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Abstract

The mechanisms employed by blood vessels in order to adapt to their hemodynamic
environment are important for our general understanding of disease and development.
Changes in arterial geometry are generally induced by two effects: vasodilation and/or
constriction; and growth and remodeling (“G&R”). The first can occur over short
periods of a few minutes, while the second usually occurs over timescales of weeks
or months. The free radical Nitric oxide (NO) is one of the few biological signaling
molecules that is gaseous. When smooth muscle cells internalize NO, they lengthen and
ultimately induce a relaxation of the artery. Platelet-Derived Growth Factor (PDGF)
is a growth factor released by smooth muscle cells and platelets that regulates cell
growth and division.

In this paper we present a single-layered, axisymmetric hyperelastic model for a
deforming, growing artery in which the opening angle is regulated by NO and growth
is induced by PDGF. Our model describes vasodilation and G&R in a long cylindrical
artery regulated by a steady-state Poiseuille flow. The transport of NO released by
the endothelium is governed by a diffusion equation with a shear-stress dependent flux
boundary condition. Arterial opening angle is assumed to be a Hill function of the
wall-averaged NO concentration. We find that both growth and NO help to regulate
shear stress with respect to the flow rate, but regulation through growth occurs only
at large times. In contrast, regulation through NO is immediate but can only occur as
long as the opening angle is able to continually decrease as a function of flow rate. Our
model is calibrated using experimental data from ligated, control, and anastomosed
carotid arteries of adult and weanling rabbits. Our results generate shear stress/flow
rate and lumen radius/flow rate curves that agree with experimental data from control
and NO-inhibited rabbit carotid arteries.

1 Introduction

The mechanisms employed by blood vessels in order to adapt to their hemodynamic envi-
ronment are important for our understanding of cardiac organogenesis (Lindsey et al., 2014)
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as well as cardiovascular (Davies, 2009; Ramachandra et al., 2017), ocular (Harris et al.,
2013) and even certain cerebral (de la Torre, 2012) diseases. Changes in arterial geometry
are broadly induced by two effects: vasodilation/constriction, and growth and remodeling
(“G&R”). The first can occur over short periods of a few minutes, while the second usually
occurs over timescales of weeks or months. Acute vasodilation/contraction results in a rapid
change in vascular tone associated with the contractility of smooth muscle cells (SMCs).
These changes can usually be reversed (e.g., by applying vasodilators topically), thereby
restoring the vessel to its original size. On the other hand, chronic G&R results in per-
manent or structural changes in vessel morphology which cannot normally be reversed by
vasodilators.

Animal experiments such as those of Tronc et al. (1996), and Langille et al. (1989) suggest
that medial growth plays a crucial role in experiments where changes in flow do not damage
the vessel wall (in contrast, the adventitia plays a more active role when the wall is damaged
(Humphrey, 2013)). There are two main ways of altering the flow conditions of arteries
in-vivo. Anastomoses surgically connect a nearby vessel to the vessel under study, thereby
increasing the blood flow rate. Ligations restrict the flow upstream of the studied vessel,
thereby decreasing the flow rate. These flow alteration experiments show that reducing the
flow over a long period of time leads to a smaller vessel cross section, with a decreased
lumen area. Conversely, an augmented flow gives rise to a larger vessel cross section, with
an increased lumen area.

One way to quickly understand these changes in vessel caliber is to assume that the vessel
wall adapts in order to maintain a constant shear stress (Struijk et al., 2005). The Poiseuille
relation for laminar flow through an infinitely long, cylindrical tube is

τ =
4µQ

πb3
, (1)

where τ is shear stress, Q is flow rate, b is lumen radius and µ is the dynamic viscosity
of blood. If the vessel adapts to regulate shear stress (i.e. it changes shape to keep shear
stress constant) then b ∝ Q1/3: lumen size increases with flow rate as illustrated by the blue
curves in Figure 1. These changes only occur if the flow alterations are sustained over a long
time (6-8 months for canine carotid arteries). If the vessel does not adapt, then the artery
behaves like a stiff, inert tube with b = constant and τ ∝ Q, as illustrated by the red curves
in Fig. 1. This “no regulation” limit usually occurs when the vessel does not have sufficient
time to grow and remodel, with observations made only a few days into the experiment.
When observations are made after a week, the behavior seems to interpolate between the
two limiting cases (green markers). Interestingly, there appears to be a breakdown of the
b ∝ Q1/3 scaling for large flow rates even after 6-8 months. According to Kamiya and
Togawa (1980), this could be because the artery was unable to grow to the required size
within the given timeframe, or it developed pathologies for large flow rates that interfered
with adaptation.

While eq. (1) heuristically predicts changes in lumen size when flow conditions are altered,
it does not explain morphological changes in terms of underlying biomechanics, which has
been the subject of many articles such as Rachev (1997), Alford et al. (2008), Gleason et al.
(2004), Mousavi et al. (2019), and Ramachandra et al. (2017). One popular way to describe
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Figure 1: Experimental data for canine carotid arteries showing changes in lumen radius and
shear stress as a function of flow rate. Arteries behave in the “no regulation” regime for early
times (3 days) and “shear stress regulated” regime for later times (6-8 months). Adapted
from Kamiya and Togawa (1980).

how arteries adapt to their hemodynamical environment is through constrained mixture
models (Valentin and Humphrey, 2009; Karšaj and Humphrey, 2012). These models assume
that the vessel wall is a mix of components such as elastin, collagen and smooth muscle
cells, and a total strain energy is formulated as a convex combination of the energies of the
individual components. The strength of these models is that they can account for individual
turnover of each component as G&R occurs and give detailed information about arterial
geometry and internal stresses at any desired time point. However, in most of these models,
a homeostatic shear stress is provided as a known input. By construction, the arteries grow
and remodel towards their target homeostatic shear stresses.

In this paper we present a single-layered model for a growing artery in which hemodynamic
shear stress affects the flux and distribution of Nitric Oxide (NO) in the arterial wall. The
single layer represents the media, which is assumed to be an anisotropic hyperelastic material.
Anisotropy arises because of the presence of embedded collagen fibers. We incorporate the
effect of NO by changing the opening angle ω of the medial layer and account for the effects
of Platelet Derived Growth Factor (PDGF) by associating the media with a growth tensor
Fg: see Fig. 2. The production of NO is regulated by wall shear stress which is generated by
a steady-state Poiseuille flow in the lumen. Growth is described using the “morphoelasticity”
framework, decomposing the deformation gradient into a product of a growth tensor and an
elastic response (Rodriguez et al., 1994; Goriely, 2017), and the effect of PDGF is modeled
indirectly by assuming an algebraic relationship between the growth tensor and flow rate. In
contrast to mixture models, the homeostatic shear stress is a product of our model, rather
than an input.

The endothelium acts as a mechano-sensor of shear stress: by releasing signaling factors
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Figure 2: Effect of NO and PDGF on vasomotion and growth and remodeling (G&R). A
greater shear stress induces more rapid release of NO which relaxes the artery. A larger flow
rate induces more PDGF to be released from SMCs which promotes cell proliferation and
growth.

such as VEGF, eNOS and PDGF into the vessel wall, endothelial cells influence the behavior
of smooth muscle cells, effectively acting as mediators of vessel tone and geometry. By
accounting for how these signaling factors are transported and distributed, and by making
some assumptions about how SMCs proliferate and contract in response to these signals, we
find that the regulation of shear stress is a mathematical consequence of the model, with
the homeostatic shear stress depending on biophysical factors such as rate of medial growth,
axial stretch, and lumen pressure.

This paper is organized as follows: in section 2 we derive and present the governing
equations for an artery undergoing axisymmetric deformations. The equations are standard
and can be skipped by readers familiar with hyperelasticity theory, but the inclusion of
NO-mediated relaxation in section 2.2.4 is new, to the author’s knowledge. In addition, in
section 2.2.5 we show that our growth model admits an exact solution that produces the
characteristic Q1/3 scaling seen in experiments. In section 3 we determine the parameters
of our model and explore how shear stresses are regulated for the cases of pure growth,
pure vasodilation, and joint growth and vasodilation by making connections to published
experimental data. We end with a conclusion in section 4.

2 Governing Equations

2.1 Assumptions of the Model

We focus on modeling the media since it is the layer that is mainly responsible for actively
regulating the artery (Humphrey, 2013), and its dimensions are directly measured in experi-
ments. The mechanical properties of the adventitia can be included but we do not model the
outer layer in this paper. Including the adventitia significantly complicates the model since
both the media and adventitia in their separated, unstressed reference configurations would
have their own opening angles. We ignore the intima because in flow-alteration experiments,
there is insignificant intimal growth. Therefore we are primarily concerned with the lumen-
media interface and the outer boundary of the media. These interfaces are described by two
radii b and c.
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Figure 3: A stress-free arterial segment (a) is mapped to a residually-stressed arterial cross-
section (b). The lumen in (b) may be pressurized. The angles ω and Θ0 are related by
ω = 2π − 2Θ0. A uniform stretch Λ is applied in the axial direction.

A deformation takes the segment parameterized by (R,Θ, Z) to a full annulus parame-
terized by (r, θ, z): see Fig. 3. We assume an axisymmetric deformation

r = r(R), B ≤ R ≤ C, (2)

θ =
πΘ

Θ0(〈u〉)
, 0 ≤ Θ ≤ 2Θ0, (3)

z = ΛZ, −∞ ≤ Z ≤ ∞, (4)

with corresponding opening angle ω ≡ 2π − 2Θ0(〈u〉). To be consistent with axisymmet-
ric deformations, the pressure along the artery must be constant with respect to z. This
is obviously a simplification but within the framework of 2D models, it is quite standard
(Humphrey, 2013). Classical studies on human femoral arteries have reported a mean pres-
sure drop of about 5 mmHg per 60 cm of axial length (Raines et al., 1974) so the assumption
of constant lumen pressure is not unreasonable. All quantities will ultimately depend on
time t when growth is introduced, but for simplicity we omit the dependence on t in the
model derivation.

We now discuss our main modeling assumptions.

1. Opening angle depends on wall-averaged concentration of NO. Experiments on rat aor-
tas suggest that the opening angle can depend on vasoactive agents (e.g. see Fig. 2
of Matsumoto et al. (1996)). As a simplification, we assume that the opening angle of
the vessel wall depends on the wall-averaged concentration of these agents:

〈u〉 =
2

c2 − b2

∫ c

b

u(r)rdr.

While it would be ideal to have opening angle depend on pointwise concentrations,
defining a single opening angle for an arterial section with spatially dependent NO
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becomes very difficult. The wall-average assumption allows us to write down a relatively
simple model that can be more easily analyzed, and still describe a wide range of
observed behaviors.

2. Nitric Oxide changes mainly the opening angle ω and changes in radii B and C are
assumed to be small. In other words, NO causes mainly circumferential lengthening,
and very little bending in the reference configuration. This would be a reasonable
assumption if the wall is thin and SMCs contract by the same amount on the inner and
outer surfaces of the wall. Another way of stating this is that the strain in the media
is uniform across its thickness and this uniformity does not change in the presence of
NO.

3. Configuration (a) in Fig. 3 exists in a stress-free state. By allowing Θ0 to depend on
〈u〉, we assume the length of SMCs depends on 〈u〉. In the presence of a vasodilator,
SMCs relax and reduce the opening angle ω in Fig. 3(a), thereby decreasing the
tension in the stressed state (b). Equivalently, Θ0 increases with 〈u〉. For example,
when Θ0 → π, there is no residual stress in (b). The contractile apparatus within a
SMC allows it to pull on its neighbors and this can occur in both states in Fig. 3 (a) and
(b). The pulling would increase ω in the cut segment (a) but increase circumferential
stress in (b). Under the action of NO, the area of the cross section in (a) reduces as ω
increases, but the segment lengthens in the Z direction to conserve mass.

4. PDGF and NO do not interact. NO has also been shown to downregulate PDGF (Yu
et al., 2012), but in this paper we assume that PDGF only induces growth and ignore
any interactions between NO and PDGF. There is evidence that PDGF can also change
muscle tone, but whether a contraction or relaxation occurs depends on which isoform
is present (Berk et al., 1986).

5. Growth in the radial and circumferential directions is isotropic. We will assume that
growth in the media depends algebraically on the flow rate Q, that there is no growth
in the axial direction, and that growth is isotropic in the radial and circumferential
directions, so gr = g(Q, t), gθ = g(Q, t) and gz = 1. However, we derive the governing
equations in section 2.2.1 for general gr, gθ, gz.

Most authors do not model SMC contraction by allowing Θ0 to depend on 〈u〉. In the
literature, it is common to account for SMC contraction by making assumptions directly
about the circumferential stress. Classical experiments such as Cox (1975) have indicated
that different vasoactive agents such as norepinephrine or potassium chloride produce dif-
ferent pressure-diameter relationships and most modeling efforts postulate some algebraic
relationship between stress and strain, including SMC contraction as a shape parameter. For
example, Rachev and Hayashi (1999) assume that the circumferential stress can be writ-
ten as the sum of passive and active stresses, and include an additional parameter in the
active stress term to control SMC contraction. In contrast, we describe SMC contraction
by manipulating the reference, stress-free state. Our model connects more closely with the
experiments of Matsumoto et al. (1996) who show a change in opening angle when vasodila-
tors/vasocontractors are applied.
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2.2 Model Derivation

2.2.1 Kinematics

In flow-alteration experiments, there can be significant growth of the media and we wish to
accommodate an expansion of medial cross-sectional area. Morphoelasticity assumes that
the deformation gradient is a product of an elastic tensor and a growth tensor (Rodriguez
et al., 1994). In addition, we assume the artery is incompressible, so we have

F = FeFg, det Fe = 1, Fg = diag(gr, gθ, gz), (5)

where F is the deformation gradient, Fe is the elastic tensor, Fg is the growth tensor, and gr,
gθ and gz are the growth ratios in the radial, circumferential, and axial directions. A growth
ratio of 1 signifies no growth, whereas a ratio > 1 (< 1) signifies an increase (decrease) in
mass. Assuming axisymmetric deformations (2)-(4), the deformation gradient in cylindrical
coordinates simplifies to

F =

r′(R) 0 0
0 πr

Θ0R
0

0 0 Λ

 . (6)

In rabbits and dogs, carotid arteries appear to be axially stretched with an in-vivo length
∼ 1.6× their excised length (Doyle and Dobrin, 1971; Jackson et al., 2002). Therefore we
take Λ = 1.6. The morphoelasticity decomposition eq. (5) impliesr′ 0 0

0 πr
Θ0R

0

0 0 Λ

 =

αr 0 0
0 αθ 0
0 0 αz

gr 0 0
0 gθ 0
0 0 gz

 , (7)

where αr, αθ and αz are elastic stretches in the radial, circumferential, and axial directions.
Equating components,

r′ = αrgr, (8)
πr

Θ0R
= αθgθ, (9)

Λ = αzgz, (10)

which implies

αθ ≡ α =
πr

Θ0Rgθ
, (11)

αz =
Λ

gz
. (12)

Because det Fe = 1, we have αrαθαz = 1, or

αr =
1

αθαz
=

gz
αΛ

, (13)
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which allows us to write the elastic tensor as Fe = diag
(
gz
Λα
, α, Λ

gz

)
. The ODE for the

deformation is

dr

dR
=

gz
αΛ

gr =
R

r
· Θ0

πΛ
· grgθgz (14)

⇒
∫ r

b

r′dr′ =
Θ0

πΛ

∫ R

B

grgθgzR
′dR′ (15)

⇒ r(R) =

(
b2 +

Θ0grgθgz
πΛ

(R2 −B2)

)1/2

, B < R < C. (16)

With r(R) prescribed, eq. (11) defines a circumferential stretch in terms of the reference
radial coordinate: α(R) = πr(R)/(Θ0Rgθ). Alternatively, if (16) is inverted to yield R(r),
the circumferetial stretch can also be written in terms of the deformed radial coordinate:
α(r) = πr/(Θ0R(r)gθ). Since r(C) = c, the deformed radii b and c must satisfy

c2 − b2 − Θ0grgθgz
πΛ

(C2 −B2) = 0. (17)

2.2.2 Mechanical properties of the media

We describe the mechanical properties of the media using the HGO (Holzapfel-Gasser-Ogden)
strain energy (Holzapfel et al., 2005):

W = µ0(I1 − 3) +
η

β

[
eβ(I4−1)2+ − 1

]
, (18)

I1 = α2
r + α2

θ + α2
z =

g2
z

Λ2
α−2 + α2 +

Λ2

g2
z

, (19)

I4 = α2
θ cos2 ϕ+ α2

z sin2 ϕ = α2 cos2 ϕ+
Λ2

g2
z

sin2 ϕ. (20)

The mechanical parameters µ0, η and β can be inferred from stress-strain experiments: see
Table 1 for measured values in a rabbit carotid artery. The angle ϕ describes the orientation
of helical collagen fibers embedded within the media. There are actually two families of these
fibers, but because they are symmetrically inclined at −π/2 +ϕ and π/2−ϕ with respect to
the axial direction, both families can be mathematically represented by a single exponential
function in eq. (18). Note that x+ ≡ max(x, 0) and the quantity I4 is interpreted as the
normalized length of deformed collagen fibers: I4 > 1 means the fibers are stretched whereas
I4 < 1 means they are compressed. The reason for using (I4 − 1)2

+ ≡ [(I4 − 1)+]2 in (18)
rather than (I4 − 1)2 is that these fibers only contribute to the strain energy when they are
stretched. Because the strain energy in (18) is only a function of circumferential stretch α,
we define

w(α) = µ0(I1 − 3) +
η

β

[
eρ(I4−1)2+ − 1

]
(21)

⇒ 1

α

dw

dα
≡ H(α), (22)
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Symbol Meaning Value
µ0 mechanical parameter for ground substance 1.5 kPa
η mechanical parameter for collagen fibers 2.36 kPa
β mechanical parameter for collagen fibers 0.84
ϕ media fiber angle 29.0◦

Table 1: Model parameters for the media layer in a rabbit carotid artery. The strain energy
(18) is composed of terms for ground substance and collagen fibers. Values are taken from
Holzapfel et al. (2001).

and H(α) is defined as

H(α) =
µ0I

′
1(α)

α
+ 2η · (I4 − 1)+I

′
4(α)

α
eβ(I4−1)2+ ,

= 2µ0

(
1− g2

zα
−4

Λ2

)
+ 4η

[
(I4 − 1)+ cos2 ϕ

]
eβ(I4−1)2+ . (23)

2.2.3 Stress and Equilibrium

In axially uniform, axisymmetric morphoelasticity, the strain energies are functions of the
geometric stretches αr and αθ but because of the relation (13), the radial and circumferential
stretches are inversely proportional to each other. Therefore:

dw =
∂W

∂αr
dαr +

∂W

∂αθ
dαθ, (24)

⇒ dw

dαθ
=

∂W

∂αr

(
− gz

Λα2
θ

)
+
∂W

∂αθ
, (25)

⇒ αθ
dw

dαθ
= αθ

∂W

∂αθ
− αr

∂W

∂αr
. (26)

The stress-strain relation for an incompressible hyperelastic material is

Trr = αr
∂W

∂αr
− p, Tθθ = αθ

∂W

∂αθ
− p, Tzz = αz

∂W

∂αz
− p, (27)

where p is the hydrostatic pressure and acts as a Lagrange multiplier. Mechanical equilibrium
implies ∇ ·T = 0 where T is the Cauchy stress tensor. The only non-vanishing component
of the momentum equation is

∂Trr
∂r

+
Trr − Tθθ

r
= 0. (28)

This equation is supplemented by boundary conditions

Trr(r = b) = −P, (29)

Trr(r = c) = 0, (30)
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where P is the lumen pressure. Eq. (30) is a simplification and assumes the outer boundary
of the media is traction-free. In reality, the media is surrounded by the adventitial layer
and Trr would need to be continuous across the media-adventitia interface. Using (26), (27),
(28), the radial stress satisfies

∂Trr
∂r

=
1

r

(
αθ
∂W

∂αθ
− αr

∂W

∂αr

)
=
α

r

dw

dα
,

⇒ Trr(r) = −P +

∫ r

b

α(r′)

r′
dw

dα
dr′,

and the pressure condition (29) has been satisfied. Zero traction at r = c, represented by eq.
(30) gives

−P +

∫ c

b

α(r′)

r′
dw

dα
dr′ = 0. (31)

Using eqs. (11) and (14), the transformation from the reference frame to the deformed frame
r(R) satisfies α2dr/r = (grgzπ)/(gθΛΘ0)dR/R. Using eq. (22), the traction-free boundary
condition (31) becomes

−PΘ0Λ

π
+
grgz
gθ

∫ C

B

H[α(R′)]
dR′

R′
= 0. (32)

Given the radial stress, the hoop stress distribution immediately follows:

Tθθ = r
∂Trr
∂r

+ Trr, (33)

= α
dw

dα
+ Trr, (34)

= α2H(α) + Trr, (35)

= −P + α2H(α) +

∫ r

b

α2(r′)H[α(r′)]
dr′

r′
. (36)

2.2.4 Nitric Oxide Transport

Nitric oxide (NO) or endothelium-derived relaxing factor is a free radical and one of the
few biological signaling molecules that is gaseous. It is synthesized in endothelial cells and
acts as an intercellular messenger. NO is highly reactive and is quickly taken up by smooth
muscle cells. When smooth muscle cells internalize NO, they lengthen and ultimately induce
a relaxation of the artery. Biomechanically, we model the relaxation by reducing the residual
hoop stress in the arterial wall in Fig 3(b) and allowing the opening angle ω in Fig. 3(a) to
depend on the wall-averaged NO concentration.

Let u be the extracellular concentration of NO. NO diffuses, reacts with oxygen and is
taken up by cells. The average rate of NO depletion can, in principle, be different depending
on the cellular environment. For example, if there is a greater density of cells, the uptake
would be greater. In our model, we assume that NO diffuses and is taken up by cells and/or
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reacts to form by-products at a constant rate. If the degradation rate is much faster than
the uptake rate by cells, then at steady state, we have

DNO

r

∂

∂r

(
r
∂u

∂r

)
− ku = 0, r > b, (37)

where DNO ≈ 3400 µm2/s is the diffusivity of NO and k ≈ 0.17/s assuming that the half-life
of NO is 4 seconds (Lancaster, 1994). Having cells take up NO at a rate comparable to
or greater than the reaction rate with oxygen amounts to using different values for k – see
the Appendix. The production rate of NO depends on the wall shear stress experienced by
endothelial cells, so we take the boundary conditions of eq. (37) to be

−DNO
∂u

∂r

∣∣∣∣
r=b

= qreff(τ), (38)

u(r →∞) = 0. (39)

For the boundary condition at r = b, a rough estimate of the typical NO production rate (per
unit surface area of endothelium) is qref = 5 × 10−20 mol/µm2/s. This value was found by
Vaughn et al. (1998) in a theoretical model of endothelial NO release. While eqs. (37)-(39)
are defined on a semi-infinite domain (b,∞), we are only interested in u(r) on b ≤ r ≤ c.

Motivated by the data and terminology from Humphrey (2008), f is a mechanical dose
response curve and τ is the wall shear stress. Figure 8 from this paper motivates a saturating
function for f :

f(τ) = p1 + p2(1− exp(−p3τ
2)). (40)

Generally, vessels maintain a basal level of NO so we expect p1 ≥ 0. For f to be monoton-
ically increasing and saturate for large τ , we also require p2, p3 > 0. Data on bovine aortic
endothelial cells suggests p1 ≈ 0.35, p2 ≈ 0.65, p3 ≈ 8.6 Pa−2 (Humphrey, 2008) but in
section 3.1.2 we will infer p1, p2 and p3 for rabbit carotid endothelium. At steady state, the
solution to (37)-(39) is

u(r) =
qreff(τ)

λDNOK1(λb)
K0(λr), λ =

√
k/DNO,

where K0(·) is a modified Bessel function of the second kind. In the simple case of steady
state Poiseuille flow through a long tube of radius b, the shear stress induced by a Newtonian
fluid is given exactly by

τ =
4µ

π

Q

b3
, (41)

where µ is the dynamic viscosity of the fluid and Q is the flow rate with units of volume per
unit time. We assume that the opening angle of the media depends on the wall-averaged NO
concentration, so ω = ω(〈u〉) with

ω(〈u〉) = ωmax − (ωmax − ωmin)
〈u〉M

UM + 〈u〉M
, (42)
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where U is the concentration required to achieve 50% “activation,” resulting in an opening
angle of (ωmax + ωmin)/2. If we assume the opening angle depends on a Hill function of
intracellular NO, we still obtain eq. (42): see the Appendix for details. For the rest of this
paper, we take M = 2. This is an arbitrary choice; the main property that ω(〈u〉) should
satisfy is for ω = ωmax at 〈u〉 = 0 and ω → ωmin as 〈u〉/U → ∞. The wall-averaged NO
concentration is

〈u〉 =
2K−1

1 (λb)

(c2 − b2)

qreff(τ)

λDNO

∫ c

b

rK0(λr)dr. (43)

For ease of infering parameters in later sections, eq. (43) can also be rewritten in terms of a
normalized concentration:

n =
〈u〉
U

=
2qreff(τ)

λDNOU
· K

−1
1 (λb)

(c2 − b2)

∫ c

b

rK0(λr)dr. (44)

Since we assumed that growth in the media depends algebraically on the flow rate Q,
that there is no growth in the axial direction, and that growth is isotropic in the radial
and circumferential directions, gr = g(Q, t), gθ = g(Q, t) and gz = 1. When these growth
functions are known, the full model is described by the five equations

c2 − b2 −
(

1− ω

2π

) g2(Q, t)(C2 −B2)

Λ
= 0, (45)

−PΛ
(

1− ω

2π

)
+

∫ C

B

H[α(R′)]
dR′

R′
= 0, (46)

n− 2K−1
1 (λb)

(c2 − b2)

qref(p1 + p2(1− e−p3τ2))
λDNOU

∫ c

b

rK0(λr)dr = 0, (47)

ω − ωmax + (ωmax − ωmin)
n2

1 + n2
= 0, (48)

τ − 4µQ

πb3
= 0, (49)

which relate to the deformation of the artery (eq. (17)), a traction-free outer boundary for
a vessel under mechanical equilibrium (eq. (32)), the normalized mean NO concentration
in the vessel wall (eq. (44)), the opening angle in terms of normalized NO (eq. (42) with
the choice M = 2), and the definition of shear stress (eq. (41)). Furthermore, in eq. (46),

α(R) = πr(R;b)
Θ0Rgθ

from eq. (11) with r(R) defined by eq. (16). The five symbols b, c, n, ω and τ
can be treated as the unknown variables for a given flow rate Q and time t. In other words,
given a particular growth function g(Q, t), and given the mechanical properties of the artery
and the transport properties of NO, solving the forward problem (45)-(49) yields the inner
and outer radii b, c; the dimensionless NO level n; the opening angle ω; and the shear stress
τ . In the next section, we derive a possible algebraic form for g(Q, t).
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2.2.5 Flow-rate dependent growth law

Consider a case with pure growth of the form gr = gθ = g, gz = 1 and no vasodilation so
that ω = constant in eqs. (45)-(49) The only unknowns are b and c which satisfy

c2 − b2 −
(

1− ω

2π

) g2(C2 −B2)

Λ
= 0, (50)

−PΛ
(

1− ω

2π

)
+

∫ C

B

H[α(R′)]
dR′

R′
= 0, (51)

where H is defined by eq. (23) and

r(R) =

(
b2 +

Θ0g
2

πΛ
(R2 −B2)

)1/2

, (52)

α(R) =
πr(R; b)

Θ0Rg
, (53)

from eqs. (16) and (11) respectively.

Lemma 1. Let b0, c0 satisfy the equations

c2
0 − b2

0 −
(

1− ω

2π

) (C2 −B2)

Λ
= 0, (54)

−PΛ
(

1− ω

2π

)
+

∫ C

B

H[α0(R′)]
dR′

R′
= 0, (55)

with corresponding radial deformation and circumferential stretch

r0(R) =

(
b2

0 +
Θ0

πΛ
(R2 −B2)

)1/2

, (56)

α0(R) =
πr0(R)

Θ0R
. (57)

In other words, b0, c0, r0(R) and α0(R) are a solution to the pressurized annulus problem, eqs.
(50) and (51). Then for any constant g > 0, the grown radii, deformation and circumferential
stretch

b = b0g, (58)

c = c0g, (59)

r(R) = r0(R)g, (60)

α(R) = α0(R), (61)

also satisfy equations (50) and (51).

13



Proof. By direct substitution,

c2 − b2 −
(

1− ω

2π

) g2(C2 −B2)

Λ
(62)

= g2

[
c2

0 − b2
0 −

(
1− ω

2π

) (C2 −B2)

Λ

]
︸ ︷︷ ︸

=0

(63)

= 0, (64)

so eq. (50) is satisfied. Note that since α is dimensionless in eq. (61) (unlike b, c and r), it
remains invariant when all radii are scaled by g, and so eq. (51) is automatically satisfied:

−PΛ
(

1− ω

2π

)
+

∫ C

B

H[α0(R′)]
dR′

R′
(65)

= −PΛ
(

1− ω

2π

)
+

∫ C

B

H[α(R′; b)]
dR′

R′
(66)

= 0. � (67)

Now suppose we allow g = g(Q) so the growth depends on flow rate Q. The following
corollary describes a simple class of growth functions that keep the shear stress invariant
with respect to the flow rate.

Corollary 1. If b = b0 and c = c0 satisfy eqs. (50) and (51) when g = 1, then b = b0g and
c = c0g with g(Q) = (Q/Q0)1/3, where Q is the flow rate, also satisfy eqs. (50) and (51) for
any constant Q0 and the corresponding shear stress is

τ =
4µQ

πb3
=

4µQ

πb3
0g

3
=

4µQ0

πb3
0

, (68)

which is independent of Q. Hence the growth law g = (Q/Q0)1/3 induces a change in arterial
radius that maintains a constant shear stress equal to 4µQ0/(πb

3
0).

The constant Q0 represents how quickly g increases as Q increases (smaller Q0 means
g increases more rapidly). Therefore, the homeostatic shear stress in (68) depends on the
deformed radius b0, when growth is absent, as well as how quickly the media grows with
respect to Q, which is captured by the constant Q0. Note that b0, in turn, depends on lumen
pressure P , axial stretch Λ, opening angle ω and the mechanical properties of the media.

As shown in Fig. 1, shear stress constancy only occurs when the flow experiments are
performed over a sufficiently long time. At early times, there is no regulation and arterial
radius is constant with respect to Q. This suggests introducing a time-dependence in the
growth law so that g ∼ (Q/Q0)1/3 as t→∞ but g = 1 at t = 0. We can interpolate through
both of these behaviors using the simple relation

g(Q, t) =

(
Q

Q0

)1/3

+

[
1−

(
Q

Q0

)1/3
]
e−t/T , (69)
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Figure 4: Growth as a function of flow rate and time: see eq. (69). For early times t/T ≈ 0
there is no growth whereas for later times t/T � 1, g ∝ Q1/3.

where T is a growth and remodeling time scale which could be on the order of 6-8 months
for canine carotids (Kamiya and Togawa, 1980). Some representative forms of g(Q, t) are
shown in Fig. 4. We use this algebraic form for g(Q, t) to supplement eqs. (45)-(49) in the
following sections.

3 Results and Connection with Experiments

We will consider three groups of flow-alteration experiments performed on rabbit carotid
arteries. In every group, the flow rate is altered by ligations or anastomoses; however the
vasoactive and growth properties of the arteries are different from group to group.

In the first case, we consider an artery deforming under pure vasodilation. Experimentally,
adult rabbit arteries do not grow significantly when flow conditions are altered. However,
their arteries still undergo deformation and vasodilation as flow conditions are altered. In
the second case, we consider an artery deforming under pure growth. In experiments, the
media cross sectional areas of weanling rabbit arteries change substantially, compared to
adult rabbits, when local flow conditions are altered. Furthermore, NO production can
be suppressed by adding L-NAME (L-arginine-methyl ester) to their drinking water, so
vasodilation can be assumed to play little or no role. In the third and final case, we consider
an artery deforming under both growth and vasodilation. This is a suitable model to describe
the growth and deformation of the arteries in weanling rabbits. Without any additional
treatments, their arteries are able to undergo normal vasodilation, and because the rabbits
are young, the media undergoes significant growth.
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Quantity Control Ligated Anastomosed
Perfusion pressure, P (mmHg) 100 100 100

Lumen Radius (mm) bC,data = 0.88 bL,data = 0.7 bA,data = 0.93
Media CSA (mm2) MC,data = 0.35 ML,data = 0.32 MA,data = 0.35
Flow Rate (mm3/s) QC,data = 868 QL,data = 333 QA,data = 1367

Table 2: Hemodynamic data for common carotid arteries, taken from two studies of flow
alteration experiments on adult New Zealand White Rabbits. MC,data, ML,data, bC,data and
bL,data are taken from Fig. 3 of Langille et al. (1989) while bA,data,MA,data are taken from
Figs. 2 and 3 of Lee and Langille (1991). The flow rates are taken from the “Response to
increased blood flow” section on page 980 and Fig. 4 of Lee and Langille (1991).

3.1 Pure Vasodilation in Adult Rabbit Arteries

3.1.1 Inferring the Reference State Configuration

Lee and Langille (1991) and Langille et al. (1989) performed ligation and anastomosis ex-
periments on adult rabbit carotids and measured the associated geometric changes in the
arterial cross section. The results are summarized in Table 2. The arteries in adult rabbits
typically do not experience much growth when the flow is changed, evidenced by the media
cross sectional area (CSA) remaining approximately constant compared to controls. With
g = 1, equations (45)-(46) decouple from (47)-(49) and may be solved first to find suitable
reference radii B, C and opening angle ω. After the parameters of the reference configura-
tion are established, we calibrate against hemodynamic data to find the parameters of the
NO-release model.

Phrased as a forward problem, eqs. (45) and (46) constitute 2 equations in the 2 unknowns
b and c, providing the opening angle ω or Θ0 are known, along with the lumen pressure P ,
axial stretch Λ, and reference radii B and C. However, the arteries of control, ligation, and
anastomosis experiments are vasodilated to different extents, giving rise to three different
reference configurations and three different opening angles. Furthermore, we assume that
the three deformed configurations share common values for B and C. The perfusion pressure
P = 100 mmHg is uniform across all experiments, so given B, C and the three angles Θ0,C ,
Θ0,L and Θ0,A, we could solve

(ck)
2 − (bk)

2 − Θ0,k

πΛ
(C2 −B2) = 0,

−PΘ0,kΛ

π
+

∫ C

B

H[α(R′)]
dR′

R′
= 0,

for k = C,L,A (6 equations in total) to find bC , cC , bL, cL, bA and cA, the vessel radii of
control, ligated and anastomosed arteries. Experimentally, arteries are fixed by an agent
such as formaldehyde after the animals are sacrificed, and the fixing pressure is not the same
as the in-vivo pressure. Although we are calibrating using a fixing perfusion pressure instead
of the in-vivo pressure, the perfusion pressure is usually chosen to be close to the in-vivo
pressure so that vessel radii are not significantly affected.
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If bC , cC , bL, cL, bA, and cA are unknown and B, C, Θ0,C , Θ0,L, and Θ0,A are known, we
write the forward problem as

(bC , cC , bL, cL, bA, cA) = f(B,C,Θ0,C ,Θ0,L,Θ0,A),

for a function f : R5 7→ R6. However, in the flow alteration experiments, the deformed
configuration is observed and the reference configuration is unknown. Defining ωC = 2π −
2Θ0,C , ωL = 2π − 2Θ0,L and ωA = 2π − 2Θ0,A, we have 5 parameters to determine: B, C,
ωC , ωL and ωA. We choose them to minimize the sum of squared relative errors

R1 =
∑

k=C,L,A

{(
bk − bk,data
bk,data

)2

+

(
Mk −Mk,data

Mk,data

)2
}
, (70)

where Mk = π(ck
2− bk2), and bk,data and Mk,data are the lumen radii and medial CSAs taken

from Table 2. This optimization procedure yields global shape parameters for the arteries in
the reference state:

B = 0.91 mm (71)

C = 1.06 mm (72)

ωC = 149◦ (73)

ωL = 180◦ (74)

ωA = 144◦. (75)

In particular, we predict that ωA < ωC < ωL indicating that SMCs are more contracted
in ligated arteries and more relaxed in anastomosed arteries, compared to controls. The
model outputs for lumen radii and media cross sectional area, together with experimentally
measured values are summarized in Fig. 5. The numerical values for the arterial radii and
cross-sectional areas under a perfusion pressure of P = 100 mmHg are given in Table 3. The
theoretical lumen radii bC , bL, bA and medial cross-sectional areas MC , ML, MA match the
experimental values bC,data, bL,data, bA,data and MC,data, ML,data, MA,data well with a maximum
relative error of about 6%. When the pressure is reduced to P = 91 mmHg (an estimated
in-vivo lumen pressure) and b, c are recomputed from (45)-(46), the in-vivo radii differ from
the radii of vessels under a P = 100 mmHg perfusion pressure by less than 1%.

3.1.2 Inferring Nitric Oxide Adaptation Parameters

We now turn our attention to the flow rate data in Table 2, taken from Lee and Langille
(1991) and Langille et al. (1989). With this hemodynamic data, we calibrate the vasodilation
component of our model.

In our calibration, some parameters are inferred from fitting to data while others are
independently estimated. Table 4 summarizes both types of parameter. Recall that U from
eq. (42) is the level of NO required to achieve 50% activation in terms of opening angle.
Chen et al. (2008) report a wide range of values for U , ranging from 3 – 1600 nM. The value
we adopt of U = 300 nM = 3×10−13 mol/mm3 is the mean value from Table 2 of their paper.
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Simulated control artery Simulated ligated artery Simulated anastomosed artery

bC = 0.87 mm bL = 0.73 mm bA = 0.90 mm
cC = 0.93 mm cL = 0.79 mm cA = 0.96 mm
MC = 0.35 mm2 ML = 0.30 mm2 MA = 0.36 mm2

Table 3: Predicted, simulated vessel dimensions (under perfusion pressure P = 100 mmHg)
after calibrating against data in Table 2. With optimally chosen parameters in (71)-(75),
lumen radii bC , bL, bA are well-matched with bC,data, bL,data and bA,data from Table 2 and
similarly with medial cross-sectional areas Mi = π(c2

i − b2
i ) for i = C,L,A.
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Figure 5: Lumen radii and Media Cross Sectional Areas (CSAs) for calibrated model. Ref-
erence radii B, C and opening angles ωC , ωL and ωA were chosen (see eqs. (71)-(75)) so that
lumen radii and media CSAs matched experimental values as closely as possible.
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Symbol Meaning Value Method of Estimation:
U Parameter in OA-NO

dose response: see eq.
(42)

3× 10−13 mol/mm3 Mean value from Chen et al.
(2008)

qref Reference value for
NO production rate

5× 10−14 mol/mm2/s From Vaughn et al. (1998)

B Inner radius of refer-
ence artery

0.91 mm Fitted to data

C Outer radius of refer-
ence artery

1.06 mm Fitted to data

M Hill coefficient in OA-
NO dose response

2 Model choice

µ Dynamic viscosity of
blood

3× 10−3 Pa s O’Brien et al. (2011)

DNO Diffusivity of NO 3.4× 10−3 mm2/s Lancaster (1994)
k Decay rate of NO 0.17/s Estimated from half-life
Λ Axial Stretch 1.6 From Doyle and Dobrin

(1971)
ωmax Maximum OA 220◦ From Williams et al. (2009)
ωmin Minimumm OA 0◦ Model choice
p1 Parameter in NO-

WSS dose response
0.00 Fitted to data

p2 Parameter in NO-
WSS dose response

0.20 Fitted to data

p3 Parameter in NO-
WSS dose response

0.047 Pa−2 Fitted to data

Table 4: Global parameters in vasodilation model. “Fitted to data” indicates the values
were found from calibrating the model: see sections 3.1.1 and 3.1.2. Abbreviations: OA =
Opening Angle, WSS = Wall Shear Stress, NO = Nitric Oxide.
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Figure 6: Normalized average NO concentration as a function of endothelial shear stress,
along with best-fit sigmoidal curve f(τ) = p1 + p2(1− e−p3τ2). The quantities yL, yC and yA
are related to estimated NO levels in ligated, control and anastomosed rabbit carotid arteries
respectively through eq. (78). Best-fit parameters are p1 = 0.00, p2 = 0.20, p3 = 0.047 Pa−2.

As discussed after eq. (39), the reference value for NO release rate qref was computed by
Vaughn et al. (1998). The reference radii B and C were found from section 3.1.1 and we
set M = 2. The values of blood viscosity µ, and diffusivity of nitric oxide DNO are well
documented in O’Brien et al. (2011) and Lancaster (1994). The decay rate of nitric oxide k
was computed by assuming the half-life of the radical to be 4 seconds. Finally, we estimate
Λ = 1.6, the axial pre-stretch, from experiments on dog carotid arteries (Doyle and Dobrin,
1971).

Unfortunately, we could not find experiments that measured opening angle as a function
of NO concentration in rabbit carotid arteries, although Najibi and Cohen (1995) report tone
as a function of NO concentration. The lack of this data means our estimates of ωmax and
ωmin in eq. (42) will be imprecise. Williams et al. (2009) report an opening angle for rabbit
carotids of about 220◦: in Fig. 4 of their paper, they found that ω/2 ∼ 108◦. Assuming
that the treated arteries do not contain significant amounts of NO when the opening angle
was measured, we take u = 0 throughout the section implying that ωmax = 220◦. In the
absence of further data, we also take ωmin = 0◦, corresponding to a fully relaxed state with
no residual stress when NO is in excess throughout the arterial wall.

Eq. (41) gives the shear stress on the endothelium and eq. (42) with M = 2 relates the
mean NO concentration in the vessel wall to the opening angle:

τk,data =
4µQk,data

πbk,data
3 , 〈uk〉 = U

√
ωmax − ωk
ωk − ωmin

, (76)
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Control Ligated Anastomosed

Opening angle ωC = 149◦ ωL = 180◦ ωA = 144◦

Shear stress (Pa) τC,data = 4.87 τL,data = 3.71 τA,data = 6.49
Mean NO conc. (×10−13 mol/mm3) 〈uC〉 = 2.1 〈uL〉 = 1.4 〈uA〉 = 2.2

Table 5: Predicted morphological and biomechanical properties of control, ligated and anas-
tomosed vessels.

for k = C,L,A. Values of ωk were established in the previous section: see eqs. (73)-(75).
A summary of shear stresses τk,data, NO concentrations 〈uk〉 and opening angles ωk derived
from experimental data is given in Table 5. Defining

y =
〈u〉λDNOK1(λb)(c2 − b2)

2qref

∫ c
b
rK0(λr)dr

, (77)

and

yk,data =
〈uk〉λDNOK1(λbk,data)(ck

2 − bk,data2)

2qref

∫ ck
bk,data

rK0(λr)dr
, (78)

eq. (44) becomes
f(τ) = p1 + p2(1− exp(−p3τ

2)) = y. (79)

Therefore, given the data ((τC,data, yC,data), (τL,data, yL,data), (τA,data, yA,data)), we must find
best-fit parameters p1, p2, p3 such that (79) is satisfied in the least squares sense (i.e.∑

k=C,L,A [f(τk,data; p1, p2, p3)− yk,data]2 is minimized). While values of ck were calculated
in the first calibration step (see Table 3), in (78) we use actual data for vessel radii whenever
it is available (i.e. the formula (78) involves bk,data rather than bk).

We find that the best-fit parameters for f(τ) are

p1 = 0.00, p2 = 0.20, p3 = 0.047 Pa−2, (80)

see Fig. 6 which shows the optimized dose-response curve for NO release rate as a function
of shear stress for endothelial cells from rabbit carotids. Humphrey (2008) has published
similar data from bovine aortic endothelial cells. Quantitatively, our results are different
with saturation occurring much more slowly with respect to shear stress. Another difference
is that our mean NO concentration is effectively zero at τ = 0 whereas data from Humphrey
(2008) suggests p1 > 0. Figure 6 shows that shear stress needs to exceed ∼ 8 Pa for maximal
NO release, whereas the corresponding value for bovine endothelial cells is about 0.6 Pa.
We expect the curves to differ not only because the animal models are different (bovine
aorta vs. rabbit carotid), but also because Humphrey (2008) uses NO synthase mRNA
as the experimental proxy for NO release, rather than NO concentration, which would be
challenging to measure directly.

With the values from Table 4, we now solve eqs. (45)-(49) numerically with g(Q, t) = 1:
see Figure 7. The main take-away is that larger values of NO flux qref result in more strongly
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Figure 7: Evolution of lumen radius, shear stress and opening angle with respect to flow rate
Q. Parameters were B = 0.91 mm, C = 1.06 mm, ωmin = 0, ωmax = 220◦, (p1, p2, p3) =
(0, 0.20, 0.047 Pa−2).

regulated shear stresses. Values of shear stress are kept low providing the opening angle is
able to continually decrease with respect to flow rate Q (Fig. 7(c)). When the opening angle
reaches its lower bound and saturates, the radius also saturates (Fig. 7(a)): the artery has
dilated to its maximum capacity and further increases in flow rate do not significantly change
the arterial dimensions. The result is that while the NO release mechanism is able to keep
shear stresses low for small flow rates, the vessel falls into the “no regulation” case of Fig. 1
for extremely large flow rates.

In Figure 8, we calculate hoop and radial stress distributions at different flow rates. Fig.
8(a) shows that the Cauchy hoop stress is dominant and tensile, whereas the radial stress
is compressive: this is in-line with predictions from classical biomechanical theory: see for
example Fig. 7.35 in Humphrey (2013). Recall that the residual stress in a body is the stress
that remains after all external forces (in our case the lumen pressure, P ) have been removed.
As the flow rate increases, more NO is released into the media and there is a relaxation of
this layer manifested as a reduction in magnitude of the residual hoop and radial stresses in
Fig. 8(b) and a decrease in opening angle in Fig. 8(c).

While unloaded arteries with a larger flow rate Q have higher levels of NO and are more
dilated in 8(b), it is interesting that pressurized vessels experience greater tension with respect
to Q in Fig. 8(a). In Fig. 8(b), the vessels have approximately the same wall thickness but
different lumen sizes. However, when subjected to the same pressure, arteries with larger
lumens – but identical wall thickness – undergo a larger strain. (To understand this, note that
an artery with a larger lumen has a smaller wall thickness relative to its lumen radius. Given
two annuli with the same inner radius but different wall thicknesses, the thinner annulus will
undergo greater dilation under the same pressure.) Therefore, arteries subjected to a larger
flow rate also manifest a greater circumferential stress in Fig. 8(a).
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Figure 8: Evolution of Cauchy and residual stresses for increasing flow rate Q in the case
of pure vasodilation. (a) Cauchy hoop stresses increase with Q while (b) residual stresses
decrease. (c) Opening angle as a function of flow rate. Dashed curves indicate hoop stresses
while solid curves indicate radial stresses. Parameters were P = 73.6 mmHg, B = 0.91 mm,
C = 1.06 mm, qref = 5× 10−14 mol/mm2/s.

3.2 Pure Growth in L-NAME treated Weanling Arteries

We now consider the case of pure growth, without any vasodilation. As well as taking
morphological measurements, Tronc et al. (1996) counted the number of smooth muscle cells
in the media for control and L-NAME treated rabbits: see the final rows in Tables 6 and 7.
We can use this data to infer a hypothetical growth function for the experiments. The SMC
measurements define the growth Jacobian in the media:

Jg(Q) = det Fg = g2 =
N(Q)

N0

, (81)

where N0 is the number of SMCs without the fistula (2062 and 1773 for control and L-
NAME treated arteries respectively) and N(Q) is the number of SMCs when the flow rate
is increased to Q by the fistula. From eq. (69)

Jg(Q) = g2 =

{(
Q

Q0

)1/3

+

(
1−

(
Q

Q0

)1/3
)
e−t/T

}2

,

= (c1Q
1/3 + c2)2,

where c1 = Q
−1/3
0 (1−e−t/T ), c2 = e−t/T . In the control arteries of Table 6, we have Jg(490) =

1, Jg(3270) = 2.18, so solving for c1 and c2 yields c1 = 0.068, c2 = 0.460 and we have

Q0 = 490 mm3/s,

t/T = 0.77.
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Quantity Without Fistula With Fistula (increased flow)
Perfusion Pressure P = 73.6 mmHg P = 73.6 mmHg

Flow Rate Q1 = 490 mm3/s Q2 = 3270 mm3/s
Wall Shear Stress τ1 = 1.07 Pa τ2 = 0.887 Pa
Lumen Radius, b1 = 1.27 mm b2 = 2.32 mm

Media Cross Sectional Area, M M1 = 0.36 mm2 M2 = 0.75 mm2

# Smooth Muscle Cells in Media 2062 4504

Table 6: Hemodynamic data for control arteries from Tronc et al. (1996).

Quantity Without Fistula With Fistula (increased flow)
Perfusion Pressure P = 73.6 mmHg P = 73.6 mmHg

Flow Rate Q Q3 = 558 mm3/s Q4 = 1768 mm3/s
Wall Shear Stress τ3 = 1.91 Pa τ4 = 1.87 Pa

Lumen Radius b3 = 1.075 mm b4 = 1.62 mm
Media Cross Sectional Area M3 = 0.26 mm2 M4 = 0.49 mm2

# Smooth Muscle Cells in Media 1773 2717

Table 7: Hemodynamic data for L-NAME treated arteries from Tronc et al. (1996).

Administration of L-NAME suppresses NO but is not supposed to affect growth. This is
confirmed by repeating the calculation for the L-NAME treated arteries. From Table 7, we
have Jg(558) = 1, Jg(1768) = 1.53 yielding (c1, c2) = (0.061, 0.495) and Q0 = 558mm3/s
and t/T = 0.71. There is not a large change in either Q0 or t/T for the L-NAME treated
rabbits: administration of L-NAME did not significantly impact the growth function. Since
t/T < 1 for both sets of rabbits, we hypothesize that the arteries in these animals have not
fully adapted to their altered hemodynamical environment. Interestingly, the flow alteration
experiments by Tronc et al. (1996) were only performed for 1 month, in contrast to the
experiments in Fig. 1 which lasted up to 6-8 months.

To test our hypothesis, in Figure 9, we reproduce the lumen radii and shear stresses from
Tronc et al. (1996) for the arteries of NO-inhibited weanling rabbits. The data is very noisy
but seem to suggest that under various flow rates, the lumen radius stays approximately
constant as growth proceeds. The shear stress exhibits approximately linear behavior, con-
firming that the arteries in Tronc et al. (1996) are still in the early stages of their adaptation.

Having calculated reference shear stress values of Q0 ≈ 490 mm3/s and Q0 ≈ 558 mm3/s
from SMC numbers, we now assume a reference flow rate of Q0 = 500 mm3/s for the growth
law in (69). By taking the NO concentration u = 0 throughout the artery, we have ω = ωmax

and SMCs are always in their maximally contracted state. Our model consists of eqs. (45),
(46), (49) and (69). We solve these equations numerically using Matlab’s fsolve for b, c and
τ for different values of t/T . In Figure 10, we see that at early times, there is no shear stress
regulation: the radius b remains constant with respect to Q while the shear stress increases
linearly with Q. At later times, we have more regulation: for t/T = 5 the radius exhibits the
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Figure 9: Data from weanling rabbits treated with L-NAME. (a) Lumen radius is approxi-
mately constant with respect to flow rate; dashed line is the best-fit curve of the form b = κQa

yielding κ = 0.9, a = 0.078. (b) Shear stress is approximately linear with flow rate; dashed
line is the best-fit curve of the form τ = κQa yielding κ = 0.0044, a = 0.8. Data (black
triangles) is taken from Tronc et al. (1996). The data suggests that very little shear stress
regulation is occurring, or that not enough time has elapsed in the experiment for regulation
to occur.

characteristic Q1/3 scaling whereas the shear stress remains essentially constant with respect
to Q. However, the predicted homeostatic value of ∼ 10 Pa (green curve) is on the large side:
NO-regulated carotid arteries under normal flow conditions exhibit a shear stress of about
1-5 Pa irrespective of whether growth occurs (Tronc et al., 1996) or not (Lee and Langille,
1991). Our model can reproduce a lower shear stress when the opening angle is fixed to a
lower value (e.g. ω = π/2 instead of ωmax). In section 3.3, we will see how the presence of
NO in growing arteries decreases ω and subsequently lowers the homeostatic shear stress.

Finally, in Figure 11 we explore how radial and hoop stresses change as growth occurs.
We see that stress profiles are carried materially by the arterial wall with minimum and
maximum values remaining unaltered. The only distortion of the stress distribution arises
from growth and deformation of the domain b < r < c. Mathematically, the radial and hoop
stresses are functions of R: Trr = Trr(R) and Tθθ = Tθθ(R) (shown in Figure 11(c) as solid
and dashed curves respectively). These functions are independent of g, and therefore also
independent of Q and t, consistent with the calculations in Lemma 1. In our single layer
model, when growth is isotropic in the radial and circumferential directions and constant
with respect to position, the strains in the artery (in particular the circumferential strain α)
are unaltered by growth, so we would not expect changes in the stress profiles either.
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Figure 10: Predicted radii (a) and shear stresses (b) as a function of flow rate, in the case
of pure growth. Reference radii B = 0.9 mm, C = 1.0 mm, axial stretch Λ = 1.6, lumen
pressure P = 100 mmHg and opening angle ω = ωmax = 220◦ using the growth function (69)
with Q0 = 500 cm3/s.
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Figure 11: Cauchy stresses for different flow rates in the pure growth regime. (a) t/T = 0.1
(b) t/T = 0.35. Stresses are materially advected with the arterial wall. (c) When plotted as
a function of the reference radius R stress distributions are invariant with respect to Q and
t/T . Dashed and solid curves represent hoop and radial stresses respectively. Parameters
were P = 73.6 mmHg, B = 0.91 mm, C = 1.06 mm, Q0 = 500 mm3/s.
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3.3 Growth and Vasodilation in Weanling Arteries

We now study the final case where both growth and vasodilation play a role in deforming
the artery. The governing equations are (45)-(49) supplemented with the growth law (69)
and we assume Q0 = 500 mm3/s. Our results for shear stress regulation are shown in Fig.
12. It is instructive to compare this figure with the pure growth case, Fig. 10.

In the pure growth case, the opening angle was always saturated at its maximum value
ω = ωmax. The complete absence of NO essentially made the artery stiffer with the con-
sequence that radii were smaller and shear stresses were larger. In Fig. 12, we see that
when ω is allowed to float, the vessel is more relaxed and compliant. Dilation requires less
energy, radii are larger, and shear stresses are smaller compared to the pure growth case.
Vasodilation is most effective at reducing shear stress at small times: even when t/T is small
and there has not been sufficient time for growth, we see that shear stresses are kept below
about 6.5 Pa when 0 ≤ Q ≤ 2000 mm3/s. In contrast, Fig. 10 has shear stresses shooting
up to 35 Pa at Q = 2000 mm3/s for t/T = 0.1. In both Figures 10 and 12, when t/T is
larger, shear stresses are kept almost constant. But in Figure 12 when both NO release and
growth can function in concert, the constant is lowered to a value that is much more in-line
with experiments. For a fully-adapted artery, we predict a homeostatic shear stress of ≈ 3.8
Pa and the model selects an opening angle ω ≈ 170◦ over a range of flow rates (green curves
in Fig. 12).

Again, we can provide some qualitative confirmation of these hypotheses by examining
the data from experiments. In Fig. 13, we find the best-fit qref and t/T to minimize the
sum of squared relative errors between model and experimental radii. While 8 data points
are available for the radius as a function of flow rate in Tronc et al. (1996), only two values
of media CSA were published (the values are reproduced in Table 6). Reference radii were
fixed at B = 1.1 mm and C = 1.2 mm. Once b(Q) is found from this procedure, the shear
stress τ(Q) is calculated from eq. (49). The optimization gives qref = 4.4×10−12 mol/mm2/s
and t/T = 0.45, again suggesting that there is only partial regulation through growth. A
comparison of Fig. 13 with Fig. 9 shows that vasodilation helps to suppress shear stress
as flow rate increases: recall the only difference between the two figures is that the data
from Fig. 9 is from L-NAME treated weanling rabbits while the data from Fig. 13 is from
untreated weanling rabbits. Both sets of rabbits have arterial media that grow, but the first
set of rabbits have arteries that have inhibited NO. Figure 13(a) shows a clear increase in
radius with flow rate and, with the exception of a single data point near Q = 6000 mm3/s,
a concomitant suppression of shear stress. The occurence of this outlier was probably due
to the artery developing pathologies that interfered with its adaptation, or being unable to
grow to its target size within the duration of the experiment.

In Figure 14 we study the stress distributions for a growing, vasodilating artery. The
results combine our observations from Figs. 8 and 11. We see that the Cauchy hoop stress is
dominant, increases with flow rate and converges to an asymptotic distribution as Q → ∞.
Recall that the residual stress is defined as the stress remaining in the body after all external
forces have been removed. The only external force in our model is the lumen pressure P ,
so the residual hoop stress, for example, is calculated by taking P = 0 in eq. (36). The
magnitude of the residual hoop and radial stresses decrease with flow rate and the radial
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Figure 12: The joint effects of growth and vasodilation on radius, shear stress, and opening
angle. Parameters were P = 100 mmHg, B = 0.9 mm, C = 1.0 mm, qref = 5 × 10−14

mol/mm2/s, Q0 = 500 mm3/s.

0 2000 4000 6000
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 1000 2000 3000 4000 5000 6000

0.5

1

1.5

2
Experimental Data

Model

0 2000 4000 6000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (c)(b)

Figure 13: Comparison of joint vasodilation-growth model with morphological data from
weanling rabbits (Tronc et al., 1996). Parameters were P = 73.6 mmHg, B = 1.1 mm,
C = 1.2 mm, t/T = 0.45 and qref = 4.4× 10−12 mol/mm2/s, Q0 = 500 mm3/s.
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Figure 14: Evolution of Cauchy and residual stress distributions with flow rate Q for the
case of joint growth and vasodilation. Dashed (solid) lines indicate hoop (radial) stresses.
(a) Cauchy hoop stress increases as flow rate increases. (b) Residual radial stress decreases
in magnitude as Q increases. (c) Residual hoop stress can be tensile or compressive and
decreases in magnitude as Q increases. Parameters were B = 1.1 mm, C = 1.2 mm, qref =
5 × 10−14 mol/mm2/s and Q0 = 500 mm3/s. P = 73.6 mmHg in (a) and P = 0 mmHg in
(b,c).

residual stress is zero at the inner and outer boundaries of the media because both boundaries
are traction-free. Unlike the pure growth case Fig. 11, the radial and hoop stresses do not
collapse onto a single “universal” curve when plotted as a function of the reference radial
coordinate R.

4 Conclusion

In this paper, we proposed a theoretical model to describe how an arterial section adapts to
its hemodynamic environment based on nitric oxide (NO) and PDGF release. The adaptation
occurs through two mechanisms: a change in opening angle (and therefore residual stress)
representing vasodilation; and a thickening of the media representing growth.

We explored the coupling of these phenomena by studying the model in cases of pure
vasodilation, pure growth, and joint vasodilation and growth. We found that both vasodila-
tion and growth contribute to shear stress regulation in complementary ways. Morphological
changes in the vessel wall due to NO occur over short time scales while growth-induced
adaptation of the artery proceeds more slowly, over much longer time scales. Both of these
mechanisms help the vessel adapt to keep shear stress constant. Through our model, we
can explain shear stress homeostasis in terms of dynamically evolving NO concentration,
arterial opening angle, and wall thickness; as well as the static mechanical properties of the
media – all of which are experimentally accessible quantities. Our most important results
are Figures 10 and 12 which show the absence (presence) of regulation at early (late) times,
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the importance of the opening angle in determining the homeostatic shear stress, and the
function of NO in generally keeping the shear stress within a narrow range.

Our model generally reproduces the results from flow-alteration experiments on rabbit
and canine carotid arteries. In particular, for a flow rate Q, it predicts a Q1/3 scaling for the
lumen radius for long times, resulting in the shear stress remaining constant with respect to
Q as the arterial lumen expands. The result is exact for the case of pure growth (Fig. 10)
and approximate when both vasodilation and growth are present (Fig. 12). When arteries
are subjected to increased flow for only a short time, they can vasodilate to reduce shear
stress (Fig. 13). However, when their capacity to dilate is reduced through NO inhibition,
shear stress rapidly increases with flow rate (Fig. 9).

Although our model has explained and integrated many types of flow-alteration experi-
ments, it also has several deficiencies. First, we have neglected changes in the composition in
the media as remodeling occurs. In this respect, mixture models developed by authors such
as Karšaj and Humphrey (2012) still provide the gold standard. Second, our results assume
that the artery consists of a single layer (the media) and ignores the adventitia. Including an
NO-dependent opening angle for a two-layer model would be challenging because the opening
angles for the media and adventitia are different. Note also that the results of Lemma 1 would
no longer hold with the addition of a second mechanically significant layer. Third, although
we calibrated our model with data in the form of lumen radii and media cross-sectional areas
for different flow rates, the experiments that we surveyed did not monitor the opening angle.
Knowledge of the opening angle would yield more accurate values for ωmin and ωmax and a
better representation of the stress-free state. Fourth, the “no-bending” assumption in section
2 is a strong one: in practice, the reference radii B and C in Fig. 3 could change with open-
ing angle. Inferring the geometry of an underlying stress-free reference configuration as an
artery grows, adapts, and remodels, still poses a significant challenge for theorists. Finally,
our modeling of PDGF-induced growth is overly simple. We captured its effect through an
algebraic relationship between the flow rate and the growth tensor, ignoring its transport
(Fok and Sanft, 2017), production (Irons and Humphrey, 2020) and interactions with other
signaling agents (Yu et al., 2012).

In summary, we have presented a 2D biomechanical arterial model that is capable of
reproducing the morphological results from a wide range of flow-alteration experiments in
carotid arteries. This model could be used as a building block to describe more complicated
phenomena such as flow impairment in media sclerosis (Lanzer et al., 2021), chronic inward
remodeling in atherosclerosis (Glagov et al., 1987), or tissue remodeling in hypertension (Riz-
zoni et al., 1996).
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I. Karšaj and J. D. Humphrey. A multilayered wall model of arterial growth and remodeling.
Mechanics of materials, 44:110–119, 2012.

J. R. Lancaster. Simulation of the diffusion and reaction of endogenously produced nitric
oxide. Proceedings of the National Academy of Sciences, 91(17):8137–8141, 1994.

B. L. Langille, M. P. Bendeck, and F. W. Keeley. Adaptations of carotid arteries of young
and mature rabbits to reduced carotid blood flow. American Journal of Physiology-Heart
and Circulatory Physiology, 256(4):H931–H939, 1989.

P. Lanzer, F. M. Hannan, J. D. Lanzer, J. Janzen, P. Raggi, D. Furniss, M. Schuchardt,
R. Thakker, P.-W. Fok, J. Saez-Rodriguez, et al. Medial arterial calcification: Jacc state-
of-the-art review. Journal of the American College of Cardiology, 78(11):1145–1165, 2021.

R. D. B. Lee and B. L. Langille. Arterial adaptations to altered blood flow. Canadian journal
of physiology and pharmacology, 69(7):978–983, 1991.

S. E. Lindsey, J. T. Butcher, and H. C. Yalcin. Mechanical regulation of cardiac development.
Frontiers in physiology, 5:318, 2014.

T. Matsumoto, M. Tsuchida, and M. Sato. Change in intramural strain distribution in rat
aorta due to smooth muscle contraction and relaxation. American Journal of Physiology-
Heart and Circulatory Physiology, 271(4):H1711–H1716, 1996.

S. J. Mousavi, S. Farzaneh, and S. Avril. Patient-specific predictions of aneurysm growth
and remodeling in the ascending thoracic aorta using the homogenized constrained mixture
model. Biomechanics and modeling in mechanobiology, 18(6):1895–1913, 2019.

S. Najibi and R. A. Cohen. Enhanced role of k+ channels in relaxations of hypercholes-
terolemic rabbit carotid artery to no. American Journal of Physiology-Heart and Circula-
tory Physiology, 269(3):H805–H811, 1995.

32



S. O’Brien, N. J. Kent, M. Lucitt, A. J. Ricco, C. McAtamney, D. Kenny, and G. Meade.
Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-
assay device: matching whole blood dynamic viscosity. IEEE transactions on biomedical
engineering, 59(2):374–382, 2011.

A. Rachev. Theoretical study of the effect of stress-dependent remodeling on arterial geom-
etry under hypertensive conditions. Journal of biomechanics, 30(8):819–827, 1997.

A. Rachev and K. Hayashi. Theoretical study of the effects of vascular smooth muscle
contraction on strain and stress distributions in arteries. Annals of biomedical engineering,
27(4):459–468, 1999.

J. K. Raines, M. Y. Jaffrin, and A. H. Shapiro. A computer simulation of arterial dynamics
in the human leg. Journal of biomechanics, 7(1):77–91, 1974.

A. B. Ramachandra, J. D. Humphrey, and A. L. Marsden. Gradual loading ameliorates
maladaptation in computational simulations of vein graft growth and remodelling. Journal
of The Royal Society Interface, 14(130):20160995, 2017.

D. Rizzoni, E. Porteri, M. Castellano, G. Bettoni, M. L. Muiesan, P. Muiesan, S. M. Giulini,
and E. Agabiti-Rosei. Vascular hypertrophy and remodeling in secondary hypertension.
Hypertension, 28(5):785–790, 1996.

E. K. Rodriguez, A. Hoger, and A. D. McCulloch. Stress-dependent finite growth in soft
elastic tissues. Journal of biomechanics, 27(4):455–467, 1994.

P. Struijk, P. Stewart, K. Fernando, V. Mathews, T. Loupas, E. Steegers, and J. Wladimiroff.
Wall shear stress and related hemodynamic parameters in the fetal descending aorta de-
rived from color doppler velocity profiles. Ultrasound in medicine & biology, 31(11):1441–
1450, 2005.

F. Tronc, M. Wassef, B. Esposito, D. Henrion, S. Glagov, and A. Tedgui. Role of no in flow-
induced remodeling of the rabbit common carotid artery. Arteriosclerosis, thrombosis, and
vascular biology, 16(10):1256–1262, 1996.

A. Valentin and J. Humphrey. Evaluation of fundamental hypotheses underlying constrained
mixture models of arterial growth and remodelling. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 367(1902):3585–3606, 2009.

M. W. Vaughn, L. Kuo, and J. C. Liao. Estimation of nitric oxide production and reaction-
rates in tissue by use of a mathematical model. American Journal of Physiology-Heart and
Circulatory Physiology, 274(6):H2163–H2176, 1998.

C. Williams, J. Liao, E. Joyce, B. Wang, J. Leach, M. Sacks, and J. Wong. Altered structural
and mechanical properties in decellularized rabbit carotid arteries. Acta biomaterialia, 5
(4):993–1005, 2009.

33



J. Yu, Y. Zhang, X. Zhang, R. D. Rudic, P. M. Bauer, D. C. Altieri, and W. C. Sessa.
Endothelium derived nitric oxide synthase negatively regulates the pdgf-survivin pathway
during flow-dependent vascular remodeling. PloS one, 7(2):e31495, 2012.

A Intracellular-Extracellular NO Model

One possible way to extend eq. (37) to include dependence on intracellular NO, v, is through
the system of partial differential equations

∂u

∂t
= DNO∇2u− ku− σu,

∂v

∂t
= σu− k̂v,

where σ is the rate at which NO is internalized by smooth muscle cells and k̂ is the degradation
rate inside smooth muscle cells. Assuming σ � k, the equations at steady state become

DNO∇2u− ku = 0, (82)

v = σu/k̂,

and intracellular and extracellular NO are proportional to each other. If k and σ are com-
parable, or if σ > k, k in eq. (82) must be replaced by k+ σ. If we postulate a Hill function
relationship between the opening angle ω and intracellular NO concentration

ω = ωmax − (ωmax − ωmin)
〈v〉M

V M + 〈v〉M
,

for some constant V , then

ω = ωmax − (ωmax − ωmin)
(σ/k̂)M〈u〉M

V M + (σ/k̂)M〈u〉M
,

= ωmax − (ωmax − ωmin)
〈u〉M

UM + 〈u〉M
,

with UM = V M(k̂/σ)M and we have rederived eq. (42). However, this calculation assumes
linear kinetics for the u→ v transition and σ � k. The reality is probably more complicated
and further work must be done to see if these assumptions are justified. A starting point for
calculating σ is by estimating the flux of NO into a smooth muscle cell (Vaughn et al., 1998).
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