analyze a single-rate method to introduce
notation that will feature in the multirate analysis. This section also reuses many
of the symbols in the scheme (4)-(14).

Suppose we apply a single rate Cash-Karp scheme to the system of ODEs

u̇+Mu = 0, M =

M00 M01 M02

M10 M11 M12

M20 M21 M22

 , (15)

A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control 7

Fig. 2 Flowchart description of adaptive-time stepping multirate method for the ODE system
ẏ = f(t, y). The time step tolerance is TOL and δ ≪ 1 and 0 < S < 1 are required constants.
The maximum stepsize amplification and contraction factors of 5 and 0.2 are arbitrary and
ensure that h does not change too quickly as the agorithm runs. The indices r and s define
the boundary components of the active region.

where u = (XT ,xT ,yT)T , X ∈ RN0 , x ∈ RN1 , y ∈ RN2 , and the submatrices
Mij ∈ RNi×Nj . In a single rate method, all components advance using a macro-
step of size h. Then the intermediate stage function evaluations satisfy

(I6N + hA⊗M)

K
k
l

 = −h1⊗M

Xn

xn

yn

 , (16)

where 1 = (1, 1, 1, 1, 1, 1)T , the entries of the matrix A are the aij in Table 1 and
In is the n× n identity matrix. Solving for K, k and l, we find that

L0K(h) = U00Xn + U01xn + U02yn, (17)

L1k(h) = U10Xn + U11xn + U12yn, (18)

L2l(h) = U20Xn + U21xn + U22yn, (19)

where the Li and Uij are lengthy (but known) functions of h that are defined in
the appendix. Then the fourth order scheme in Cash-Karp Runge Kutta updates
through

Xn+1 = Xn + (bT ⊗ IN0
)L−1

0 (h) [U00(h)Xn + U01(h)xn + U02(h)yn] , (20)

xn+1 = xn + (bT ⊗ IN1
)L−1

1 (h) [U10(h)Xn + U11(h)xn + U12(h)yn] , (21)

yn+1 = yn + (bT ⊗ IN2
)L−1

2 (h) [U20(h)Xn + U21(h)xn + U22(h)yn] , (22)

8 Pak-Wing Fok

while the fifth order scheme updates through a similar scheme to (20)-(22) but
with b replaced with b̃. We see that although X and y are not directly coupled
together in eqs. (1) and (3), in one step of single rate Cash-Karp Runge Kutta,
yn affects Xn+1 through (20) and Xn affects yn+1 through (22).

Multirate Analysis. We first study the fourth order multirate method given by
eqs. (7), (8) and (11). In a multirate scheme, eqs. (20) and (21) remain identical
but (22) is replaced by a scheme that takes m micro-steps of size h/m. The goal
in this section is to derive the multirate equivalent of (22). Using eq. (13), the
intermediate stage function evaluations for the active components satisfy

l∗d = −hM21

m
x̂
n+

ℓ+cd
m

− hM22

m

yn+ ℓ
m

+

d−1∑
j=1

adjl
∗
j

 , (23)

for d = 1, . . . , 6, where

x̂n+ ℓ+c
m
≡


x̂n+(ℓ+c1)/m

x̂n+(ℓ+c2)/m

...
x̂n+(ℓ+c6)/m

 ∈ R6N1 , (24)

is a vector of interpolated values for x from tn+ℓ/m to tn+(ℓ+1)/m, and c1, . . . , c6

are taken from Table 1. Taking l∗ = (l∗1
T , l∗2

T , . . . , l∗6
T)T , (23) is more compactly

written as[
I6N2

+
hA

m
⊗M22

]
l∗ = − h

m
(I6 ⊗M21)x̂n+ ℓ+c

m
− h

m
(1⊗M22)yn+ ℓ

m
. (25)

From the definition of the interpolant (14), we can use kronecker products to write
the interpolated values in (24) as

x̂n+(ℓ+c)/m = 1⊗ xn + (Ω(ℓ)⊗ IN1
)(Q⊗ IN1

)k, (26)

where

Q =


1 0 0 0 0 0

−8
3 0 0 25

6 −
3
2 0

10
3 0 0 −25

3 5 0

 , [Ω(ℓ)]ij =
1

j!

(
ℓ+ ci
m

)j

, (27)

for i = 1, . . . , 6, j = 1, 2, 3 and ℓ = 0, . . . ,m− 1.
We now analyze the micro timestepper. From eq. (11),

yn+(ℓ+1)/m = yn+ℓ/m + (bT ⊗ IN2
)l∗, (28)

= ζ1x̂n+(ℓ+c)/m + ζ2yn+ℓ/m, (29)

using eq. (25) and the matrices ζ1 ∈ RN2×6N1 and ζ2 ∈ RN2×N2 are given by

ζ1 = − h

m
(bT ⊗ IN2

)

[
I6N2

+
hA

m
⊗M22

]−1

(I6 ⊗M21), (30)

ζ2 = IN2
− h

m
(bT ⊗ IN2

)

[
I6N2

+
hA

m
⊗M22

]−1

(1⊗M22). (31)

A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control 9

Eq. (29) gives the active solution at time tn+(ℓ+1)/m in terms of the the active solu-
tion at time tn+ℓ/m and interpolated values. Implementing the micro-integration,
we iterate (29) m times and accumulate the interpolated values to obtain

yn+1 =

m−1∑
j=0

ζm−j−1
2 ζ1x̂n+(j+c)/m + ζm2 yn. (32)

Finally, we substitute for k in (26) using (18) and then substitute the resulting
expression for x̂n+(ℓ+c)/m into (32).

In summary, when we apply the multirate scheme to the linear system (15),
the solution at times tn+1 and tn are related through

un+1 = S(hM)un, (33)

where S =

S00 S01 S02

S10 S11 S12

S20 S21 S22

 and the submatrices Sij ∈ RNi×Nj are defined as

Sij = INi
δij + (bT ⊗ INi

)L−1
i Uij , i ∈ {0, 1}, j ∈ {0, 1, 2}, (34)

S20 =

m−1∑
j=0

ζm−j−1
2 ζ1(Ω(j)⊗ IN1

)(Q⊗ IN1
)L−1

1 U10, (35)

S21 =

m−1∑
j=0

ζm−j−1
2 ζ1(1⊗ IN1

)

+

m−1∑
j=0

ζm−j−1
2 ζ1(Ω(j)⊗ IN1

)(Q⊗ IN1
)L−1

1 U11, (36)

S22 = ζm2 +

m−1∑
j=0

ζm−j−1
2 ζ1(Ω(j)⊗ IN1

)(Q⊗ IN1
)L−1

1 U12, (37)

where δij is the (scalar) kronecker delta. Note that while eqs. (20)-(22) depend on
Uij , i = 1, 2, 3, j = 1, 2, 3, eqs. (34)-(37) are independent of U20, U21 and U22.

Applying the same analysis to eqs. (9), (10) and (12), we have

ũn+1 = S̃(hM)un, (38)

where S̃ =

 S̃00 S̃01 S̃02

S̃10 S̃11 S̃12

S̃20 S̃21 S̃22

 and the submatrices S̃ij have similar definitions to

(34)-(37) but with b replaced by b̃ and ζ1 and and ζ2 replaced by ζ̃1 and ζ̃2.
Matrices ζ̃1 and ζ̃2 have similar definitions to (30) and (31) but with b replaced
by b̃.

By expanding S and S̃ in Taylor series for small h, one can show that

S(hM) = IN − hM +
(hM)2

2
− (hM)3

6
+

(hM)4

24
+ Eh5 +O(h6), (39)

S̃(hM) = IN − hM +
(hM)2

2
− (hM)3

6
+

(hM)4

24
+ Ẽh5 +O(h6), (40)

10 Pak-Wing Fok

for different matrices E ∈ RN×N and Ẽ ∈ RN×N . Since (−M)ju = u(j)(t) for
j ≥ 0, eqs. (33) and (38) along with eqs. (39) and (40) imply

un+1 = u(tn) + hu′(tn) +
h2u′′(tn)

2
+

h3u′′′(tn)

6
+

h4u(4)(tn)

24
+O(h5), (41)

ũn+1 = u(tn) + hu′(tn) +
h2u′′(tn)

2
+

h3u′′′(tn)

6
+

h4u(4)(tn)

24
+O(h5), (42)

with different implied constants in the O(h5) terms.
Single rate Cash-Karp Runge-Kutta contains both fourth and fifth order in-

tegrators. However, using the interpolant (14), we see from (41) and (42) that
in the multirate scheme, both integrators are linearly 4th order accurate. Specifi-
cally, the compound step defined by applying (12) m times is linearly fourth order,
although the constants {b̃1, . . . , b̃6} are normally associated with a fifth order for-
mula. Nevertheless, we can still estimate the micro-step error by ||yn+(i+1)/m −
ỹn+(i+1)/m||∞. This is not too different than step doubling methods where the
numerical solution after two half-steps and a single whole-step also have the same
order of error. Our numerical results in Section 5 show that, in practice, this way
of estimating the error does not reduce the overall accuracy of the method.

In summary, we have shown that the method of taking one macro-step of size
h in components X and x, and taking m micro-steps of size h/m in components
y is linearly fourth order overall: the associated error is O(h5) when applied to
the simple test equation (15). Because we interpolate latent components x using
a cubic polynomial, the fifth order formula for the micro timestepper reduces to
fourth order.

Absolute Stability of Multirate Steps. To analyze absolute stability of our multirate
method, we study the matrix S in eq. (33). To simplify the analysis, we take
N0 = N1 = N2 = 1 and M00 = M01 = M10 = M02 = M20 = 0, so that

M =

 0 0 0
0 M11 M12

0 M21 M22

 , (43)

where Mij , i, j ∈ {1, 2} are scalars. Note that X(t) is constant in time and de-
coupled from x(t) and y(t). Therefore we only need to analyze a 2 × 2 system of
ODEs, and our multirate scheme reduces to(

xn+1

yn+1

)
=

(
S11 S12

S21 S22

)
︸ ︷︷ ︸

SR

(
xn

yn

)
. (44)

Given the macro-step size to micro-step size ratio m, the requirement that the
solution at time tn+1 is smaller (in norm) than the solution at time tn puts a limit
on how large the macro-step size h, and consequently, how large the micro-step
size h/m, can be: this is the condition of absolute stability. Specifically, absolute
stability requires that the spectral radius of SR is less than 1: ρ(SR) < 1.

The stiffness of the system is quantified through the ratio M22/M11 and the off-
diagonal terms M12 and M21 represent the strength of coupling between the active

A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control 11

z
22

z 11

z
12

 z
21

 = 0.1

0 5 10 15
0

1

2

3

4

5

z
22

z 11

z
12

 z
21

 = 0.4

0 5 10 15
0

1

2

3

4

5

z
22

z 11

z
12

 z
21

 = 1.0

0 5 10 15
0

1

2

3

4

5
m=1
m=2
m=10
m=50

z
22

z 11

z
12

 z
21

 = 0

0 10 20 30 40 50
0

1

2

3

4

5

m=1

m=2

m=4

m=10

m=1
m=2
m=10
m=50

m=1
m=2
m=10
m=50

(a)

(b)

(c) (d)

Fig. 3 Regions of absolute stability of the linear system (15) for different coupling strengths
z12z21, where M takes the form (43). The zij = hMij where h is the macro-step size.

and latent components. Defining zij = hMij , one can see from the definitions of
ζ1, ζ2 in (30), (31) and Li, Uij in the appendix that

L1 = I6 + z11A− z12z21A(I6 + z22A)−1A = P1(z11, z22, z12z21),
L2 = I6 + z22A− z12z21A(I6 + z11A)−1A = P2(z11, z22, z12z21),
U11 = −z111+ z12z21A(I6 + z22A)−11 = P3(z11, z22, z12z21),
U12 = −z121+ z12z22A(I6 + z22A)−11 = z12P4(z22),

ζ1 = − z21

m bT
[
I6 +

z22

m A
]−1

= z21

m P5

(
z22

m

)
,

ζ2 = 1− z22

m bT
[
I6 +

z22

m A
]−1

1 = P6

(
z22

m

)
,

(45)

for known functions Pj , j = 1, . . . , 6. Using these forms in eqs. (34)-(37), we find
that the elements of SR are

S11 = 1 + bTP−1
1 P3, (46)

S12 = z12b
TP−1

1 P4, (47)

S21 =
z21
m

m−1∑
j=0

Pm−j−1
6 P51+

z21
m

m−1∑
j=0

Pm−j−1
6 P5Ω(j)QP−1

1 P3, (48)

S22 = Pm
6 +

z12z21
m

m−1∑
j=0

Pm−j−1
6 P5Ω(j)QP−1

1 P4, (49)

where the arguments of each of the Pj have been suppressed, but are identical to
the ones in (45).

12 Pak-Wing Fok

The eigenvalues of SR depend only on its trace and determinant. From (46)-
(49) it is clear that both the trace S11+S22 and the determinant S11S22−S12S21

only depend on z11, z22 and the product z12z21, which represents the strength of
coupling between x(t) and y(t). Therefore the spectral radius of SR depends only
on z11, z22 and the product z12z21. In Fig. 3, we plot the 1-level curves of the
spectral radius to represent regions of absolute stability.

In Figure 3(a) when either of M12 or M21 are zero, we see that the regions of
absolute stability are rectangular and the width of the region is proportional to
m. When M11 = O(1) but M22 is large (but fixed), the active component decays
rapidly and the system is stiff: using a standard explicit solver would lead to insta-
bility. Figure 3(a) shows that the explicit method, in principle, can be stabilized
by using small timesteps for the rapidly decaying component and choosing m suf-
ficiently large. In Fig. 3(b)-(d), we see that for fixed coupling z12z21, increasing m
increases the size of the region of absolute stability, but the regions do not grow
indefinitely with m. Instead, as m → ∞, there appears to be a limiting stability
region. Interestingly, while increasing m mainly increases the width of the region
of absolute stability, there is also a small increase in the height: the multirate
extension can also have a stabilizing effect on the latent component. Our analysis
also suggests that there is no significant gain in stability for m & 2 when the cou-
pling between active and latent components is strong. For fixed m, increasing the
coupling strength z12z21 decreases the size of the absolute stability region. The
effect is most significant when z12z21 increases from zero: for example compare
Figs. 3(a) and (b). In this case, when z12z21 increases from 0 to 0.1 and m = 10,
the diagonal entry M22 must reduce by about 1/3 in order to retain stability for
fixed h.

4 Interpolation

The key to making a multirate method high order is in generating dense output
from latent components with high accuracy. One way to do this is through inter-
polation.1 For some integrators it is obvious how to derive an interpolant that is
consistent with the underlying integrator. The Backward Differentiation Formulas
(BDF), which use extrapolation from prior time steps to advance the solution in
time, are an example of this. Interpolants for Runge-Kutta methods are discussed
in [10].

We hypothesize that when the micro-integrator is explicit, interpolating the
latent components using an (n − 1) order interpolant coupled to an integrator
which is order n gives a multirate method that is order n overall. Certainly, we
found that this is the case for the Cash-Karp method discussed in this paper
(n = 4). One can also show that Heun’s method (second order Runge Kutta)
together with linear interpolation gives a second order multirate method.

In [12], the authors found that using linear interpolation reduced the order
of a multirate (implicit) trapezoidal rule. However, the active components were
fixed a priori, and so were the interpolated components. We think that the choice

1 We use the word “interpolation” to describe a method to construct a smooth approximation
to the numerical solution between two times tn and tn+1. However, the function that we derive
does not pass through the numerical solution at tn+1. Strictly speaking, it is not an interpolant.
Nevertheless, we still refer to these approximating functions as “interpolants.”

A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control 13

of which components to interpolate is important. We advocate that interpolation
should be done for solution components that are “sufficiently slow,” though it is
not clear how to quantify this statement at present. What is clear is that the in-
terpolant (14) (or any high order interpolant) could still give large interpolation
errors that would contaminate the accuracy of the micro-integrator if x(t) had
large derivatives.

Derivation of interpolants. We now illustrate how interpolants can be con-
structed during run-time for the Cash-Karp Runge-Kutta formula [16]. Our main
result is the third order interpolant (14) which we believe is new. Suppose we have
the simple scalar ODE ẏ = f(t, y). Then to construct a third order interpolant,
note that for 0 ≤ χ ≤ 1,

y(tn + χh) = yn + χhy′n +
(χh)2

2
y′′n +

(χh)3

6
y′′′n +O(h4). (50)

By repeatedly differentiating the ODE y′n = f(tn, yn), we have y
′
n = G0, y

′′
n = G1,

y′′′n = G2 + G3, where G0 = fn, G1 = fnf
′
n + ḟn, G2 = f2

nf
′′
n + 2fnḟ

′
n + f̈n and

G3 = fnf
′
n
2
+ f ′

nḟn. Our convention is to use a dash for a y-derivative and a dot
for a t-derivative: f ′

n = ∂f(tn,yn)
∂y and ḟn = ∂f(tn,yn)

∂t . Therefore, (50) becomes

y(tn + χh) = yn + χhG0 +
(χh)2

2
G1 +

(χh)3

6
(G2 +G3) +O(h4). (51)

Using definitions ki = hf(tn + cih, yn +
∑i−1

j=1 aijkj) and expanding in Taylor
series, we have

k1 = hG0,

k2 = hG0 +
h2

5
G1 +

h3

50
G2 +O(h4),

k3 = hG0 +
3h2

10
G1 +

9h3

200
(G2 +G3) +O(h4),

k4 = hG0 +
3h2

5
G1 +

9h3

50
(G2 +G3) +O(h4),

k5 = hG0 + h2G1 +
h3

2
(G2 +G3) +O(h4),

k6 = hG0 +
7h2

8
G1 +

49h3

128
(G2 +G3) +O(h4).

(52)

Taking only the equations for k1, k4 and k5, we form a linear system in terms of
G0, G1 and G2 +G3:h 0 0

h 3h2

5
9h3

50

h h2 h3

2

 G0

G1

G2 +G3

 =

k1
k4
k5

 . (53)

Upon solving for G0, G1 and G2 +G3 and substituting into (51), we find

y(tn + χh) = yn + χk1 +
χ2

2

(
−8

3
k1 +

25

6
k4 −

3

2
k5

)
+
χ3

6

(
10

3
k1 −

25

3
k4 + 5k5

)
+O(h4). (54)

14 Pak-Wing Fok

A similar calculation can be performed for classical 4th order Runge-Kutta for-
mulas and other embedded formulas (e.g. Dormand-Prince) to generate cubic in-
terpolants. Unfortunately, this method fails when quartic (or higher order) in-
terpolants are required. When we increase the accuracy of (51) to O(h5), the
analogous matrix in eq. (53) is singular for all the RK formulas that we analyzed
(Dormand-Prince, Cash-Karp, Fehlberg). However, quartic and higher order in-
terpolants can be constructed if one includes more intermediate stage function
evaluations in the Runge-Kutta formula [19].

5 Validation and Results

We now test our method on some large ODE systems that arise from a method-
of-lines discretization of some common physical PDEs. Our examples also follow
the sample problems that were explored in [12,18]. We use these simple test prob-
lems to illustrate proof of principle and demonstrate 4th order convergence of the
method. Matlab codes used to generate the results in this section can be found on
the author’s homepage.

Example 1: Transport Equation. The problem considered is a method-of-lines
discretization of ∂y

∂t + U ∂y
∂x = 0, y(x, 0) = exp(−x2), on the infinite domain

−∞ < x <∞. For U > 0 we use an upwind discretization

ẏ1(t) = 0, (55)

ẏi(t) = −
U

∆x
(yi − yi−1), i = 2, 3, . . . , N, (56)

with xi = −L+ (i− 1)∆x, ∆x = 2L/(N − 1) and yi(0) = exp(−x2
i), i = 1, . . . , N

is the initial condition. The numerical domain for eqs. (55)-(56) is [−L,L]. Fig-
ure 4 shows the result of applying our multirate integration method to (55)-(56).
The method flags components of the solution that move on a fast time scale, cor-
responding to regions in space which are perturbed by the travelling wave, and
the flag “footprint” [r, s] generally follows the traveling wave. The upwind dis-
cretization has a truncation error that corresponds to a diffusion term which is
responsible for the spreading of the initial condition. This diffusion also ensures
that the number of flagged components increases as time progresses.

Example 2: Reaction-Diffusion equation. We now consider a discretization of the

reaction-diffusion system ∂y
∂t = ε∂2y

∂x2 +γy2(1−y), y(x, 0) = (1 + exp[λ(x− 1)])−1,

with λ = 1
2

√
2γ/ε, which admits a travelling wave solution. A centered-in-space

discretization gives

ẏ1(t) = 0, (57)

ẏi(t) =
ε

∆x2
(yi+1 − 2yi + yi−1) + γy2i (1− yi), i = 2, 3, . . . , N − 1, (58)

ẏN (t) = 0, (59)

with xi = (i − 1)∆x, ∆x = L/(N − 1) and yi(0) = (1 + exp[λ(xi − 1)])−1, i =
1, . . . , N is the initial condition. The numerical domain of solution is [0, L]. Figure
5 shows the results of applying our multirate integration method to the nonlinear

A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control 15

x

-20 -10 0 10 20

y
(x
,
t)

0

0.5

1
t = 0.06, r = 154, s = 252, error = 6.46e-11, numsteps=2

nz = 79
0 100 200 300 400

Flagged components

x

-20 -10 0 10 20

y
(x
,
t)

0

0.5

1
t = 2.28, r = 145, s = 274, error = 7.97e-07, numsteps=5

nz = 98
0 100 200 300 400

Flagged components

x

-20 -10 0 10 20

y
(x
,
t)

0

0.5

1
t = 3.28, r = 169, s = 290, error = 1.03e-06, numsteps=6

nz = 102
0 100 200 300 400

Flagged components

x

-20 -10 0 10 20

y
(x
,
t)

0

0.5

1
t = 7.00, r = 198, s = 351, error = 1.52e-06, numsteps=10

nz = 122
0 100 200 300 400

Flagged components

Fig. 4 Multirate integration of discretized transport equation (55)-(56). Indices of flagged
components are indicated on a lattice below each profile. numsteps is the number of macro-
steps taken; nz is the number of flagged components. Parameters were L = 20, N = 401,
∆x = 0.1, TOL = 10−6, δ = 10−4, U = 1.

ODE system (57)-(59). As with example 1, because the disturbance is localized in
space, our method generally flags the components i that have large ẏi while leaving
the remaining components unflagged. The value of δ = 10−2 used here is large
enough so that the number of flagged components is relatively small and flagged
components correspond to x in the PDE where ∂y

∂x is large. For this example, we
found that the flag footprint [r, s] was very sensitive to δ: when δ was decreased,
nz rapidly increased and the algorithm flagged many quiescent components where
yi ≈ 0 or yi ≈ 1.

Example 3: Advection-Diffusion Equation. As a third example, we consider a dis-

cretization of a forced advection-diffusion equation ∂y
∂t +a∂y

∂x = d∂2y
∂x2 −cy+g(x, t),

g(x, t) = 1000 [cos(πx/2)]200 sin(πt), y(x, 0) = 0, on −1 ≤ x ≤ 1. We use a fourth
order spatial discretization that results in a broader stencil and a pentadiagonal

16 Pak-Wing Fok

x

0 0.5 1 1.5 2 2.5 3 3.5

y
(x
,
t)

0

0.5

1
t = 0.01, r = 100, s = 130, error = 1.88e-08, numsteps=3

nz = 11
0 100 200 300 400

Flagged components

x

0 0.5 1 1.5 2 2.5 3 3.5

y
(x
,
t)

0

0.5

1
t = 0.21, r = 117, s = 147, error = 1.76e-08, numsteps=32

nz = 10
0 100 200 300 400

Flagged components

x

0 0.5 1 1.5 2 2.5 3 3.5

y
(x
,
t)

0

0.5

1
t = 0.30, r = 123, s = 155, error = 3.32e-08, numsteps=46

nz = 12
0 100 200 300 400

Flagged components

x

0 0.5 1 1.5 2 2.5 3 3.5

y
(x
,
t)

0

0.5

1
t = 0.50, r = 139, s = 171, error = 6.15e-08, numsteps=75

nz = 12
0 100 200 300 400

Flagged components

Fig. 5 Multirate integration of reaction-diffusion equation (57)-(59). See caption of Fig. 4
for explanation of numsteps and nz. Parameters were L = 3.5, N = 401, ∆x = 8.75 × 10−3,
TOL = 10−8, δ = 10−2, ε = 0.01, γ = 100.

system of ODEs:

ẏ1(t) = 0, (60)

ẏ2(t) = 0, (61)

ẏi(t) = −
a(−yi+2 + 8yi+1 − 8yi−1 + yi−2)

12∆x
+

d(−yi+2 + 16yi+1 − 30yi + 16yi−1 − yi−2)

12∆x2
− cyi + g(xi, t), (62)

i = 3, 4, . . . , N − 2,

ẏN−1(t) = 0, (63)

ẏN (t) = 0, (64)

with xi = −1 + (i − 1)/∆x and ∆x = 2/(N − 1) and yi(0) = 0, i = 1, 2, . . . , N
is the initial condition. Figure 6 shows the results of our method applied to the
system (60)-(64), which are more mixed. On the one hand, the number of flagged
components in this problem rapidly increases in time. At the end of the integration
for t = 0.80, most of all N = 401 components are flagged even though the solution
is localized in a small region of x. On the other hand, even though the system
(60)-(64) is stiff, our method is able to complete the integration in 9 macro-steps
even though it is based on explicit Runge-Kutta formulas. (In contrast, a single
rate method takes many more macro-steps; see below.)

Next, we perform a convergence study to demonstrate that cubic interpolants
coupling the macro and micro integrators together give a fourth order method.

A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control 17

x

-1 -0.5 0 0.5 1

y
(x
,
t)

0

5

t = 0.03, r = 144, s = 277, error = 1.22e-06, numsteps=2

nz = 111
0 100 200 300 400

Flagged components

x

-1 -0.5 0 0.5 1

y
(x
,
t)

0

5

t = 0.08, r = 122, s = 296, error = 1.61e-05, numsteps=3

nz = 144
0 100 200 300 400

Flagged components

x

-1 -0.5 0 0.5 1

y
(x
,
t)

0

5

t = 0.35, r = 89, s = 362, error = 2.20e-05, numsteps=7

nz = 197
0 100 200 300 400

Flagged components

x

-1 -0.5 0 0.5 1

y
(x
,
t)

0

5

t = 0.80, r = 52, s = 399, error = 4.00e-05, numsteps=9

nz = 278
0 100 200 300 400

Flagged components

Fig. 6 Multirate integration of advection-diffusion equation (60)-(64). See caption of Fig. 4
for explanation of numsteps and nz. Parameters were L = 1, N = 401, ∆x = 5 × 10−3,
TOL = 10−5, δ = 10−5, a = 5, d = 0.01, c = 100.

For this error analysis, we implement our method in fixed timestep mode: h is
constant throughout the integration and we take m = 10. We also fix the values of
r and s so that the same components are treated as active throughout the whole
course of the integration and the error is only computed for components r to s.
The “exact” solution is found as a superposition of normal modes (with eigen-
vectors and eigenvalues determined numerically) in the transport equation and is
computed using MATLAB’s ODE solvers, set to a suitably stringent tolerance, for
the reaction-diffusion and advection-diffusion equations. Figure 7 confirms fourth
order convergence in terms of the infinity norm of the error.

Finally, it is instructive to compare single rate and multirate methods. Ideally,
for a given macro-step tolerance, we would like our multirate method to take fewer
macro-steps than a single rate method, but incur roughly the same error at the
end of the integration (in a single rate method, the normal time step is considered
the macro-step and there are no micro-steps). We compare the number of steps
taken and the errors incurred for all three test problems in Table 2.

Our multirate method always takes fewer macro-steps than the single rate
method. For all three systems of equations, the global error incurred is roughly the
same whether we use a single rate or multirate method. These results are largely
independent of TOL and δ. For much smaller TOL we did find that the multirate
error could be a few orders of magnitude smaller than the single rate error. The
implication is that the step size used by the micro-integrator is too small. In this
case, it is desirable to find a way to increase the size of the micro-steps to give a
more efficient multirate method.

18 Pak-Wing Fok

h

10-2 10-1 100

In
fi

ni
ty

 N
or

m
 E

rr
or

10-16

10-14

10-12

10-10

10-8
Transport

h

10-4 10-3 10-2

In
fi

ni
ty

 N
or

m
 E

rr
or

10-14

10-12

10-10

10-8
Reaction-Diffusion

h

10-4 10-3 10-2

In
fi

ni
ty

 N
or

m
 E

rr
or

10-12

10-11

10-10

10-9

10-8

10-7

10-6
Advection-Diffusion

(b) (c)(a)

Fig. 7 Convergence of Cash-Karp multirate method in fixed timestep mode, applied to each
of the three examples above with TOL = 10−6 and δ = 10−12. Here h is the size of the
macro-step and there are m = 10 micro-steps per macro-step. Solid lines have slope 4. The
active components are [r, s] = [186, 216], [93, 139], [201, 241] for (a), (b) and (c) respectively
with N = 401 equations in each case, corresponding to the active components lying in −1.5 ≤
x ≤ 1.5, 0.805 ≤ x ≤ 1.2075 and 0 ≤ x ≤ 0.2. The final integration times were T = 7 for (a),
T = 0.5 for (b) and T = 0.8 for (c).

Equation # macro-steps (error) # macro-steps/# micro-steps (error)

Transport 30 (9.00× 10−5) 10/40 (6.03× 10−5)
Reaction-Diffusion 74 (2.14× 10−5) 21/144 (4.50× 10−7)
Advection-Diffusion 409 (1.11× 10−5) 5/420 (7.95× 10−6)

Table 2 Comparison of single rate (second column) and multirate (third column) integration
methods in terms of number of steps taken and error incurred. Error was measured using the
infinity norm and the code parameters were TOL = 10−4 and δ = 10−12. The initial step sizes
for the transport, reaction-diffusion and advection-diffusion equations were∆t = 10−2, 5×10−4

and 5× 10−3 for both single and multirate methods.

6 Conclusions

In this paper, we presented a fourth order linearly accurate multirate method. The
method is based on embedded Runge-Kutta (RK) formulas and is explicit in time.
The main strength of the method is its high order; we showed in this paper that
only third order interpolants are needed for a fourth order solver. Our algorithm
generates these interpolants by using the intermediate stage function evaluations
of an embedded RK formula. We tested our method on three simple problems and
performed a convergence study to confirm the method order.

We see three main extensions to this work. The first is to understand mathe-
matically the spread of the active components in time. Generally, we found that
our method is effective when the solutions are wave-like and disturbances are lo-
calized in index-space, but not so competitive when they are diffusive (compare
Figures 4 and 5 with Figure 6). We would like the number of flagged components
to remain small relative to the total number of components, throughout the course
of the integration (in the extreme case when r = 1 and s = N , all components are
being integrated twice and one should revert to a single rate method). However

A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control 19

in practice this can be difficult to achieve and the fraction of flagged components
seems to be sensitive to δ and the governing system of equations.

The second is to extend our method to other RK formulas. The interpolant used
in our method is derived from a Taylor series at tn and its order stems from deriva-
tive information at tn which in turn comes from intermediate stage function evalu-
ations. However, there are many other methods available to build interpolants and
this is mature area of research: for example, see the techniques discussed in [10].
The control of interpolation errors and how to to choose the interpolating compo-
nents should remain active areas of study within the field of multirate integration.

Finally, there is the issue of how to choose the parameter δ. In our method, a
smaller δ results in more components being flagged as active. Although this may
seem wasteful, latent components are able to advance with a larger timestep. Con-
versely, a larger δ results in fewer components being flagged as active, but latent
components have to advance with a smaller timestep. It is not clear at present
which value of δ results in an efficient multirate method, or how to determine
good macro-step and micro-step sizes from the governing system of equations.

In summary, this work contributes to the currently growing body of research
in multirate methods. We hope that the strategies presented in this paper can
be extended to the numerical solution of other physical problems and be used to
improve the efficiency and accuracy of other multirate algorithms.

Acknowledgements: The author thanks R. R. Rosales who stimulated the
author’s interest in multirate methods and proposed the derivation of cubic inter-
polants.

A Matrix Definitions

Here we given the definitions of the matrices in eqs. (17)-(19).

L0 = I6N0 + h(A⊗M00)− h2(A⊗M01) [Σ2(M,hA)]−1 (A⊗M10),

L1 = −I6N1 − h(A⊗M11) +Σ0(M,hA) +Σ2(M,hA),

L2 = I6N2
+ h(A⊗M22)− h2(A⊗M21) [Σ0(M,hA)]−1 (A⊗M12),

U00 = −h(1⊗M00) + h2(A⊗M01) [Σ2(M,hA)]−1 (1⊗M10),

U01 = −h(1⊗M01) + h2(A⊗M01) [Σ2(M,hA)]−1 (1⊗M11)

−h3(A⊗M01) [Σ2(M,hA)]−1 (A⊗M12)(I6N2 + hA⊗M22)
−1(1⊗M21),

U02 = h2(A⊗M01) [Σ2(M,hA)]−1 (1⊗M12)

−h3(A⊗M01) [Σ2(M,hA)]−1 (A⊗M12)(I6N2 + hA⊗M22)
−1(1⊗M22),

U10 = −h(1⊗M10) + h2(A⊗M10)(I6N0 + hA⊗M00)
−1(1⊗M00),

U11 = −h(1⊗M11) + h2(A⊗M10)(I6N0 + hA⊗M00)
−1(1⊗M01)

+h2(A⊗M12)(I6N2 + hA⊗M22)
−1(1⊗M21),

U12 = −h(1⊗M12) + h2(A⊗M12)(I6N2 + hA⊗M22)
−1(1⊗M22).

20 Pak-Wing Fok

U20 = h2(A⊗M21) [Σ0(M,hA)]−1 (1⊗M10)

−h3(A⊗M21) [Σ0(M,hA)]−1 (A⊗M10)(I6N0 + hA⊗M00)
−1(1⊗M00),

U21 = −h(1⊗M21) + h2(A⊗M21) [Σ0(M,hA)]−1 (1⊗M11)

−h3(A⊗M21) [Σ0(M,hA)]−1 (A⊗M10)(I6N0 + hA⊗M00)
−1(1⊗M01),

U22 = −h(1⊗M22) + h2(A⊗M21) [Σ0(M,hA)]−1 (1⊗M12)

where for matrices Z and M =

M00 M01 M02

M10 M11 M12

M20 M21 M22

, we define

Σ0(M,Z) = I6N1 + (Z ⊗M11)− (Z ⊗M10)(I6N0 + Z ⊗M00)
−1(Z ⊗M01),

Σ2(M,Z) = I6N1 + (Z ⊗M11)− (Z ⊗M12)(I6N2 + Z ⊗M22)
−1(Z ⊗M21).

References

1. J. F. Andrus. Numerical solution of systems of ordinary differential equations separated
into subsystems. SIAM J. Numer. Anal., 16: 605-611, 1979.

2. A. Bartel and M. Günther. A multirate W-method for electrical networks in state-space
formulation. J. Comp. Appl. Math., 147(2):411–425, 2002.

3. A. Bartel, M. Günther and A. Kvaerno. Multirate methods in electrical circuit simulation.
Progress in Industrial Mathematics at ECMI 2000, 258-265, 2000.

4. E. M. Constantinescu and Adrian Sandu. Extrapolated multirate methods for differential
equations with multiple time scales, Journal of Scientific Computing, 2012.

5. E. M. Constantinescu and Adrian Sandu. Multirate Timestepping Methods for Hyperbolic
Conservation Laws Journal of Scientific Computing, 33: 239–278, 2007.

6. E. M. Constantinescu and Adrian Sandu. Multirate Explicit Adams Methods for Time
Integration Journal of Scientific Computing, 38: 229–249, 2009.

7. W. H. Enright, K. R. Jackson, S. P. Nørsett, and P. G. Thomsen. Interpolants for Runge-
Kutta formulas. ACM Trans. Math. Softw., 12(3):193–218, 1986.

8. C. W. Gear and D. R. Wells. Multirate linear multistep methods. BIT, 24:484–502, 1984.
9. M. Günther, A. Kværnø, and P. Rentrop. Multirate partitioned Runge-Kutta methods.

BIT, 41(3):504–514, 2001.
10. E. Hairer and S.P. Norsett and G. Wanner. Solving Ordinary Differential Equations I:

Nonstiff Problems. Springer Series in Computational Mathematics, 1987
11. M. K. Horn. Fourth and fifth order, scaled Runge-Kutta algorithms for treating dense

output. SIAM J. Numer. Anal., 20(3):558–568, 1983.
12. W. Hundsdorfer and V. Savcenco. Analysis of a multirate theta-method for stiff ODEs.

Applied Numerical Mathematics, 59:693–706, 2009.
13. T. Kato and T. Kataoka. Circuit analysis by a new multirate method. Electr. Eng. Jpn.,

126(4):1623–1628, 1999.
14. A. Logg. Multi-adaptive time integration. Appl. Numer. Math., 48:339–354, 2004.
15. J. Makino and S. Aarseth. On a Hermite integrator with Ahmad-Cohen scheme for grav-

itational many-body problems. Publ. Astron. Soc. Japan, 44:141–151, 1992.
16. W. H. Press, S. A. Teukolsky, W. V. Vetterling, and B. P. Flannery. Numerical Recipes in

C: The Art of Scientific Computing. Cambridge University Press, second edition, 1992.
17. V. Savcenco. Construction of a multirate RODAS method for stiff ODEs Journal Comp.

Appl. Math., 225: 323-337, 2009.
18. V. Savcenco, W. Hundsdorfer, and J. G. Verwer. A multirate time stepping strategy for

stiff ordinary differential equations. BIT, 47:137–155, 2007.
19. L. F. Shampine. Some Practical Runge-Kutta Formulas Mathematics of Computation,

173: 135-150, 1986.
20. S. Skelboe. Stability properties of backward differentiation multirate formulas. Appl.

Numer. Math., 5: 151-160, 1989.
21. J. Waltz, G. L. Page, S. D. Milder, J. Wallin, and A. Antunes. A performance comparison

of tree data structures for N -body simulation. J. Comp. Phys., 178:1–14, 2002.

