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Abstract

In this paper we consider the problem of recovering the drift function of a Brownian
motion from its distribution of first passage times, given a fixed starting position. Our
approach uses the backward Kolmogorov equation for the probability density function
(pdf) of first passage times. By taking Laplace Transforms, we reduce the problem to
calculating the coefficient function in a second order differential equation (ODE). The
inverse problem effectively amounts to finding the convection coefficient of the ODE,
given the transformed pdf for positive values of the Laplace variable.

Our first contribution is to find series solutions to the forward problem and show
that the associated operator for the linearized inverse problem is compact. Our second
contribution is numerical: for low noise levels, we reconstruct simple drift functions
by applying Tikhonov regularization and performing a Newton iteration (Levenberg-
Marquardt method). For larger noise, our solution displays large oscillations about the
true drift.
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1 Introduction

In this paper we shall be concerned with finding the drift function of a Brownian process with
constant diffusion coefficient, given the first passage time distribution (FPTD). Consider a
particle that undergoes a random walk, Y (t), parametrized by a drift function U(Y ) and a
constant diffusivity on the interval [0, 1]. Let the starting position be Y (t = 0) ≡ x where
0 ≤ x < 1. The particle cannot cross Y = 0 where there is a “reflecting” boundary condition.
When the value of Y first reaches 1, the time is recorded. Upon repeating the process many
times, always starting at the same position x, one obtains a distribution of first passage
times. From this data, can one infer the drift function U?

We can get some intuition for this problem by considering the governing stochastic dif-
ferential equation explicitly,

dY (t) = U(Y (t))dt+
√
2DdW (t), (1)
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where Y ∈ R, dW is the Wiener measure and D is a constant diffusivity. In the case where
D → 0, we have the deterministic equation Ẏ = U(Y ). The first passage time, or exit time
Te is given by

Te =

∫ 1

x

dx′

U(x′)
, (2)

and it is clear in this limit that from a single exit time, no pointwise information about U
can be gained: there are many functions U(·) that satisfy (2) for a given Te. If D > 0, we
have a distribution of first passage times instead of a single time; now there is at least a
possibility that some more information about U can be extracted.

The study of these types of exit time problems is motivated by experiments that involve
the dissociation of receptor-ligand complexes [13, 15, 16, 20]. In these experiments, the force
on a complex is increased until rupture occurs at a critical force. The experiment is repeated
many times to obtain a distribution of rupture forces; thermal fluctuations ensure the rupture
does not occur at a single fixed force. The objective of these experiments is to infer some
quantitative features of the bond such as its dissociation constant. In the theoretical modeling
of such systems, the rupture of the complex is assumed to proceed along a one-dimensional
bond coordinate. Specifically, the problem can be treated as escape from a potential well
[2, 8, 9, 22]. Time dependent potentials (corresponding to the explicit application of a force
ramp or a time-dependent drift function) can also be included [12]. However, in this paper
we restrict ourselves to time independent potentials wells/drift functions.

One framework for approaching these stochastic inverse problems is to use the (deter-
ministic) backward partial differential equation for the FPTD [14]. After taking Laplace
Transforms, the problem amounts to calculating the coefficient function in a second order
differential equation. Mathematically, these types of problems have a long history, dating
back to Borg [3]. The aim of inverse Sturm-Liouville problems is to reconstruct the coef-
ficient in the differential operator from its eigenvalues. Although spectra can be generated
from the exit time distribution in certain cases, in our problem, we do not have direct access
to eigenvalues. Nevertheless, a large body of work exists that discusses both analytic [26, 4]
and numerical methods [28, 29] for coefficient reconstruction from its eigenvalues.

There are also several variations of the stochastic inverse problem where the quantity to
be reconstructed and/or given data are different. We mention here a few recent theoretical
and experimental studies. The assumption of constant D in eq. (1) can be relaxed and
could be inferred along with U – this case was studied in [1]. One could also infer the drift
and diffusivity from knowledge of particle positions. Förster Resonance techniques applied
to ensembles of folding proteins [24] give time snapshots of the probability distribution of Y
from which it may be possible to infer U . In [25], functional forms of 2D drifts and a constant
diffusivity were inferred from measurements of particle positions using Bayesian techniques.

In this paper, we we propose a Levenberg-Marquardt method to recover the drift func-
tion from the FPTD. The method is based on repeatedly solving a first-kind linear integral
equation using regularization techniques. Unlike previous work [11], we do not a priori as-
sume that the drift function can be decomposed into a pre-defined set of basis functions. At
each stage, the regularization parameter is calculated using a method similar to Morozov’s
discrepency principle.
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In section 2, we derive the Backward Kolmogorov equation that governs the exit time
distribution in terms of a spatially dependent drift function. This equation defines a map
from the drift to the exit time distribution. We also state the forward and inverse problems.
In section 3 we discuss our algorithm generally and prove compactness of the linearized map
through five lemmas. In section 4 we discuss more numerical aspects of our algorithm and the
process of generating artificial data to test our method. Artificial data is required because in
practice generating FPTDs by solving (1) was too time consuming; accurate approximation
of the drift relied on having data with extremely low levels of noise. In section 5, we present
our numerical results. Finally, we summarize our findings with a conclusion in section 6.

2 Statement of Forward and Inverse Problems

Consider a Brownian particle that starts at a position 0 ≤ x < 1 and undergoes a Brownian
motion Y (t) parameterized by a spatially-dependent drift function U(X) and unit diffusivity.
We assume there is a hard wall at Y = 0 and if the particle exits at Y = 1, the time of exit
is recorded. When this process is repeated many times with the same starting position x, we
obtain a first passage time distribution (FPTD). In this section, we derive an equation for
the FPTD in terms of the drift U and then state the forward and inverse problems.

The probability that the particle is in within the interval (y, y+dy) at time t, given that
it was at position x at time s is given by Kolmogorov’s forward equation [14]:

∂P (y, t| x, s)
∂t

= L(y)P (y, t| x, s) ≡ − ∂

∂y
[U(y)P (y, t| x, s)] + ∂2P (y, t| x, s)

∂y2
,

which is valid for t ≥ s. This equation is subject to the no flux and absorbing boundary

conditions
[

−U(y)P (y, t| x, s) + ∂P (y,t| x,s)
∂y

]
∣

∣

∣

y=0
= 0, P (1, t| x, s) = 0 and initial condition

P (y, s| x, s) = δ(y − x). (3)

Kolmogorov’s backward equation can also be written for the same process (1), but in terms of
initial position and time (x, s). The backward equation is formulated in terms of the adjoint
operator L∗(x):

−∂P (y, t| x, s)
∂s

= L∗(x)P (y, t| x, s) ≡ U(x)
∂P (y, t| x, s)

∂x
+

∂2P (y, t| x, s)
∂x2

, (4)

which is valid for s ≤ t. This equation subject to the corresponding adjoint boundary

conditions ∂P (y,t| x,s)
∂x

∣

∣

∣

x=0
= 0, P (y, t| 1, s) = 0 and identical initial condition (3).

For time homogeneous processes, the probability distribution function only depends on
the difference between final and initial times. Therefore P (y, 0| x, s) = P (y,−s| x, 0). Fur-
thermore, we see that (4) is valid for s ≤ t = 0 and the time derivative can be rewritten
as

−∂P (y, 0| x, s)
∂s

= −∂P (y,−s| x, 0)
∂s

=
∂P (y,−s| x, 0)

∂(−s) .
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Finally, making the transformation s→ −t (so that now t ≥ 0), we have

∂P (y, t| x, 0)
∂t

= U(x)
∂P (y, t| x, 0)

∂x
+

∂2P (y, t| x, 0)
∂x2

. (5)

The survival probability S(x, t) is the probability that the particle is “alive” at time t
(the particle “dies” when it exits) given that it started at position x. The survival probability

comes from integrating over all possible current positions y: S(x, t) =
∫ 1

0
P (y, t| x, 0)dy with

S(x, 0) = 1 since the particle is always alive at t = 0; therefore the survival probability
also obeys equation (4). In fact, the Laplace Transformed survival probability S̃(x, λ) =
∫∞
0

e−λtS(x, t)dt satisfies

λS̃(x, λ)− 1 = L∗(x)S̃(x, λ), (6)

∂S̃(x, λ)

∂x

∣

∣

∣

∣

∣

x=0

= 0, (7)

S̃(1, λ) = 0. (8)

The exit time distribution, given that the particle started at position x, w(x, t) can be
calculated in terms of the survival probability S(x, t). By definition, the probability of first
exit in the time interval (t, t + dt) is given by w(x, t)dt. In this situation, the particle has
survived until time t but dies at time t+dt. Therefore S(x, t)− S(x, t+dt) = w(x, t)dt and

w(x, t) = −∂S(x,t)
∂t

. Their Laplace Transforms are related through

w̃(x, λ) = −λS̃(x, λ) + 1. (9)

Upon multiplying both sides of (6) by −λ and using (9), we have

d2w̃(x, λ)

dx2
+ U(x)

dw̃(x, λ)

dx
− λw̃(x, λ) = 0, (10)

with corresponding boundary conditions derived from (7) and (8)

w̃x(0, λ) = 0, (11)

w̃(1, λ) = 1. (12)

In the forward problem, we are given U(x) ∈ C[0, 1] and the problem is to solve the dif-
ferential equation (10) to find w̃(x, λ) ∈ C2[0, 1] for 0 ≤ x ≤ 1 regarding λ > 0 as a fixed
parameter. Since the eigenvalues of (10), (11) and the homogeneous form of (12) are strictly
negative, the solution to (10)-(12) exists uniquely for any λ ≥ 0.

For the inverse problem, we assume that the Brownian process discussed above has been
repeated many times from a starting point x0, yielding data wdata(x0, t) for a fixed, known,
x0 ∈ [0, 1) and t > 0. Upon Laplace Transforming, we obtain w̃(x0, λ) for λ > 0. The inverse
problem associated with (10)-(12) is to find U(x) ∈ C[0, 1] given w̃(x0, s) ∈ L2(0,∞). When
λ = 0, we have the trivial solution w̃(x0, 0) = 1; this simply means that

∫∞
0

w(x0, t)dt = 1,
as expected since w is a probability density function.

In the following sections, we will only refer to the Laplace-Transformed exit time distri-
bution w̃(x, λ). Therefore we drop the tilde accent: symbols such as w, δw and wdata all refer
to Laplace-Transformed quantities.
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3 Properties of the linearized map

Our numerical method is a Levenberg-Marquardt method, based on regularizing and then
solving a first-kind integral equation at every iteration. We first describe the method in an
abstract setting. Let A be the forward map of (10)-(12) so that A : U(·) 7→ w(x0, λ). Most
this section is devoted to proving basic properties of the linearized map.

To solve the inverse problem for given data wdata(x0, λ), we need to find a U ∈ C[0, 1]
such that

A[U ] = wdata(x0, λ).

This equation can be linearized about a guess U (k) so that small deviations δU (k) satisfy

J δU (k) = wdata(x0, λ)−A[U (k)] ≡ δw(k), (13)

where J is the Frechet derivative ofA at U = U (k) (and hence changes with every iteration k).
Below in Lemma 5, we show that J is a compact operator and so has an unbounded inverse.
Equations involving compact operators often give rise to ill-posed problems: therefore eq.
(13) may have multiple solutions or no solution at all. One way of remedying this problem

is to find a δU
(k)
αk

that minimizes a Tikhonov functional:

Find δU (k)
αk

:

∫ ∞

0

|J [δU (k)
αk

]− δw|2dλ+ αk

∫ 1

0

| δU (k)
αk

(x)|2dx = min, (14)

where αk is a small regularization parameter. The second integral represents a penalty term
which ensures that δU

(k)
αk cannot be too large. For noiseless data wdata(x0, λ), when αk → 0

in (14), it can be shown [18] that δU
(k)
αk converges to the least squares solution to (13).

Furthermore, the minimizer of (14) is unique in L2(0, 1) satisfying [23]

(J ∗J + αkI)δU (k)
αk

= J ∗δw(k), (15)

where I is the identity operator and J ∗ is the adjoint of J . Deciding on a “good’ choice
of αk in (15) at each step of the iteration is an open problem [10]; in our implementation,

given the (k − 1)st iterate U (k−1), note that U (k) = U (k−1) − δU
(k)
αk

is a function of αk. Its
value is chosen to minimize

∑

i[w(x0, λi;αk) − wdata(x0, λi)]
2 where λi is a (non-uniform)

discretization of [0,∞]. Further details are discussed in section 4. The numerical solution of
(15) forms the backbone of our algorithm. Solving for the Newton iterates δU (k) in (13) using
(15), along with a method for finding αk, constitutes the Levenberg-Marquardt algorithm.
Some convergence properties of this algorithm have been proved by Hanke in [19].

For concreteness, we now find the explicit form of J . Linearizing (10) about a known
solution {w(x, λ), U(x)}, small changes δU are related to small changes δw through

(

d2

dx2
+ U(x)

d

dx
− λ

)

δw(x, λ) = −dw(x, λ)
dx

δU(x). (16)

Since both w and w + δw must obey the boundary conditions (11) and (12), we have
δwx(0, λ) = 0 and δw(1, λ) = 0. Given δw(x, λ) for fixed x and λ > 0, we compute δU(x) by
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solving the first kind integral equation

δw(x, λ) = −
∫ 1

0

H(x, z, λ)
dw(z, λ)

dz
δU(z)dz ≡ J δU, (17)

where H is the Greens function for eq. (16).
In summary, given a Laplace-Transformed FPTD wdata(x, λ) and a known x, we first

make a guess for the drift, U (k). Using U (k), we solve the forward problem eq. (10)-(12) to
find A[U (k)] and compute δw(λ) = wdata(x, λ) − A[U (k)] for λ > 0. Regularizing and then
solving (17) then yields a δU which we use to update our guess. To implement our algorithm,
we need the form of the Greens function H(x, z, λ) in eq. (17). This is provided through the
following lemma.

Lemma 1. Let U ∈ C[0, 1]. The Greens function H(x, z, λ) that satisfies

∂2H

∂x2
+ U(x)

∂H

∂x
− λH = δ(x− z)W (x), (18)

∂H

∂x

∣

∣

∣

∣

x=0

= 0, (19)

H(x = 1) = 0, (20)

W (x) = exp

(

−
∫ x

0

U(x′)dx′
)

, (21)

has the form

H(x, z, λ) =



















w0(x, λ)w1(z, λ)

w0(0, λ)
, x < z,

w0(z, λ)w1(x, λ)

w0(0, λ)
, x ≥ z,

(22)

where w0(x, λ) satisfies (10)-(12) and the second linearly independent solution w1(x, λ) sat-
isfies the same ordinary differential equation (10) but with modified boundary conditions
dw1

dx

∣

∣

∣

x=0
= 1 and w1(1, λ) = 0. Moreover, H(x, z, λ) exists (is bounded) for 0 ≤ λ <∞.

Proof. By writing (10) in self adjoint form, we deduce that the Greens function H must
satisfy

∂

∂x

(

1

W (x)

∂H

∂x

)

− λH(x, z, λ)

W (x)
= δ(x− z),

which is identical to eq. (18). Let w1(x, λ) be a solution to (10) that satisfies dw1(x,λ)

dx

∣

∣

∣

x=0
= 1,

w1(1, λ) = 0 and is linearly independent from w0(x, λ). Then we can write H as

H(x, z, λ) =







Aw0(x, λ), x < z,

Bw1(x, λ), x ≥ z,
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and H satisfies the boundary conditions (19) and (20). In addition, at x = z, H must be
continuous at and its derivative must jump by W (z). These conditions yield

A =
w1(z, λ)W (z)

w0(z, λ)w1,z(z, λ)− w1(z, λ)w0,z(z, λ)
, (23)

B =
w0(z, λ)W (z)

w0(z, λ)w1,z(z, λ)− w1(z, λ)w0,z(z, λ)
, (24)

where wj,z ≡ dwj

dz
. Finally, by Abel’s identity,

w0(z, λ)w1,z(z, λ)− w1(z, λ)w0,z(z, λ) = c(λ) exp

(

−
∫ z

0

U(x)dx

)

, (25)

for some c(λ); evaluating (25) at z = 0 gives c(λ) = w0(0, λ). Hence (23) and (24) imply
A = w1(z, λ)/w0(0, λ) and B = w0(z, λ)/w0(0, λ).

Because U ∈ C[0, 1], w0,1(x, λ) in eq. (22) always exist for 0 ≤ x ≤ 1 and 0 ≤ λ < ∞.
Furthermore w0(0, λ) is always non-zero: if w0(0, λ) = 0, the boundary condition (11) along
with (10) implies w(x, λ) ≡ 0 ∀x ∈ [0, 1] so that the right boundary condition (12) cannot
be satisfied. Therefore H(x, z, λ) is bounded for x, z ∈ [0, 1] and 0 ≤ λ <∞. (We prove that
H(x, z, λ) is also finite at λ =∞ as part of lemma 4.)

In the case where U = 0, we have an explicit form for the Green’s function, whose
properties are used extensively in lemmas 3, 4 and 5.

Lemma 2. The Green’s function satisfying

∂2G(x, z, λ)

∂x2
− λG(x, z, λ) = δ(x− z),

∂G(x, z, λ)

∂x

∣

∣

∣

∣

x=0

= 0,

G(1, z, λ) = 0,

for 0 ≤ x, z ≤ 1 has the following properties:

(a) Gx(x, z, λ) = Gx(1− z, 1− x, λ).

(b) For all λ > 0, |G(x, z, λ)| ≤ 2e−
√

λ|z−x|
√
λ

min(1,
√
λ) ≤ 2/

√
λ.

(c) For all λ > 0, |Gx(x, z, λ)| ≤ 2e−
√
λ|z−x|min(1,

√
λ) ≤ 2.

Proof. (a) Solving explicitly, we have

G(x, z, λ) =



















− 1√
λ

sinh
√
λ(1− z) cosh

√
λx

cosh
√
λ

, x < z,

− 1√
λ

sinh
√
λ(1− x) cosh

√
λz

cosh
√
λ

, x ≥ z,

(26)
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Gx(x, z, λ) =



















−sinh
√
λ(1− z) sinh

√
λx

cosh
√
λ

, x < z,

cosh
√
λ(1− x) cosh

√
λz

cosh
√
λ

, x ≥ z,

(27)

and Gx(x, z, λ) = Gx(1− z, 1 − x, λ) follows immediately.

(b) and (c): These results follow immediately from eqs. (26) and (27) and using cosh z ≤ ez,
sinh z ≤ ez min(1, z) and sech z ≤ 2e−z for z ≥ 0.

Lemma 3. Let |U(x)| < Ω < 1/2 for all 0 ≤ x ≤ 1. Then a series solution to (10)-(12)
exists in the form

w(x, λ) =

∞
∑

i=0

wi(x, λ), (28)

where

w0(x, λ) =
cosh

√
λx

cosh
√
λ
, (29)

wn(x, λ) =
(−1)n

√
λ

cosh
√
λ

∫

(0,1)n
dzG(x, z1, λ) sinh

√
λzn

n−1
∏

m=1

G′(zm, zm+1, λ)

n
∏

m=1

U(zm),(30)

for n ≥ 1 with the convention
∏0

k=1Bk ≡ 1 for any sequence {Bk}. The Green’s function
G(x, z, λ) is defined in (26), primes denote differentiation with respect to the function’s first
argument and dz ≡∏n

m=1 dzm.

Proof. Using (26), we can rewrite (10) in terms of an integro-differential equation

w(x, λ) =
cosh

√
λx

cosh
√
λ
−
∫ 1

0

dz1G(x, z1, λ)U(z1)
dw(z1, λ)

dz1
. (31)

Substituting (28) into (31), we find that w0(x, λ) =
cosh

√
λx

cosh
√
λ
and wj(x, λ) = −

∫ 1

0
G(x, z1, λ)

dwj−1(z1,λ)

dz
dz1

for j ≥ 1. These relations imply (29)-(30). To finish the proof, we now show that the series
(28) is convergent. From lemma 2(b) and (c), we have

|w0(x, λ)| ≤ 1,

|wn(x, λ)| ≤
√
λ

cosh
√
λ

∫

(0,1)n
dz|G(x, z1, λ)| sinh

√
λzn

n−1
∏

m=1

|G′(zm, zm+1, λ)|
n
∏

m=1

|U(zm)|

≤
√
λ tanh

√
λ

(

2√
λ

)

2n−1Ωn ≤ (2Ω)n, n ≥ 1.

Therefore,
∞
∑

n=0

|wn(x)| ≤
1

1− 2Ω
<∞,
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and the partial sum
∑N

n=0 |wn| is bounded from above and increasing. It follows that
∑

|wn(x, λ)| converges and therefore so does
∑

wn(x, λ).

In light of lemma 3, it is now straightforward to show that the inverse problem (10)-(12)
does not admit a unique solution U ∈ C[0, 1]. This is proved in the next two corollaries.
Compactness of the linearized map J is established in lemmas 4 and 5.

Definition 1. For any function U(x), fix ∆ ∈ (0, 1) and define U∆(x) as

U∆(x) =







U(x), x /∈
(

1
2
−∆, 1

2
+∆

)

,

U(1 − x), x ∈
(

1
2
−∆, 1

2
+∆

)

.
(32)

Note that U∆(x) is not necessarily continuous even if U(x) is. However U∆(x) is always
piecewise continuous in (0, 1) if U(x) is: see Figure 1.

Corollary 1 (Global non-uniqueness). Assume that there exists a constant Ω < 1/2 such
that |U(z)| < Ω ∀z ∈ [0, 1]. Let the starting position 0 ≤ x < 1/2. Then there is a ∆ > 0 such
that w(x, λ) is invariant if the drift U(x) in equation (10) is replaced by U∆(x). Therefore,
when 0 ≤ x < 1/2, the two drift coefficients U(x) and U∆(x) give identical w(x, λ) for any λ
and therefore identical first passage time distributions w(x, t) for all t.

Proof. Let 0 < ∆ < 1/2 − x. We show that (29)-(30), and therefore (28) is invariant when
U is replaced by U∆. We partition the range of integration (0, 1)n into two sets

S1 = (1/2−∆, 1/2 + ∆)n ,

S2 = (0, 1)n \ S1,

so that for n ≥ 1,
wn(x) = I1 + I2,

where

I1 =
(−1)n

√
λ

cosh
√
λ

∫

S1

dz
[

G(x, z1, λ) sinh
√
λzn

]

n−1
∏

m=1

G′(zm, zm+1, λ)
n
∏

m=1

U(zm), (33)

I2 =
(−1)n

√
λ

cosh
√
λ

∫

S2

dz
[

G(x, z1, λ) sinh
√
λzn

]

n−1
∏

m=1

G′(zm, zm+1, λ)
n
∏

m=1

U(zm), (34)

and dz ≡
∏n

j=1 dzj . Clearly, I2 is invariant when U is replaced with U∆ since U(x) = U∆(x)
when x ∈ (0, 1/2 − ∆) ∪ (1/2 + ∆, 1). In I1 where x < zi for i = 1, . . . , n, we substitute
ẑi = 1 − zn−i+1 (so x < ẑi for i = 1, . . . , n) and immediately obtain

∫

S1
dẑ =

∫

S1
dz. The

terms in the integrand then transform as follows:

•

G(x, z1, λ) sinh
√
λzn = − 1√

λ

sinh
√
λ(1− z1) cosh

√
λx

cosh
√
λ

sinh
√
λzn

= G(x, ẑ1, λ) sinh
√
λẑn, (35)

using (26). This equation requires x < ẑ1 and x < z1.
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Figure 1: The functions U(z) and U∆(z) defined by eq. (32) generate identical FPTDs.
U∆ is always piecewise continuous if U is continuous. However, U∆(z) may or may not be
continuous. The starting position x must be to the left of the interval (1

2
− ∆, 1

2
+ ∆) to

guarantee non-uniqueness of U(x) otherwise equation (35) does not hold.

• The products of derivatives of G satisfy

n−1
∏

m=1

G′(zm, zm+1, λ) =

n−1
∏

m=1

G′(1− ẑn−m+1, 1− ẑn−m, λ),

=

n−1
∏

m=1

G′(ẑn−m, ẑn−m+1, λ), (using Lemma 2(a)) ,

=

n−1
∏

m=1

G′(ẑm, ẑm+1, λ).

• Finally, products of U satisfy

n
∏

m=1

U(zm) =

n
∏

m=1

U∆(ẑm).

Since U can be replaced by U∆ in (34) we have

wn(x) =
(−1)n

√
λ

cosh
√
λ

∫

(0,1)n
dẑ
[

G(x, ẑ1) sinh
√
λẑn

]

n−1
∏

m=1

G′(ẑm, ẑm+1, λ)
n
∏

m=1

U∆(ẑm), (36)

and so by comparing (36) with (30), we see that wn(x) is invariant with respect to the
transformation U → U∆.

For a general U ∈ C[0, 1], the transformation U → U∆ will yield a U∆ that is discontinuous
(see Fig. 1(a)) and therefore inadmissible – recall we are looking for continuous U to the

10



inverse problem (10)-(12). However, there are also infinitely many drift functions where U
and U∆ are both continuous as illustrated in Fig. 1(b) and in the next corollary. In the
extreme case where x = 0, we can take ∆ = 1

2
: U(x) and U(1 − x) are both continuous and

generate identical FPTDs.
Corollary 1 complements the results in [1]. Theorem 1 in [1] implies that if the diffusivity

in the Brownian motion is a known constant and the drift U is known on (0, X) where
X ≥ xb ≡ 1/2 (using the notatation in [1]), then knowledge of w(x, λ) uniquely determines
U on [X, 1], where the measurement point x ∈ [0, 1]\Λ and Λ is a countable set of measure
zero in (0,1). This does not contradict corollary 1. For X ≥ 1/2, the authors in [1] essentially
proved that this a priori knowledge of U on (0, X) resolves the U vs. U∆ ambiguity. On the
other hand, corollary 1 proves that when X < 1/2, the a priori knowledge is insufficient to
determine U uniquely. For example, we can take ∆ = 1/2−X and x < X and use corollary
1 to construct different U and U∆ that agree for X < 1/2. One could also consider the case
where the measurement point x = X , U is known to the left of the measurement point but
unknown to the right, corresponding to Theorem 2 in [1]. Then the theorem states that a
sufficient condition for U to be uniquely determined in (X, 1) is that X > 1/2. Corollary 1
shows that this condition is also necessary.

Corollary 2 (Non-uniqueness for continuous perturbations). Let the starting position x < 1
2

and fix ∆ < 1
2
− x. Let U be a continuous function such that U(1

2
− ∆) = U(1

2
+ ∆) and

U(x) 6= U(1 − x) when x ∈ [1
2
− ∆, 1

2
+ ∆]. Let w(x, λ) be the Laplace-Transformed FPTD

for U . Then if U is perturbed by δU ≡ U∆(z)−U(z) ∈ C[0, 1], U and U + δU have identical
FPTDs.

Proof. U∆ and U generate the same w(x, λ) and U∆ = U + δU .

Before we show compactness of the linearized operator J , we need an intermediate result.
We prove

Lemma 4. Let |U(z)| < Ω < 1/2 for all z and fix 0 ≤ x < 1. Then

∣

∣

∣

∣

∣

∣

∣

∣

H(x, z, λ)
dw(z, λ)

dz

∣

∣

∣

∣

∣

∣

∣

∣

L2(0,1)

=

{

∫ 1

0

∣

∣

∣

∣

H(x, z, λ)
dw(z, λ)

dz

∣

∣

∣

∣

2

dz

}1/2

≤ 4min(1, λ)e−
√
λ(1−x)

(1− 2Ω)2
.

where H(x, z, λ) is defined in lemma 1 and w(z, λ) satisfies (10)-(12).

Proof. We separate the proof into three steps. Below, we let ρ(λ) ≡ min(1,
√
λ) and make

frequent use of the inequalities sinh z ≤ min(1, z)ez, cosh z ≤ ez and sech z < 2e−z for z ≥ 0.

• First, we have

∣

∣

∣

∣

dw0(z, λ)

dz

∣

∣

∣

∣

=

√
λ sinh

√
λz

cosh
√
λ
≤ 2
√
λρ(λ) exp[−

√
λ(1− z)],

11



For m ≥ 1,

∣

∣

∣

∣

dwm

dz

∣

∣

∣

∣

≤ Ωm
√
λ

cosh
√
λ

∫

(0,1)n
sinh
√
λzm|G′(z, z1, λ)|

m−1
∏

k=1

|G′(zk, zk+1, λ)|dz,

≤ 2m+1Ωm
√
λρm+1

∫

(0,1)n
exp

(

−
√
λ

[

1 + |z1 − z|+
m−1
∑

k=1

|zk+1 − zk| − |zm|
])

dz,

≤ (2Ωρ)m × 2ρ
√
λ exp[−

√
λ(1− z)],

with the convention
∑0

k=1Bk ≡ 1 for any sequence {Bk}. Therefore
∣

∣

∣

∣

dw(z, λ)

dz

∣

∣

∣

∣

≤
∞
∑

i=0

∣

∣

∣

∣

∂wi

∂z

∣

∣

∣

∣

≤ 2ρ
√
λe−

√
λ(1−z)

1− 2Ωρ
≤ 2
√
λmin(1,

√
λ)e−

√
λ(1−z)

1− 2Ω
. (37)

• Second, the Greens function H(x, z, λ) obeys (18) which we write as

Hxx − λH = δ(x− z)W (x)− U(x)Hx(x, z, λ). (38)

We can write the solution to (38) in terms of the Greens function for U = 0, G(x, z, λ):

H(x, z, λ) =

∫ 1

0

G(x, x′, λ)δ(x′ − z)W (x′)dx′ −
∫ 1

0

G(x, x′, λ)U(x′)Hx′(x′, z, λ)dx′,

= G(x, z, λ)W (z)−
∫ 1

0

G(x, x′, λ)U(x′)Hx′(x′, z, λ)dx′. (39)

We look for a series solution to this integro-differential equation in the formH(x, z, λ) =
∑∞

m=0Hm(x, z, λ). We follow a similar procedure to the proof of lemma 3 and substitute
this series into (39) to find

H0(x, z, λ) = G(x, z, λ)W (z),

Hm(x, z, λ) = (−1)mW (z)

∫

(0,1)m
G(x, x1, λ)G

′(xm, z, λ)
m−1
∏

k=1

G′(xk, xk+1, λ)
m
∏

k=1

U(xk)dx

for m ≥ 1, where dx ≡∏m
k=1 dxk and primes denote differentiation with respect to the

function’s first argument. Using lemma 2(b) and (c) and |W (z)| < 1 (see the definition
in eq. (21)),

|H0(x, z, λ)| ≤ |G(x, z, λ)| ≤ 2ρ√
λ
e−

√
λ|z−x|,

|Hm(x, z, λ)| ≤
2m+1Ωmρm+1

√
λ

∫

(0,1)m
exp

(

−
√
λ

[

|x1 − x| +
m
∑

k=2

| xk − xk−1|+ |z − xm|
])

dx,

≤ (2Ωρ)m√
λ

2ρe−
√
λ|z−x|,
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for m ≥ 1. Therefore

|H(x, z, λ)| ≤
∞
∑

i=0

|Hi(x, z, λ)| ≤
2ρe−

√
λ|z−x|

√
λ(1− 2Ωρ)

≤ 2e−
√
λ|z−x|min(1,

√
λ)√

λ(1− 2Ω)
, (40)

• Finally, using (37) and (40),

∣

∣

∣

∣

H(x, z, λ)
dw(z, λ)

dz

∣

∣

∣

∣

2

≤ 16min(1, λ2)e−2
√
λ(1−x)

(1− 2Ω)4
, (41)

⇒
{

∫ 1

0

∣

∣

∣

∣

H(x, z, λ)
dw(z, λ)

dz

∣

∣

∣

∣

2

dz

}1/2

≤ 4min(1, λ)e−
√
λ(1−x)

(1− 2Ω)2
≡ C(x, λ). (42)

We finally arrive at a compactness result for J (see eq. (13)). This property of J means
that J −1 is unbounded and justifies the use of Tikhonov regularization via eq. (14).

Lemma 5. Let |U(z)| < Ω < 1/2 for all 0 ≤ z ≤ 1. Fix 0 ≤ x < 1 and U ∈ C[0, 1]. Define
J by

J [δU ] = −
∫ 1

0

H(x, z, λ)
dw(z, λ)

dz
δU(z)dz, 0 ≤ λ ≤ ∞, (43)

where H is defined by (22) and w satisfies (10)-(12). Then J maps bounded subsets of
L2(0, 1) to relatively compact subsets in L2(0,∞). Hence J is a compact operator from
L2(0, 1) to L2(0,∞).

Proof. First, we show that J maps functions from L2(0, 1) to functions in L2(0,∞). Using
Schwarz’s inequality, we see that

|J [δU ]| ≤
(

∫ 1

0

∣

∣

∣

∣

H(x, z, λ)
dw(z, λ)

dz

∣

∣

∣

∣

2

dz

)1/2
(
∫ 1

0

| δU(z)|2dz
)1/2

= C(x, λ)||δU ||L2(0,1).

(44)

where C(x, λ) is defined in eq. (42). This function is square integrable since

||C(x, λ)||2L2(0,∞) ≤
16

(1− 2Ω)4

∫ 1

0

λ2e−2
√
λ(1−x)dλ+

16

(1− 2Ω)4

∫ ∞

1

e−2
√
λ(1−x)dλ,

≤ 16

(1− 2Ω)4

∫ ∞

0

(λ2 + 1)e−2
√
λ(1−x)dλ,

⇒ ||C(x, λ)||L2(0,∞) ≤
4

(1− 2Ω)2

[

15

4(1− x)6
+

1

2(1− x)2

]1/2

<∞. (45)

Now we show that J maps bounded subsets to relatively compact subsets. Let Q be a
bounded subset of L2(0, 1) and let δU ∈ Q. Then there is a constant C1 such that

||δU ||L2(0,1) < C1, ∀δU ∈ Q. (46)
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By showing that J [Q] is bounded and equicontinuous, we prove that it is relatively compact
through the Frechet-Kolmogorov theorem [6], an extension of the Arzela-Ascoli theorem for
for Lp spaces. (Recall that L is equicontinuous in Lp(0,∞) if ∀ε > 0, ∃δ > 0 such that
∀ |h| < δ =⇒ ||g(λ+ h)− g(λ)||Lp[0,∞] < ε ∀g ∈ L.)

• J [Q] is bounded: From (44) and (45), ||J [δU ]||L2(0,∞) < ||C(x, λ)||L2(0,∞)||δU ||L2(0,1) ≡
C2 <∞. Hence J [Q] is bounded in L2(0,∞).

• J [Q] is equicontinuous in L2(0,∞): Note that we have

|H(x, z, λ+ h)wz(z, λ+ h)−H(x, z, λ)wz(z, λ)|
≤

∣

∣

∣
H(x, z, λ+ h)wz(z, λ + h)e

√
λ+h(1−x) −H(x, z, λ)wz(z, λ)e

√
λ(1−x)

∣

∣

∣
e−

√
λ+h(1−x)

+ |H(x, z, λ)wz(z, λ)|
(

1− e−(1−x)[
√
λ+h−

√
λ]
)

, (47)

which is proved in the appendix; see (58). Classical solutions to (10)-(12) for 0 ≤ λ <∞
are differentiable so that e

√
λ(1−x)dw(z,λ)

dz
∈ C([0, 1] × [0,∞)). The Greens function

H(x, z, λ) is defined in terms of classical solutions w0(x, λ) and w1(x, λ) in (22) so

that we also have H(x, z, λ) ∈ C([0, 1]× [0,∞)). Therefore H(x, z, λ)dw(z,λ)

dz
e
√
λ(1−x) ∈

C([0, 1]× [0,∞)). Since this function is bounded at λ =∞ by (41), it is also uniformly

continuous in [0, 1]× [0,∞]. Uniform continuity of H dw

dz
e
√
λ(1−x) implies that ∀η > 0,

∃δ (depending only on η and possibly x) such that ∀λ > 0, 0 ≤ z ≤ 1 and 0 < h < δ,

∣

∣

∣

∣

H(x, z, λ + h)
dw(z, λ+ h)

dz
e
√
λ+h(1−x) −H(x, z, λ)

dw(z, λ)

dz
e
√
λ(1−x)

∣

∣

∣

∣

< η. (48)

Furthermore, we have

e−(1−x)[
√
λ+h−

√
λ] > e−(1−x)[

√
λ+δ−

√
λ] > e−(1−x)

√
δ, (49)

for λ > 0. Inequalities (41) and (47)-(49) imply

∣

∣

∣

∣

H(x, z, λ+ h)
dw(z, λ+ h)

dz
−H(x, z, λ)

dw(z, λ)

dz

∣

∣

∣

∣

<



η +
4
(

1− e−(1−x)
√
δ
)

(1− 2Ω)2



 e−
√
λ(1−x),

(50)

uniformly in z. Now choose δ small enough so that 4(1−e−(1−x)
√

δ)
(1−2Ω)2

< η. It follows that

for each η > 0, ∃δ > 0, (depending on η and x, but not on λ and z) such that ∀λ > 0
and 0 < h < δ,

∣

∣

∣

∣

∣

∣

∣

∣

H(x, z, λ + h)
dw(z, λ+ h)

dz
−H(x, z, λ)

dw(z, λ)

dz

∣

∣

∣

∣

∣

∣

∣

∣

L2(0,1)

≤ 2ηe−
√
λ(1−x).
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Therefore, ∀δU ∈ L2(0, 1), λ ≥ 0 and η > 0, ∃δ independent of λ and z such that
0 < h < δ implies

|J [δU ](λ + h)− J [δU ](λ)|

=

∣

∣

∣

∣

∫ 1

0

[

H(x, z, λ+ h)
dw(z, λ+ h)

dz
−H(x, z, λ)

dw(z, λ)

dz

]

δU(z) dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

H(x, z, λ+ h)
dw(z, λ+ h)

dz
−H(x, z, λ)

dw(z, λ)

dz

∣

∣

∣

∣

∣

∣

∣

∣

L2(0,1)

||δU ||L2(0,1)

≤ 2ηC1e
−
√
λ(1−x),

Now fix ε > 0 and define ||e−
√
λ(1−x)||L2(0,∞) = 1√

2(1−x)
≡ C3. Choose η so that

2ηC1C3 < ε, with C1 defined through (46). Then for all |h| < δ,

||J [δU ](λ + h)− J [δU ](λ)||L2(0,∞) ≤ 2ηC1||e−
√
λ(1−x)||L2(0,∞)

= 2ηC1C3 < ε,

where we define J [δU ](·) = 0 whenever the argument is negative (this amounts to an

L2 extension of H dw

dz
for λ < 0). Hence J [Q] is equicontinuous in L2(0,∞).

Therefore Q is relatively compact and J is a compact operator.

4 Algorithm for drift reconstruction

Lemma 5 shows that the operator J is compact and so locally, the inverse problem (10)-(12)
is ill-posed: there may be no solution for δU (k), more than one solution or the solution may
not vary continuously with δw(k). In fact, we showed a stronger result in corollary 1: that
globally the inverse problem (10)-(12) is not unique. Here we implement a numerical method
based on regularizing and solving the first kind integral equation (17). The regularization
of the integral equation alleviates the issue of local non-uniqueness. Global non-uniqueness
can be partially remedied by only using Laplace-Transformed FPTDs that correspond to
symmetric drifts (U(z) = U(1 − z) ∀z ∈ [0, 1]) as data to the inverse problem (10)-(12).

We now describe the main steps of the Levenberg-Marquardt algorithm. We represent
the current guess for our solution U (k)(z) and the update δU(z) on a chebyshev grid {zj},
j = 1, . . . , N so that

(δ~U)j = δU(zj),

~Uj = U(zj).

In addition, for a fixed integer M , let

ui =
i− 1

M − 1
, λi =

ui

1− ui
, i = 1, . . .M − 1.
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The evaluation nodes λi are always finite.
Given a fixed 0 ≤ x0 < 1, noisy exit time data wdata(x0, λ) (generated using the method

described in section 4.1), a trial drift function ~U (0) a tolerance level, Tol and the maximum
number of iterations allowed, kmax, the algorithm to reconstruct U(·) from wdata(x0, λ) is as
follows:

Let k = 0. While || δ~U ||2 > Tol and k < kmax:

1. Solve eq. (10) with U = U (k) and λ = λi, i = 1, 2, . . .M − 1 to compute the kth iterate
w(k)(x0, λi). We use a pseudospectral method based on the cheb.m routine in [27].

2. Compute δw(k)(x0, λi) = wdata(x0, λi)− w(k)(x0, λi).

3. Find α = αk that minimizes
M
∑

i=1

{w[x0, λj;U(x;α)]− wdata[x0, λj]}2 , (51)

where w[x0, λ;U(x;α)] is the numerical solution to (10)-(12) with drift function

U(x;α) = U (k)(x)− δU(x;α),

with δU(x;α) satisfying
(

JTJ + αI
)

δU(x;α) = JT δ ~w(k), (52)

and

Jij = −qjH(x0, zj , λi)w
(k)
x (zj , λi), (53)

δ ~w
(k)
i = δw(k)(x0, λi), i = 1, . . . ,M − 1.

In (52), J ∈ R
(M−1)×(N+1) and I ∈ R

(N+1)×(N+1) is the identity. In eq. (53) qj are
weights for Clenshaw-Curtis quadrature on [0, 1] and z0, z1, . . . zN are the abscissae.
These weights and abscissae are related to the ones on [-1,1], {q̂j , ẑj}, through qj = q̂j/2,
zj = (ẑj + 1)/2. Matlab can quickly generate {q̂j, ẑj} using routines such clencurt.m

[27]. The sum (51) was minimized using Matlab’s fminbnd with a lower bound for α
of 10−15 and an upper bound of 103.

4. Set U (k+1) = U (k) −
(

JTJ + αkI
)−1

JT δ ~w(k)

5. Let k ← k + 1.

The matrix J in (53) is the discretized version of the operator in (17). Although A maps

L2(0, 1) to L2(0,∞), the pseudospectral method to solve for δ~U =
(

JTJ + αI
)−1

JT δ ~w at

each iteration actually represents δ~U as a polynomial. In practice our numerical solutions
U (k) are always continuous providing our initial guess is also continuous. In the results of
section 5, we take Tol = 10−4 and kmax = 15.

Minimizing (51) amounts to selecting αk using a variation of Morozov’s discrepency prin-
ciple. We also tried to determine αk by minimizing

∫∞
0
[w(x0, λ;U)−wdata(x0, λ)]

2dλ instead
of (51), with appropriate rescaling of the infinite integration range, but this method generally
resulted in a scheme with worse convergence properties.
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4.1 Generation of noisy data

The Laplace transform of perfect first passage time data wp(x, λ) corresponding to a target
drift U(x) is generated by solving eq. (10) for λ ≥ 0. Using wp(x, λ), we generate noisy data
wn(x, λ) through

wn(x, λ) = wp(x, λ) + η̃(λ), (54)

where tilde denotes Laplace Transform and η̃(λ) is the Laplace Transform of a “noisy”
function. We use Gaussian noise for η(t) discretized as {ti, ηi} which are generated through

ηi ∼ N(0, ε2), ti =
(i− 1)Tm

N1 − 1
, (55)

for i = 1, . . . , N1. where Tm > 0, 0 < ε� 1 and N1 � 1. Hence ηi are normally distributed
with mean 0 and standard deviation ε; N1 controls the frequency of the noise and Tm is the
cut-off beyond which η(t) = 0. The statistics of the noise is completely specified through the
three parameters (ε,N1, Tm).

Given a uniform-in-time discretization {ti, ηi} its Laplace Transform at λ = λi is numer-
ically implemented through

η̃(λi) = ∆t

N1−1
∑

j=1

e−λitjηj , (56)

where ∆t = Tm/(N1 − 1). In eq. (56), we are approximating the Laplace integral using a
one-sided rectangle rule.

One can think of the ηi as being the difference between the exact FPTD at times ti
and a histogram of simulated first passage times using N1 bins; however eq. (54) represents
the noise of the exit time distribution only qualitatively. We test our algorithm against
noisy data to prevent an “inverse crime”; a natural extension is to generate first passage
times by numerically integrating (1) in time. In particular, since η(t) = 0 for t > Tm, we
have assumed that the noise becomes insignificant providing the first passage times t are
sufficiently large. In reality, noise will persist for large t but it will be small in magnitude:
for a finite number of realizations, there will be a maximal exit time; beyond this time, the
numerical FPTD wnum(x, t) is exactly zero. Since w(x, t) is a probability density and must
be integrable on t ∈ [0,∞], w(x, t) → 0 as t → ∞. Their difference (which represents the
noise) |wnum(x, t)− w(x, t)| → 0 as t→∞.

5 Results and Discussion

Some recovered drift functions are shown in Fig. 2. In these plots, we test our method with
noisy data and vary the noise parameters (ε,N1, Tm) in eq. (55) to test for convergence. In
(a) and (b), we vary the standard deviation (“amplitude”) of the noise, ε. We see that the
noise has to be very small for the method to converge. When ε is small enough, our method
can capture the general shape of some simple drift functions. We point out that since the
added noise is random, two data sets with the same ε can give different results; for example
although reasonable results are obtained with ε = 10−4 in (a), the method can also diverge for
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Figure 2: Numerical drift functions obtained using Levenberg-Marquardt method for starting
position x = 0. (a) U(x) = sin(πx), N1 = 2×104, Tm = 20, (b) U(x) = x(1−x) exp[−12(x−
1/2)2] N1 = 2 × 104, Tm = 20, (c) U(x) = sin 3πx, ε = 10−3, N1 = 2 × 104, (d) U(x) =
1/4− |x− 1/2| if |x− 1/2| < 1/4 and 0 otherwise, ε = 10−4, Tm = 5, In each case, M = 100
and N + 1 = 41 chebyshev abscissae were used to discretize [0, 1]. The initial guess was
U (0)(x) = 0.1 sin(πx) for (a), (b), (d) and U (0)(x) = 0 for (b).
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αk as functions of the iteration number k. Algorithm parameters were N1 = 2×104, Tm = 10,
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a different noise realization with the same ε. In both (a) and (b), when the noise level becomes
large enough (ε = 10−3 for these cases), the method produces oscillations about the true drift.
These oscillations start small and their growth saturates after many iterations: the oscillatory
solutions in Fig. 2 are all “steady state”. To illustrate the sensitivity of the method to noise,
we point out that in (a) and (b) when ε = 10−3, Tm = 20 and N1 = 20, 000, the reconstructed
drifts contain large errors and yet for these noise parameters, the (Laplace-transformed) noisy
data only differ from the (Laplace-transformed) perfect data by O(10−4)−O(10−5).

In (c) we vary the timespan of the added noise. We see that larger values of Tm render
the method unstable. This suggests that errors in the largest first passage times are more
detrimental to drift reconstruction than smaller ones. The implication is that to find U in
practice, one has to perform enough realizations of the Brownian motion so that the tails
of the FPTD are captured accurately. Finally in (d) we vary the noise frequency N1 which
in practice could be related to the number of bins in the histogram. Because low frequency
noise gives poorer results than high frequency noise, increasing the number of bins (while
keeping the noise amplitude constant) in the numerical FPTD could give more accurate
reconstructions. Recall that representation of U as a polynomial is inherent in our numerical
method. Because the target drift in (d) is not differentiable, it is not surprising that large
oscillations are always present, even for noiseless data.

In Fig. 3 we plot the 2-norm of the difference between the exact solution U(x) and the
iterates Uk, ||U − Uk||L2(0,1), as a function of iteration number, k. For small values of ε, the
error in (a) after about k = 12 iterations is still on the order of O(10−3) and does not seem to
decrease. Although the convergence properties of our method still need to be further explored,
existing studies on regularized Gauss-Newton methods in the context of inverse scattering
[21] suggest that convergence of such methods can be logarithmic in k. As ε increases, (a)
shows that the method settles to a solution that is further away from the target. Also, it is
more likely that large oscillations develop in the numerical solution after a promising start,
as shown in the ε = 10−4 case. This phenomenon of semi-convergence [10] with noisy data
is common in inverse problems and can be partially remedied through stopping-rules [7, 10].
In (b) we plot the values of the regularization parameters αk as a function of the iteration
number k (there is no regularization for k = 0 where the iterate is just the initial guess). At
the kth iteration, the αk shown in (b) are the calculated regularization parameters used to
find U (k) in (a). It appears that the best approximation to U(x) is obtained when αk, whose
value is determined by the minimization problem (52), rapidly decreases with k.

In eq. (17), we see that since H(x, z, λ)dw(z,λ)

dz
= 0 when z = 0 and z = 1, rows 1 and

N + 1 of JT in (53) consist only of zeros, and columns 1 and N + 1 of J consists only of
zeros. Therefore (52) implies that

δU(z0) = δU(zN ) = 0, (57)

and boundary values of the iterates do not change. In Fig. 4(a) the exact solution has U(1) =
U(0) = 0.2 and our method fails to converge to the exact solution even for perfect data.
Instead, because the initial guess is U (0)(x) ≡ 0, the end points of the solution are pinned
at zero and the rest of the solution oscillates about the target U . Like all Newton methods,
the choice of initial guess is vital to the success of our algorithm and this is illustrated in
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(b). For initial guesses that have U(1) 6= 1, the method is unable to reconstruct even basic
features of U(x). However, when U (0) = x2, the method quickly converges to the target drift.

We did attempt to reconstruct drift functions from noisy FPTDs generated by numerically
integrating the stochastic differential equation (SDE) (1) using a basic Euler-Maruyama
method. However, there are (at least) two sources of error associated with sampling w(x, t)
in this way. The first is related to the finite ∆t discretization of the SDE; this method also
over predicts the first passage times [5]. The second is due to the finite sample size. When
we used ∆t = 10−5 and 4,000 first passage times (which took about 1.5 hours to generate
on a quad core Intel Xeon 2 GHz workstation), the error in w̃(0, s) was about 0.005 which
was large enough to prevent convergence of the Levenberg-Marquardt method: our method
is extremely sensitive to small amounts of noise in the Laplace-transformed data.

In Fig. 2, ε = O(10−4), N1 = O(104), Tm ≈ 20 usually produced convergent results;
these noise parameters for the artificial data correspond to η̃(λ) = O(10−5) in eq. (54).
Unfortunately, we found that it was extremely time consuming to generate a FPTD through
the SDE whose Laplace transform is accurate to O(10−5). Since the error in the Laplace-
transformed data scales as the inverse square-root of the sample size, while the time taken to
generate the data scales linearly with the sample size, we estimate that it would take about
109 samples (with ∆t = 10−5) to obtain FPTD data that is accurate to O(10−5). Therefore,
generating 109 samples would take about 40 years on our workstation. We leave as future
work the implementation of more advanced methods [5, 17] that can simulate diffusive FPTDs
more efficiently.

6 Conclusions

In this paper we studied the reconstruction of a drift function in a Brownian motion from the
Laplace Transform of its first passage time distribution (FPTD). Our main contributions are
a proof that the linearized inverse problem is ill-posed and a numerical method based on the
Levenberg-Marquardt method. This method allows drift reconstruction to be implemented
from artificial data, generated by adding Gaussian noise to a solution of the forward problem.

Our numerical method is able to reconstruct simple drift functions for low noise levels.
Furthermore, as with many Newton-type methods, convergence is contingent on a suitable
initial guess. In particular, unless the initial guess already takes the correct values at the
endpoints, the iterates do not converge.

We see our future work as consisting of three main parts. First, the inverse problem
should be solved using exit time data generated by the stochastic differential equation (1).
From our results so far, we anticipate that the Brownian dynamics must be simulated quickly
and accurately in order to generate exit time distributions with sufficiently low levels of noise.
Alternatively, other efficient methods to sample from the FPTD must be developed.

Second, it remains to establish whether the assumption of U(X) = U(1−X) is sufficient
to guarantee uniqueness of the inverse problem (10)-(12). When U is not symmetric, we
showed in corollary 1 that U is not unique. In particular, if the starting position x = 0,
U(X) and U(1 − X) generate exactly the same distribution of first passage times. Finally,
our numerical method should be extended so that it can recover drift functions that have
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non-zero boundary values. An important first step would be to establish the behavior of

H dw

dz
in (43) as z → 0, 1

The author thanks Fioralba Cakoni and Tom Chou for helpful discussions. This work was
supported by the University of Delaware Research Foundation (UDRF).

A Inequality for Uniform Continuity

In this appendix, we prove the inequality (47). Let F (λ) ≡ H(x, z, λ)dw(z,λ)

dz
where for ease

of notation, we omit the x and z dependence in F . Then for h > 0,

∣

∣

∣
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Therefore,

|F (λ+h)−F (λ)| ≤
∣

∣

∣
F (λ+ h)e

√
λ+h(1−x) − F (λ)e

√
λ(1−x)

∣

∣

∣
e−

√
λ+h(1−x)+|F (λ)|

(

1− e−[
√
λ+h−

√
λ](1−x)

)

.

(58)
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[7] D. Colton, H. W. Engl, A. K. Louis, J. R. McLaughlin, and W. Rundell, editors. Surveys
on Solution Methods for Inverse Problems. Springer, 2000.

22



[8] Olga K Dudko. Single-molecule mechanics: new insights from the escape-over-a-barrier
problem. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 106(22):8795–6, June 2009.

[9] Olga K Dudko, Gerhard Hummer, and Attila Szabo. Theory, analysis, and interpretation
of single-molecule force spectroscopy experiments. Proceedings of the National Academy
of Sciences of the United States of America, 105(41):15755–60, October 2008.

[10] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer,
1996.

[11] P.-W. Fok and T. Chou. Reconstruction of potential energy profiles from multiple
rupture time distributions. Proceedings of the Royal Society A, 466:3479–3499, 2010.

[12] L B Freund. Characterizing the resistance generated by a molecular bond as it is forcibly
separated. Proceedings of the National Academy of Sciences of the United States of
America, 106(22):8818–23, June 2009.

[13] Alexander Fuhrmann, Dario Anselmetti, Robert Ros, Sebastian Getfert, and Peter
Reimann. Refined procedure of evaluating experimental single-molecule force spec-
troscopy data. Phys. Rev. E, 77(3):031912, Mar 2008.

[14] C. W. Gardiner. Handbook of stochastic methods. Springer, 1985.

[15] Sebastian Getfert, Mykhaylo Evstigneev, and Peter Reimann. Single-molecule force
spectroscopy: Practical limitations beyond bell’s model. Physica A: Statistical Mechan-
ics and its Applications, 388(7):1120 – 1132, 2009.

[16] Sebastian Getfert and Peter Reimann. Suppression of thermally activated escape by
heating. Phys. Rev. E, 80(3):030101, Sep 2009.

[17] M. T. Giraudo and L. Sacerdote. An improved technique for the simulation of first
passage times for diffusion processes. Communications in Statistics – Simulation and
Computation, 28:1135 – 1163, 1999.

[18] C W Groetsch. Integral equations of the first kind, inverse problems and regularization:
a crash course. Journal of Physics: Conference Series, 73:012001, June 2007.

[19] M. Hanke. A regularizing levenberg-marquardt scheme with applications to inverse
groundwater filtration problems. Inverse Problems, 13, 1997.

[20] Berthold Heymann and Helmut Grubmüller. Dynamic force spectroscopy of molecular
adhesion bonds. Phys. Rev. Lett., 84(26):6126–6129, Jun 2000.

[21] Thorsten Hohage. Logarithmic convergence rates of the iteratively regularized Gauss-
Newton method for an inverse potential and an inverse scattering problem. Inverse
Problems, 13(5):1279, 1997.

23



[22] Gerhard Hummer and Attila Szabo. Kinetics from nonequilibrium single-molecule
pulling experiments. Biophysical Journal, 85(1):5 – 15, 2003.

[23] R. Kress. Linear Integral Equations. Springer-Verlag, 1989.

[24] Everett a Lipman, Benjamin Schuler, Olgica Bakajin, and William a Eaton. Single-
molecule measurement of protein folding kinetics. Science (New York, N.Y.),
301(5637):1233–5, August 2003.

[25] J.-B. Masson, D. Casanova, S. Türkcan, G. Voisinne, M. Popoff, M. Vergassola, and
a. Alexandrou. Inferring Maps of Forces inside Cell Membrane Microdomains. Physical
Review Letters, 102(4):1–4, January 2009.

[26] Joyce R. McLaughlin. Analytical Methods for Recovering Coefficients in Differential
Equations From Spectral Data. SIAM Review, 28(1):53 – 72, 1986.

[27] L. N. Trefethen. Spectral Methods in Matlab. SIAM, 2000.

[28] W Rundell and P E Sacks. The reconstruction of Sturm-Liouville operators, 1992.

[29] Shiping Zhou and Minggen Cui. Determination of Unknown Coefficients in Parabolic
Equations. Journal of Heat Transfer, 131(11):111303, 2009.

24


