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ABSTRACT

A random walk process can be described as a walker’s path which consists of a

sequence of random steps associated with a time parameter. The exit time is defined

to be the time taken for the random walker to first reach a specified point (or set of

points). Exit times are very useful in many stochastic problems, because they are easy

to measure compared with the probability of a random walker being at a particular

position.

This dissertation is concerned with two exit time problems: reconstructing the

flip rate of a persistent random walk from its exit time distribution and calculating the

mean exit time of a high-dimensional random walk on a lattice.

The first problem is actually an inverse stochastic problem, where the underlying

physics of the random walker is modeled by a one-dimensional Broadwell process. The

Broadwell process can be described as a random walk, where the particle transitions,

with a given flip rate, between two states having the same speed but opposite directions.

The time taken for the particle to first reach either endpoint of a finite interval is

recorded as the exit time. The goal is to infer the flip rate function of the Broadwell

process from its exit time distribution. We provide a detailed description and analysis

of two algorithms used for reconstructing the flip rate function of the Broadwell process.

The first algorithm studied is the projection method, which reduces the dimensionality

of the problem by representing the flip rate function as a linear combination of Legendre

polynomials. The other algorithm is the layer stripping method, where we utilize a

finite difference method and the causality of propagation to reconstruct the flip rate

function. To verify the analytical solutions, we develop a Monte Carlo algorithm to

simulate the Broadwell process, and acquire the exit time distributions, which are used

to reconstruct the flip rate.

xii



The second problem arises from clinical trials. In clinical trials, new drugs enjoy

significant profitability during the patent protection period. Any clinical trial delays

would increase the cost. Thus, how to accurately estimate the patient recruiting time

and efficiently plan drug inventory so that the recruiting time is minimized is vital to

clinical trials. We model the patient recruitment process by a particle undergoing a

high-dimensional, integer-valued random walk. The patient recruiting time becomes

the exit time of the random walk. We derive analytic approximations for the optimal

drug distribution and associated mean recruiting time for multiple testing centers. We

also develop a Monte Carlo algorithm to simulate the clinical trial recruiting process,

then calculate the mean exit time and the optimal drug distribution from simulations

to test the accuracy of analytical approximations.
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Chapter 1

INTRODUCTION

1.1 Motivation

A random walk process can be described as a walker’s trajectory which is com-

posed of a series of successive random steps associated with a time parameter. It is

used as a fundamental model for many stochastic phenomena, such as queueing-based

computer networks in computer science [1, 2], fluctuating stock price in finance [3, 4]

and the search paths of foraging animals in ecology [5, 6]. Random walks have many

properties, such as exit times, dispersal distribution, and recurrence rates. Among

these properties, in particular, we are interested in the exit time [7], which is defined

to be the time taken for the random walker to first reach a specified value (or set of

values). For example, Figure 1.1 shows a discrete-time random walk on a one dimen-

sional integer lattice. Let X(t) ∈ Z be the position of a random walk at time t ∈ Z.

A particle starts the random walk from X(0) = 0 at t = 0, and moves one step to the

right (X(1) = 1) or left (X(1) = −1) at time t = 1 with probability p or q respectively,

where 0 ≤ p, q ≤ 1, p + q = 1. If the exit time τ is defined as the time it takes for the

particle to reach N for the first time, then τ = inf{t ∈ Z : X(t) = N}.

Figure 1.1: Random walk on one dimensional integer lattice
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Exit times are very useful in studying random walk problems, because they

are easy to measure compared with the probability of a random walker being at a

particular position. Exit times are studied in biology, supply chain management, fi-

nance, and chemical physics. For example, in the mammalian central nervous system,

the integrate-and-fire neuron model [8, 9, 10] is a classic model for neural behavior

analysis. The voltage (or membrane potential) between the interior and exterior of a

neuron’s membrane fluctuates as a result of the noisy synaptic inputs from other neu-

rons. Once the voltage reaches a limit, a spike (or action potential) is generated and

the potential resets to zero. The interspike times, which are experimentally measured

[11], define the exit times of the fluctuating voltage. The biophysicist may want to

infer the intrinsic current-voltage relationship of the neuron by studying the exit time

distribution. For another example, in the stock market, reaching the break-even point

(gains equal losses) is the first major step towards profitability. Because the stock price

fluctuates from time to time, investors trading with stock options may want to make

stock investment decisions based on the mean exit time when the stock price reaches

break-even point, or exceeds a specified price for the first time [12, 7]. One common

feature in these phenomena is that fluctuations in the quantity of interest are stochastic

and the systems generate data in the form of exit times. In this dissertation, we focus

on studying two exit problems arising from biophysics and clinical trial supply chain

management.

1.2 Broadwell Processes

Of all the stochastic processes, Brownian motion is the most classic model and

governed by the stochastic differential equation dX =
√
2DdW , where D is the dif-

fusion coefficient and W is the Wiener process. However, in this dissertation, we will

define any stochastic process governed by dX = cdt +
√
2DdW , where c is the drift

coefficient, as a “Brownian-like” random walk or a general stochastic process. There

are many cases where the researchers would like to infer the parameters of a random

walk from the first exit time [13, 14, 15]. Problems of this type are essentially stochastic

2



inverse problems. One application of stochastic inverse problems arises in the recon-

struction of bond potentials from rupture time distributions [16, 17, 18]. Because many

macromolecules can be stretched under mechanical force, applying controlled mechani-

cal forces on single molecules plays an important role in understanding their structures

and functions. In force spectroscopy experiments, an increasing force is applied across

a macromolecular bond until it ruptures. Because of thermal fluctuations, the rupture

force is a random variable; thus the goal is to infer properties of the bond potential

from the distribution of rupture forces [19]. Stochastic inverse problems also commonly

arise in diffuse optical tomography [20, 21]. In all these applications, the exit time dis-

tribution of a “Brownian-like” motion leaving a finite interval is measured, and one

wishes to reconstruct the drift and/or diffusion function.

While “Brownian-like” motion is a canonical stochastic model, the inverse prob-

lem associated with “Brownian-like” motion is ill-posed [22, 13] and motivates the study

of stochastic exit time problems based on other types of random walk. Ill-posedness

is a trademark of many inverse problems. A problem is well-posed if a solution exists,

is unique and depends continuously on the data. Otherwise the problem is ill-posed.

At present, issues of existence and uniqueness of spatially dependent parameters for

random walks are generally not well established, although some important results for

“Brownian-like” motions can be found in [22]. This triggers our interest to study

stochastic problems of other types of random walk.

We generalize the study of “Brownian-like” inverse problems to Broadwell pro-

cesses which was first introduced by Broadwell [23, 24, 25, 26] in 1964. A one di-

mensional Broadwell process can be described as the random walk of a particle that

randomly transits between two states, where the two states are associated with the

same speed but have opposite directions. The particle changes its traveling direction

with a spatially dependent flip rate. The time it takes for the particle to first reach

either endpoint of the interval is recorded as the exit time. Broadwell phenomena are

ubiquitous in a wide range of areas, such as bacteria chemotaxis [27], microtuble growth

[28], diffuse optical tomography [20], charge transport in DNA [29], and interactions

3



of individuals in fish schools [30].

The Broadwell process is governed by the telegrapher’s equation [31, 32] and has

the desirable property that it interpolates between a ballistic and diffusive motion [28,

29]: the time between transitions decreases as the flip rate increases, but increases as

the flip rate decreases. The Broadwell model opens the analysis of the inverse problem

for these two types of limiting processes; studying the inverse Broadwell problem may

therefore provide insights into the important, fully diffusive problem. We specialize

to the constant speed Broadwell process, assuming that transition probabilities are

spatially dependent. From the distribution of exit times out of a finite interval, our

goal is to find the transition probability (“flip-rate”) function.

Many well-established optimization theories and numerical methods have been

used to address the inverse problems, such as the minimization of a Tikhonov regular-

ized objective function. However, it might be time consuming to optimize an objective

function due to the large number of iterations. Geophysicists have developed the layer

stripping algorithm (or downward continuation algorithm) [33, 34, 35] as an alterna-

tive to solving an optimization problem. The layer stripping algorithm, which arises

from one-dimensional inverse scattering (impulse-response) problem in reflection seis-

mology [36], speech synthesis [37] and transmission-line models [38], is established on

the method of characteristics [39], the finite difference method, and causal boundary

data. Another classical inversion method commonly used for inverse scattering prob-

lems is formulated in the form of an integral equation and non-causal boundary data.

Boundary data is causal if it is generated by solving an initial boundary value problem;

otherwise, the boundary data is non-causal. There are various integral equation based

methods proposed by Krein [40], Gopinath and Sondhi [41, 42], Gelfand and Levitan

[43, 44], and Marchenko et al [45], for solving this inverse problem. These integral

equations, which are associated with special structured kernels, such as Toeplitz [46]

and Hankel [47], are formulated by considering particular impulse-response pairs of

scattering data measured at the boundary of the medium. The difference between the

4



layer stripping algorithm and the method of integral equations is that the layer strip-

ping algorithm utilizes the differential structure and the causality of propagation to

reconstruct the medium layer by layer, while the integral equation utilizes the causality,

symmetry and losslessness properties of the medium for reconstruction.

Accurately simulating the exit times of a Brownian motion can be quite involved

although reliable methods do exist: see [48, 49, 50, 51] for example. Nevertheless, one

important advantage of studying the Broadwell model is the ease with which it can

be simulated. Accurate simulations are critical for comparisons between reconstructed

flip-rate functions and the underlying target functions that produced the exit data.

When generating the exit time distribution from our simulations, the only error (besides

round-off) stems from using a finite number of realizations.

1.3 Clinical Trials

Clinical trials are a series of tests at certain stages of drug development to

generate safety and efficacy data before pharmaceutical companies can commercialize

their new drugs. On average, for an oncology drug, it usually takes 7 years to complete

clinical trials [52]. For other drugs, it takes a similar amount of time to complete the

trials. It is obvious that the trial duration occupies a significant fraction of the 20 years

of patent protection time in the US. The pharmaceutical companies can only make a

large profit during the patent protection time. Hence, it is very important for the drug

manufacturers to avoid clinical trial delays and accelerate clinical trials to guarantee

profitability.

In addition, clinical trials are often very expensive. Recently, there has been

a trend of conducting clinical trials in developing countries in Eastern Europe, Latin

America and Asia [53]. The clinical trial globalization requires an internationally flex-

ible drug supply chain, which increases the associated cost [54]. It is expensive to

adopt the traditional practice of keeping a large supply of drugs in testing centers.

Pharmaceutical companies need to optimize drug inventories to save cost [55, 56].
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As the time and cost problems are interwoven in clinical trials, one question

arises: how can the drug inventory be efficiently planned so that the recruiting time

is minimized while the drug is distributed in numerous locations globally? In clinical

trials, sufficient patient recruitment is crucial. However, less than one third of publicly

funded trials successfully recruit the planned number of patients on time [57, 58]. Also,

the investigators often underestimate the time to recruit the target number of patients.

Estimating the patient recruiting time accurately is critical to the success of the trial.

Currently, there are five main models to estimate the recruiting time: the un-

conditional model, the conditional model, the Poisson model, the Bayesian model, and

the Markov model. The unconditional model was developed by Carter [59], which

assumes that all the testing centers start recruiting at the same time, and estimates

the recruiting time by dividing the target patient sample size by expected total pa-

tient arrival rate, which is the sum of all individual arrival rates at each center. The

expected individual arrival rate is estimated from historical data at each testing cen-

ter, and assumed to be a fixed constant during the whole trial. However, this model

fails to consider a scenario such as varying total arrival rate, and different starting

times for the recruitment process. The conditional model (Carter [59] and Moussa

[60]) addresses the limitation of the unconditional model by allowing different testing

centers to have different total arrival rates, allowing varying number of testing centers,

or letting the recruitment process start at different times, depending on the needs of

the clinical trial. The Poisson model with time-constant rate is discussed in Carter

and Anisimov’s papers [61, 62, 59, 63]. Carter discussed the model theoretically [63]

and its implementation [59]. Anisimov proposed [61, 62] that the recruitment rate is

Gamma distributed in his Poisson model. Based on the Poisson-gamma model, Anisi-

mov used statistical techniques to estimate the parameters of the model, predicted

the remaining recruitment time, and established confidence intervals on the number of

centers required to recruit in a certain time. Williford [64] and Gajewski [65] proposed

a Bayesian method, which starts with a prior distribution for arrival rates, then obtains

the posterior predictive distribution by calculating the weighted average of data from
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the prior distribution and the actual data in the trial. As more and more actual data

is collected, the weight on prior distribution decreases and the weight on the actual

data increases. Five Monte-Carlo simulation Markov models are developed by Abbas

[66] to simulate the recruitment process. Each model considers two states: a contacted

state and an arrived state. The contacted state is the state that the volunteer patient

contacts the testing center, or is contacted by a recruiter, and the patient may or may

not agree to participate in the trial. The arrived state is the state that the contacted

patient agrees to participate in the trial. The five models are: the simplest model

(SM), the continuous time with constant probability model (SM1), the continuous time

with probability distribution model (SM2), the discrete time with replacements model

(SM3), and the discrete time without replacements model (SM4). SM discusses the

recruitment process with fixed variables, and assumes that the recruiting time is a con-

tinuous variable, which can be calculated by summation of the continuous inter-arrival

times. SM1 discusses the recruitment process with random variables, but considers the

case that the contacted patients move to arrived state with constant probability. SM2

studies the same recruitment process as SM1, but the probability of contacted patients

moving to the arrived state follows a uniform distribution. SM3 assumes that the re-

cruiting time is a discrete variable, and the patients who don’t move from contacted

state to arrived state in the first period of time will be re-considered in the future

period of time. SM4 assumes that the recruiting time is also a discrete variable, but

the patients who don’t move to arrived state in a certain period of time will not be

considered again.

Some researchers have used multi-echelon inventory methods and discrete event

simulations [67, 68, 69, 70, 71, 72] to study the clinical trial supply chain optimization

problem from the perspective of cost reduction. However, the analytic solutions for

clinical trial supply chain optimization with respect to time reduction have not been

well studied. In this dissertation, we provide an analytic solution to the problem of

finding an efficient plan for drug inventory.

In general, before the trial starts, statisticians calculate the number of patients
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h needed for the trial [73, 74, 75, 76], where h is called the patient horizon. Suppose

a pharmaceutical company would like to recruit h patients from m testing centers,

each with ni number of drugs respectively, i = 1, 2, . . . , m, and the total number of

drugs n =
∑m

i=1 ni = h. The patients arrive at each testing center with different rates

and we are interested in the time taken to recruit h patients. This process can be

described as a random walk on a m-dimensional lattice [0, n1] × [0, n2] × . . . [0, nm],

where the walker moves one step in positive direction of ith coordinate with probability

pi if center i recruits one patient. Once the walker moves h steps in total, the travel

time is recorded as the exit time, which is the desired recruiting time. Problems of this

type are essentially random walks on m-dimensional lattices [77, 78, 79, 80, 81, 82, 83],

arising in solid state physics problems, such as the trapping of mobile defects in crystals

[77, 84, 85, 86, 87] and the transient photoconductivity of amorphous semiconductors

[88, 89]. In these studies, exit time properties, such as the probability for a random

walker to first reach a specific point after n steps, the mean number of steps and

recurrence time to return to the origin (or any other points on am-dimensional periodic

lattice) for the first time, are well studied. The mathematical tools that are used in

treating these exit time problems are: Fourier and Laplace transforms, the generating

function, Green’s functions and basic asymptotic analysis. In this dissertation, we are

interested in optimizing the drug inventory among m testing centers so that the mean

exit time is minimized, and will use asymptotic methods to solve the problem.

1.4 Dissertation Outline

The work presented in this dissertation can be divided into the following chap-

ters:

Chapter 1 herein summarizes the motivation for this work, gives the background

of exit time problems in random walks and their applications in a variety of disciplines.

In particular, it discusses the exit time problems arising from the Broadwell process

and clinical trial supply chains.
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Chapter 2 presents the backward Kolmogorov equation for the two-state Broad-

well problem parameterized by a spatially dependent (but state-symmetric) flip rate

and a constant speed.

Chapter 3 explains the Monte-Carlo method used to simulate a Broadwell ran-

dom walker with spatially dependent velocity and flip rate.

Chapter 4 discusses the reconstruction of the flip rate function in a Broad-

well process from the exit time distributions using projection methods, which involve

minimizing the distance between the solution of the backward Kolmogorov equation

and exit time data (derived from simulations or from the solutions of the backward

Kolmogorov equation with a target flip rate function).

Chapter 5 discusses the reconstruction of the flip rate function in a Broadwell

process from the exit time distributions using the layer stripping method which utilizes

the finite difference method and the method of characteristics to reconstruct the flip

rate function layer by layer.

Chapter 6 presents an asymptotic method to calculate the mean exit time for

recruiting h patients from m testing centers, when the total number of drugs n = h.

We also present a way to optimize the drug inventory among the centers so that the

mean exit time is minimized.

9



Chapter 2

FORWARD AND BACKWARD EQUATIONS FOR A STOCHASTIC
PROCESS

In this chapter, we first provide a brief introduction to the forward and back-

ward equations of a stochastic process. Then we derive the backward equation for the

two-state Broadwell problem parameterized by a spatially dependent flip rate and a

constant speed.

2.1 Forward and Backward Kolmogorov Equation

Let P (y, σ|x, τ) denote the transition probability for a diffussion process, that

is continuous in time and position, to transite from starting position x at time τ to

current position y at time σ, 0 ≤ τ < σ.

The Kolmogorov forward equation addresses the forward problem: suppose we

know the probability of the particle being at the initial position x at time τ , and

would like to know the probability of the particle being at position y at time σ. Thus,

the Kolmogorov forward equation is a differential equation describing the dynamics of

transition probability at current position and time (y, σ), given the initial position and

time (x, τ). The “forward” refers to the fact that the PDE is integrated forward in

time.

The forward Kolmogorov equation can be derived by applying the Chapman

-Kolmogorov equation to P (y, σ +∆σ|x, τ),

P (y, σ+∆σ|x, τ) = pP (y−∆y, σ|x, τ)+pP (y+∆y, σ|x, τ)+(1−2p)P (y, σ|x, τ), (2.1)

where ∆σ > 0, p is the probability of hopping to the left or right, 1−2p is the probability
of staying at the same position without hopping. Equation (2.1) can be explained as
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Figure 2.1: Diagram for forward equation

follows. Given initial position and time (x, τ), the probability of the random walker

being at (y, σ+∆σ) is equal the sum of three probabilities: (1) the random walker starts

at (x, τ) and arrives at (y −∆y, σ), then takes time ∆σ to hop to y with probability

p; (2) the random walker starts from x at time τ and arrives at y + ∆y at time σ,

then takes time ∆σ to hop to y with probability p; (3) the random walker starts from

(x, τ) and arrives at (y, σ), then stays at y for time ∆σ with probability 1 − 2p. See

Figure 2.1.

Then applying Taylor’s formula to equation (2.1) about (y, σ), we find that

P (y, σ +∆σ|x, τ)− P (y, σ|x, τ)

= p
[
P (y −∆y, σ|x, τ) + P (y +∆y, σ|x, τ)− 2P (y, σ|x, τ)

]
,

= p

[
P (y, σ|x, τ)− ∂

∂y
P (y, σ|x, τ)∆y + (∆y)2

2

∂2P (y, σ|x, τ)
∂y2

+O((∆y)3)

+P (y, σ|x, τ) + ∂

∂y
P (y, σ|x, τ)∆y + (∆y)2

2

∂2P (y, σ|x, τ)
∂y2

+O((∆y)3)

−2P (y, σ|x, τ)
]
,

= p

[
∂2P (y, σ|x, τ)

∂y2
(∆y)2 +O((∆y)3)

]
. (2.2)
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Divide equation (2.2) by ∆σ, and assume that

lim
∆σ,∆y→0

(∆y)2

∆σ
= D, lim

∆σ,∆y→0

(∆y)3

∆σ
= 0.

Then we have

∂

∂σ
P (y, σ|x, τ) = LP (y, σ|x, τ),

where

L = pD
∂2

∂y2
,

and pD is the diffusion coefficient.

The Kolmogorov backward equation addresses the backward problem: suppose

we know the probability distribution of y at time σ, and would like to know the

probability of the random walk initially starting at x at time τ . Thus, the Kolmogorov

backward equation is a differential equation describing the dynamics of the transition

probability at initial position and time (x, τ) given the current position and time (y, σ).

The “backward” refers to the fact that the PDE is integrated backward in time. Again,

Figure 2.2: Diagram for backward equation

we can apply the Chapman-Kolmogorov equation to P (y, σ|x, τ):

P (y, σ|x, τ) = pP (y, σ|x+∆x, τ+∆τ)+pP (y, σ|x−∆x, τ+∆τ)+(1−2p)P (y, σ|x, τ+∆τ).

(2.3)
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Equation (2.3) can be explained as follows. Given current position and time (y, σ),

the probability of the random walker initially being at (x, τ) is equal the sum of three

probabilities: (1) the random walker takes time ∆τ to hop to x + ∆x from x with

probability p, then continues random walk from (x+∆x, τ+∆τ) to the current position

and time (y, σ); (2) the random walker takes time ∆τ to hop to x − ∆x from x with

probability p, then continues random walk from (x−∆x, τ+∆τ) to the current position

and time (y, σ); (3) the random walker starts from (x, τ) and stay at x for time ∆τ

with probability 1−2p, then continues the random walk from (x, τ+∆τ) to the current

position and time (y, σ). See Figure 2.2. Using Taylor’s expansion,

P (y, σ|x, τ)− P (y, σ|x, τ +∆τ)

= p
[
P (y, σ|x+∆x, τ +∆τ) + P (y, σ|x−∆x, τ +∆τ)− 2P (y, σ|x, τ +∆τ)

]
,

= p

[
P (y, σ|x, τ +∆τ)− ∂

∂y
P (y, σ|x, τ +∆τ)∆x +

(∆x)2

2

∂2P (y, σ|x, τ +∆τ)

∂x2

+O((∆x)3) + P (y, σ|x, τ +∆τ) +
∂

∂y
P (y, σ|x, τ +∆τ)∆x

−(∆x)
2

2

∂2P (y, σ|x, τ +∆τ)

∂x2
+O((∆x)3)− 2P (y, σ|x, τ +∆τ)

]
,

= p
∂2P (y, σ|x, τ +∆τ)

∂x2
∆x2 +O((∆x)3). (2.4)

Divide equation (2.4) by ∆τ , and assume that

lim
∆τ,∆x→0

(∆x)2

∆τ
= D, lim

∆τ,∆x→0

(∆y)3

∆τ
= 0,

we have

− ∂

∂τ
P (y, σ|x, τ) = L∗P (y, σ|x, τ),

where

L∗ = pD
∂2

∂x2
,

pD is the diffusion coefficient.

We see that both Kolmogorov forward and backward equations describe the

Brownian process, and the backward operator is the adjoint of the forward operator,
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the forward and backward operators are the same in this case. But the backward

operator is especially helpful in obtaining the exit time distribution from the survival

probability of the Brownian process. Let A and B be two positions on the interval,

where A < B, we define the exit time as the time it takes for the Brownian process to

reach either position A or B, S(x, t) = Prob(A < x < B) be the probability that the

process doesn’t reach positions A or B at time t given that it starts from x at time

0. S(x, t) is also called the survival probability, and is given by integrating over all

possible current positions y:

S(x, t) =

∫ B

A

P (y, t|x, 0) dy,

where P (y, t|x, 0) is the transition probability. If the particle has survived until t but

exits at time t + dt, w(x, t)dt represents the probability of first exit in time interval

(t, t+ dt), then the exit time distribution w(x, t) can be obtained by

Prob(t ≤ exit time ≤ t + dt | initial position x) = w(x, t)dt = S(x, t)− S(x, t+ dt),

⇒ w(x, t) = − ∂

∂t
S(x, t). (2.5)

2.2 Derivation of Backward Equation for Broadwell Process

In this section, we derive the backward equation from the forward equation

of the Broadwell process using the fact that the backward equation is the adjoint of

the forward equation. The two-state Broadwell model can be described as a particle’s

random walk parameterized by a starting position x ∈ [−L/2, L/2] at time τ , a velocity

+v (state 1, where v is a positive constant) or −v (state 2), and a flip rate F (y), where

y ∈ [−L/2, L/2] represents the current position at time σ. While traveling with speed v,

the particle shifts between the two states with probability F (y)dσ within time interval

(σ, σ + dσ). We define l and k as the initial state and the current state respectively,

where l, k ∈ {1, 2}. Pkl(y, σ|x, τ)dy is the probability that the particle lies in the

interval (y, y + dy) in state k at time σ, given that the particle initially starts at x in

state l at time τ .
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Given a starting position x, when the particle exits from either endpoint, the

total travel time is recorded. When the Broadwell process is repeated a large number

of times, we obtain the exit time distributions. Define w1(x, t), w2(x, t) to be exit time

distributions conditioned on the particle initially starting from x in state 1 or state 2

respectively, where t is the exit time. We now derive equations for w1(x, t) and w2(x, t).

Let P1l(y, σ|x, τ) and P2l(y, σ|x, τ) represent the probability that the particle is

at y in state 1 and 2 at time σ respectively, given that the particle initially starts at

x in state l at time τ . Consider the forward equations for the transition probabilities

P1l(y, σ|x, τ) and P2l(y, σ|x, τ) of the Broadwell process:

∂

∂σ
P1l(y, σ|x, τ) = −v

∂

∂y
P1l(y, σ|x, τ) + F (y)(P2l(y, σ|x, τ)− P1l(y, σ|x, τ)), (2.6)

∂

∂σ
P2l(y, σ|x, τ) = v

∂

∂y
P2l(y, σ|x, τ) + F (y)(P1l(y, σ|x, τ)− P2l(y, σ|x, τ)), (2.7)

P1l(−L/2, σ|x, τ) = 0, (2.8)

P2l(L/2, σ|x, τ) = 0, (2.9)

for σ > τ , −L/2 < y < L/2, and

P1l(y, σ|x, τ) = δ1lδ(y − x), (2.10)

P2l(y, σ|x, τ) = δ2lδ(y − x), (2.11)

for σ ≤ τ , −L/2 < y < L/2, where δ1l and δ2l are Kronecker delta functions, and δ(·)
is Dirac delta function.

Equation (2.6) can be explained by the two equations below:

∂

∂σ
P1l(y, σ|x, τ) = −v ∂

∂y
P1l(y, σ|x, τ), (2.12)

∂

∂σ
P1l(y, σ|x, τ) = F (y)(P2l(y, σ|x, τ)− P1l(y, σ|x, τ)). (2.13)

Equation (2.12) is actually a transport equation, which means that the particle is

advecting to the right with constant speed v. In equation (2.13), when the right-hand

side is positive, the particle is currently more likely to be in state 2 than state 1, and

P1l(y, σ|x, τ) on the left-hand side increases, which means that the particle is more
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likely to flip from current state 2 to state 1. We can combine equations (2.12) and

(2.13) into equation (2.6), which means that when the particle is in state 1, advecting

to the right with constant speed v, it is more likely to flip from current state 1 to state 2.

Equation (2.7) means that when the particle is in state 2, advecting to the left with

constant speed v, it is more likely to flip from current state 2 to state 1. Equations (2.8)

and (2.9) state that no matter where the Broadwell process starts, given σ > τ , the

probability of observing a particle at y = −L/2 in state 1 (moving to the right) and the

probability of observing a particle at y = L/2 in state 2 (moving to the left) are zero.

Hence, equations (2.8) and (2.9) are “absorbing” boundary conditions. When l = 1,

equations (2.10) and (2.11) become P11(y, σ|x, τ) = δ(y − x) and P21(y, σ|x, τ) = 0,

saying that the particle is in state 1 and position x before the Broadwell process really

starts, i.e. σ ≤ τ . Similarly, taking l = 2 yields P12(y, σ|x, τ) = 0 and P22(y, σ|x, τ) =
δ(y−x), saying that the particle is in state 2 and position x before the Broadwell process

really starts. In other words, equations (2.10) and (2.11) state that the particle is in

position x state l when σ ≤ τ .

We rewrite equations (2.6) and (2.7) in operator form as

∂

∂σ
Pkl(y, σ|x, τ) = L(y, k)Pkl(y, σ|x, τ), k = 1, 2, (2.14)

where

L(y, k)Pkl(y, σ|x, τ) =
2∑

k′=1

Lkk′(y)Pk′l(y, σ|x, τ), (2.15)

L11(y) = −v
∂

∂y
− F (y), L12(y) = F (y), (2.16)

L21(y) = F (y), L22(y) = v
∂

∂y
− F (y). (2.17)

The backward equation is given in terms of the adjoint operator L∗ [90, 14] operating

on the initial position and state:

− ∂

∂τ
Pkl(y, σ|x, τ) = L∗(x, l)Pkl(y, σ|x, τ), l = 1, 2, (2.18)

16



where

L∗(x, l)Pkl(y, σ|x, τ) =
2∑

l′=1

L∗
ll′(x)Pkl′(y, σ|x, τ), (2.19)

L∗
11(x) = v

∂

∂x
− F (x), L∗

12(x) = F (x), (2.20)

L∗
21(x) = F (x), L∗

22(x) = −v
∂

∂x
− F (x). (2.21)

Let t = σ − τ . Because the Broadwell process is a time homogeneous process, given

a previous configuration (l, x), the probability of finding the particle in configuration

(state k, position y) depends only on the length of time separating the two configu-

rations. We have Pkl(y, t|x, 0) = Pkl(y, σ|x, τ) and − ∂
∂τ

= ∂
∂t
. Hence, the backward

equations become

∂

∂t
Pk1(y, t|x, 0) =

(
v∂x − F (x)

)
Pk1(y, t|x, 0) + F (x)Pk2(y, t|x, 0), (2.22)

∂

∂t
Pk2(y, t|x, 0) = F (x)Pk1(y, t|x, 0) +

(
− v∂x − F (x)

)
Pk2(y, t|x, 0), (2.23)

Pk1(y, t|L/2, 0) = 0, (2.24)

Pk2(y, t| − L/2, 0) = 0, (2.25)

for t > 0, y ∈ D and

Pk1(y, t|x, 0) = δk1δ(y − x), (2.26)

Pk2(y, t|x, 0) = δk2δ(y − x), (2.27)

for t ≤ 0, y ∈ D. Equations (2.24) and (2.25) mean that when the particle initially

starts at x = L/2 or x = −L/2 at t = 0, advecting to the right or left respectively, it

exits as long as t > 0. The probability of observing the particle in position y at time

t > 0 is zero.

Let S1(x, t) be the probability that the particle is in [−L/2, L/2) at time t given

that it starts at position x in state 1, S2(x, t) be the probability that the particle is in

(−L/2, L/2] at time t given that it starts at position x in state 2. Then the survival

probabilities are given by integrating over all possible current positions y and states:

Si(x, t) =

∫ L
2

−L
2

2∑

k=1

Pki(y, t|x, 0) dy, i = 1, 2. (2.28)
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Then equations (2.22) - (2.25) transform to

∂S1

∂t
− v(x)∂S1

∂x
= F (x)(S2 − S1), (2.29)

∂S2

∂t
+ v(x)

∂S2

∂x
= F (x)(S1 − S2), (2.30)

S1(L/2, t) = 0, (2.31)

S2(−L/2, t) = 0, (2.32)

for t > 0, −L/2 < x < L/2, and equations (2.26), (2.27) become

S1(x, t) = 1, (2.33)

S2(x, t) = 1, (2.34)

for x ∈ [−L/2, L/2], t ≤ 0.

In fact, we observe that S1(L/2, t) = S2(−L/2, t) = H(−t) for any t. Let

wi(x, t), i = 1, 2 be the exit time distribution. Then we have

wi(x, t)dt = Si(x, t)− Si(x, t + dt), (2.35)

⇒ wi(x, t) = −∂Si

∂t
, (2.36)

which are analogues of equation (2.5) used for deriving the exit time distribution of

Brownian process. Taking the derivative of equations (2.29) - (2.34) with respect to t,

we finally obtain the equations for exit time distribution:

∂w1

∂t
− v∂w1

∂x
= F (x)(w2 − w1), (2.37)

∂w2

∂t
+ v

∂w2

∂x
= F (x)(w1 − w2), (2.38)

w1(L/2, t) = δ(t), (2.39)

w2(−L/2, t) = δ(t), (2.40)

for t > 0, −L/2 < x < L/2, and

w1(x, t) = 0, (2.41)

w2(x, t) = 0. (2.42)

for t ≤ 0, where δ(t) is the Dirac delta function. Equations (2.37) - (2.42) will be used

extensively throughout the dissertation.
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Chapter 3

MONTE-CARLO SIMULATION FOR THE BROADWELL PROCESS

In this Chapter, we present a Monte-Carlo method to simulate the Broadwell

process and obtain the exit time distributions. One important advantage of studying

the Broadwell model is the ease with which it can be simulated. Accurate simulations

are critical for comparisons between reconstructed flip-rate functions and the underly-

ing target functions that produced the exit time data. When generating the exit time

distribution from our simulations, the dominant error (besides round-off) stems from

using a finite number of realizations.

3.1 Monte-Carlo Simulation Using Rejection-Acceptance

We now give details of our Monte-Carlo method in Algorithm 2. This method

can be used to simulate a Broadwell particle with spatially dependent velocity, even

though for our inverse problem, the particles always have constant velocity. The

method is based on the Rejection-Acceptance method [91], a common method for draw-

ing random variables from a probability density function (pdf) whose functional form

is known, but non-standard. For example, we can use Rejection-Acceptance method

to generate a random variable having pdf: fX(x) = 2
3π

√
9− x2,−3 ≤ x ≤ 3. The

Rejection-Acceptance method is described in Algorithm 1.

We note four important points about the Monte-Carlo method.

1. The algorithm samples from w1(y0, t) or w2(y0, t) depending on the initial veloc-

ity/state: see equation (3.3).

2. The algorithm generates random variables for the time periods in between the

state transitions θ (the “flip times”). For a Broadwell process with a constant

19



Algorithm 1 Rejection-Acceptance Algorithm

1: Require: we have known a method for simulating a random variable Y having pdf
g(·), and would like to generate a random variable X with pdf f(·). Also, suppose
there exists a constant C such that

f(x)

g(x)
≤ C for all x.

2: Generate a random variable Y distributed as g(·).
3: Generate U ∼ U(0, 1), where U is independent from Y .

4: if U ≤ f(Y )

Cg(Y )
, then

5: set X = Y (“acceptance”);
6: else
7: Goto 2.
8: end if

transition rate, the flip times are exponentially distributed. For a spatially-

dependent transition rate F (y), the flip time θ ≡ tj+1−tj is distributed according

to

θ ∼ Q(t) ≡ F [y(t)] exp[−p(t)],

p(t) =

∫ t

0

F [y(t′)] dt′, (3.1)

where the position of the particle satisfies dy(t)/dt = v(y). We sample from Q(t)

using a Rejection-Acceptance method [91]: suppose there exist constants Fmin

and Fmax satisfying 0 < Fmin ≤ F (y) ≤ Fmax <∞ for −L/2 < y < L/2. Then

Q(t) ≤ CFmin exp(−Fmint) ≡ P (t),

where C = Fmax/Fmin and so an exponential distribution can be used as an

envelope function.

3. Once the flip time θ is generated, the flip position yj+1 can be found by solving
∫ yj+1

yj
v−1(y)dy = θ. This integral could be expensive to calculate if it has to

be done many times. Also, every evaluation of Q(t) requires computing the

integral p(t) in equation (3.1). Both of these issues are handled simultaneously
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in our algorithm through the solution of the pair of ordinary differential equations

(3.2)-(3.3). For the special case where v is a constant, equations (3.2) and (3.3)

should be replaced with dp/dt = F (yj + vt) and y(t) = yj + vt.

4. When solving the differential equations (3.2) and (3.3), F may have to be eval-

uated outside of the interval [−L/2, L/2]. Because the form of F (y) outside

[−L/2, L/2] does not affect the exit time, we simply take F (y) = F (L/2) for

y > L/2 and F (y) = F (−L/2) for y < −L/2.

3.2 Generation of Noisy Distributions from a Finite Number of Exit Times

Because the solutions to equations (2.37) - (2.42) are highly singular, equa-

tions (2.37) - (2.42) are not useful in practice for inferring F (x). Related quantities

that are more regular and whose governing equations are more amenable to numerical

methods are the cumulative density functions (cdfs) and Laplace-transformed proba-

bility density functions. We now define the noisy cdfs as W1,data(t) and W2,data(t), the

noisy Laplace-transformed pdfs as w̃1,data(s) and w̃2,data(s).

We always use Algorithm 2 to generate two sets of N exit times
{
τ
(1)
j

}
and{

τ
(2)
j

}
. With this notation, τ

(i)
j (1 ≤ j ≤ N , i = 1, 2) is the jth exit time conditioned

on the particle having initial velocity (−1)i+1v. Assuming that
{
τ
(1)
j

}
and

{
τ
(2)
j

}

are sorted in ascending order, noisy cumulative densities W1,data(t) and W2,data(t) are

computed as

Wi,data(t) =





0 if t ≤ τ
(i)
1 ,

m

N
if τ

(i)
1 < t < τ

(i)
N ,

1 if t ≥ τ
(i)
N ,

(3.4)

where m is the unique index satisfying τ
(i)
m < t < τ

(i)
m+1.
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Algorithm 2 Generating exit times from a Broadwell process

1: Require: an interval size L, a starting position −L/2 ≤ y0 ≤ L/2, functions
F (y), v(y) ∈ C(−∞,+∞), Fmin, Fmax > 0 where Fmin ≤ F (y) ≤ Fmax for y ∈
[−L/2, L/2].

2: Let P (t) ≡ Fmax exp(−Fmint).
3: Set j = 0 and tj = 0.
4: while −L/2 < yj < L/2 do
5: Draw θ ∼ exp(Fmin)
6: Compute p(θ) and y(θ) by numerically solving

dp(t)

dt
= F (y), (3.2)

dy(t)

dt
=

{
(−1)jv(y), {for positive velocity at t = 0}

(−1)j+1v(y), {for negative velocity at t = 0} (3.3)

on t ∈ [0, θ], subject to initial conditions p(0) = 0 and y(0) = yj.
7: Set Q(θ) = F [y(θ)] exp[−p(θ)]
8: Draw ρ ∼ U(0, 1)
9: if ρ < Q(θ)/P (θ) then
10: j ← j + 1 {acceptance}
11: Set yj = y(θ) and tj = tj−1 + θ
12: Goto 4
13: else
14: Goto 5 {rejection}
15: end if
16: end while{Particle has left interval}
17: if yj > L/2 then

18: Output the exit time as tj +
∫ L/2

yj
v−1(y)dy.

19: else
20: Output the exit time as tj +

∫ −L/2

yj
(−v−1(y))dy.

21: end if
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Then the noisy Laplace transform of a finite number of exit times is calculated

through

w̃j,data(s) =





∫ ∞

0

e−stdWj,data(t)

dt
dt = sW̃j,data(s), s > 0,

1, s = 0,

(3.5)

where

W̃j,data(s) =

∫ ∞

0

e−stWj,data(t)dt =

∫ 1

0

e−st[η]Wj,data(t[η])
dη

(1− η)2 , (3.6)

where j = 1, 2 and t[η] = η/(1 − η). We avoid “binning” when calculating w̃j,data,

because this introduces a corresponding discretization error. The integral in equa-

tion (3.6) can be calculated using the trapezium rule on equally spaced abscissae in

η.

Using the Monte-Carlo method (Algorithm 2) and equations (3.4) - (3.6), we are

able to generate the probability density functions w1(x, t), w2(x, t) and their Laplace

transforms with initial position x ∈ (−L/2, L/2) and x = ±L/2. Figure 3.1 shows the

probability density functions w1(0, t) generated by the algorithm for two different F (y)

when v(y) = constant. By definition, w1 is the exit time density for a particle that

initially has velocity v > 0. Therefore the solution w1(x, t) in equation (2.37) contains

delta functions that correspond to an immediate particle exit at a time tc ≡ (L/2−x)/v.
The reason is if t is the particle exit time and θ is the time before the first state

transition, then

P (t = tc) = P (θ ≥ tc) =

∫ ∞

tc

Q(t′)dt′ > 0. (3.7)

Hence the probability distribution of the exit times will always contain point masses

(delta functions) of probability located at t = tc [32]. In Figure 3.1(b) a numerical

approximation of this delta function can be seen at t = 0.5. The height of this “spike”

is controlled by the size of the bins used when creating the histogram and becomes

unbounded as the bin size tends to zero and the number of trials tends to infinity.

These delta distributions are always present in the exact solution but they may not

always be visible in the numerical solution if the number of trials is small or the bin

size is large; see Figure 3.1(a) for example.
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Figure 3.1: Simulated exit times of a Broadwell process starting from x = 0. (a)
F (y) = 10y3 + 5ey + 1, v = 1/2 and (b) F (y) = 1 + y2, v = 1. Insets
show Laplace-transformed data. Solid line: solution to equations (4.5),
(4.6). Diamonds: Laplace transform of histogram data. The number of
realizations was N = 40, 000 in each case.

Similarly, Figure 3.2 shows the simulated exit time distributions w1(−L/2, t)
and w2(L/2, t) of a Broadwell process with a given flip rate function F (y) and constant

velocity v = 1. Notice that Figure 3.2(b) and Figure 3.2(c) contain ‘spikes’ as well.

The spike is a numerical approximation of a Dirac delta function, which corresponds

to an immediate particle exit at time tc = L/v. Although probability densities are

shown in Figure 3.1 and Figure 3.2, cumulative density functions W1(0, t), W2(0, t) or

W̃1(s), W̃2(s) are used to infer the flip rate function in Chapter 4, while W1(−L/2, t)
and W2(L/2, t) are used to infer the flip rate function in Chapter 5.
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Figure 3.2: Simulated exit time distributions of a Broadwell process with flip rate
F (y) = 0.5 + 0.2 cos(16y) + 0.1 sin(64y), constant velocity v = 1, and
L = 1. (a) The flip rate function F (y). (b) Exit time distribution w1

starting from x = −0.5 with velocity +v, generated by F (y) in (a).
(c) Exit time distribution w2 starting from x = 0.5 with velocity −v,
generated by flip rate F (y) in (a). The number of exit times to generate
each distribution is N = 105.
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Chapter 4

RECONSTRUCTION OF THE FLIP RATE IN A BROADWELL
PROCESS USING PROJECTION METHODS

Inverse problems arise in many applications such as medical imaging [20], high

energy particle physics [92], and seismology [93]. Some of these applications involve

measurement of waves at the boundary of a domain; from this boundary data one

may wish to reconstruct spatially-dependent properties within the domain such as the

density and/or wave speed. In this chapter, we will study inverse stochastic problem,

where the underlying physics involves an intrinsic random process, the Broadwell pro-

cess. The corresponding “boundary data” for the problem are exit time distributions

and we wish to infer the flip rate from the exit distributions.

In Section 4.1, we state the inverse problem of reconstructing the flip-rate func-

tion from the exit time distributions. The associated optimization problem involves

minimizing the distance between the solution of the backward Kolmogorov equation

and the exit time data (derived from simulations or from the solution of the backward

Kolmogorov equation with a given flip rate function). In Section 4.2 and 4.3 we discuss

the numerical aspects of our work. In particular, we present two reconstruction meth-

ods. The first involves minimizing the difference between the solution to the backward

Kolmogorov equation and the target data in the time domain. The second involves

minimizing the difference between the Laplace-transformed solution of the backward

Kolmogorov equation and transformed exit time data. In Section 4.4 we present the

results of our reconstruction using noisy data and compare the two methods. We

show that for a finite number of exit times, the most reliable reconstruction of the flip

rate occurs at an intermediate advection speed, no matter which method is used. In

Section 4.5, we discuss general implications of our results and summarize our findings.
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4.1 Two-state Broadwell Model and The Statement of Inverse Problem

A two-state Broadwell model describes a particle that can take one of two states.

Initially, the particle is at position x and in state i ∈ {1, 2}. The particle advects within
an interval (−L/2, L/2) with velocity +v if i = 1 and −v if i = 2. While advecting,

the particle may change state with probability F (y)dt within time interval (t, t + dt)

where y is the current particle position.

Let w(t|x, 1, 0) ≡ w1(x, t) and w(t|x, 2, 0) = w2(x, t) be the exit time distribu-

tions conditioned on the particle initially being at position x and having a positive

(+v) and negative (−v) velocity respectively. Then the exit time distributions satisfy

equations (2.37)-(2.42). A full derivation of the backward equation for the exit time

distribution for a two state Broadwell process can be found in Chapter 2.

Given F (x), one can solve the well-posed hyperbolic initial boundary value

problem (2.37) - (2.42) (the “forward problem”) to find w1(x, t) and w2(x, t) for all

−L/2 < x < L/2 and t > 0. Note that equations (2.37) and (2.38) constitute Kol-

mogorov’s backward equations for the exit time distributions, and that solving this

backward equation defines the forward problem for computing w1(x, t), w2(x, t) from a

known F (x). However here we are interested in the inverse problem:

Problem Statement: Let w1(x, t), w2(x, t) be the unique solution of (2.37)

- (2.42), for a given v and a known F (x), on the region −L/2 ≤ x ≤ L/2, t ∈ R.

Fix a known x0 ∈ (−L/2, L/2), given w1(x0, t), w2(x0, t) and v, find flip rate function

F (x) ∈ C[−L/2, L/2].

In practice, the exit time distributions could come from simulating a Broadwell

process directly or from a single solution of the forward problem. For particles that

initially advect with velocities +v and −v, we refer to associated exit time distributions

w1,data(x0, t) and w2,data(x0, t), respectively; note that w1,data(x0, t) and w2,data(x0, t)

may or may not be noisy. Details on how w1,data and w1,data are computed are given in

Chapter 3.
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Unfortunately, equations (2.37) - (2.42) are not useful in practice for inferring

F (x) because the solutions are highly singular. Related quantities that are more reg-

ular and whose governing equations are more amenable to numerical methods are the

cumulative density functions and Laplace-transformed probability density functions.

We now give explicit forms for these equations because we make frequent use of them

later on.

The cdfs are related to the pdfs by W1(x, t) =
∫ t

0
w1(x, t

′)dt′ and W2(x, t) =
∫ t

0
w2(x, t

′)dt′. Therefore, upon integrating equations (2.37) - (2.38) in time, we find

∂W1

∂t
− v∂W1

∂x
= F (x)(W2 −W1), (4.1)

∂W2

∂t
+ v

∂W2

∂x
= F (x)(W1 −W2), (4.2)

for −L/2 < x < L/2, t ≥ 0, subject to the boundary conditions

W1(L/2, t) = H(t), W2(−L/2, t) = H(t), (4.3)

and initial conditions

W1(x, 0) = 0, W2(x, 0) = 0. (4.4)

In equations (4.3), H(t) is the Heaviside step function satisfying H(t) = 1 if t > 0 and

H(t) = 0 if t ≤ 0. The corresponding inverse problem is to find F (x) ∈ C[−L/2, L/2]
given −L/2 < x0 < L/2, v andWj,data(x0, t) =

∫ t

0
wj,data(x0, t

′)dt′ for t > 0 and j = 1, 2.

Alternatively, we can also take Laplace transforms of equations (2.37) - (2.38) to find

sw̃1(x, s) = v
∂w̃1

∂x
+ F (x)(w̃2 − w̃1), (4.5)

sw̃2(x, s) = −v∂w̃2

∂x
+ F (x)(w̃1 − w̃2), (4.6)

subject to boundary conditions

w̃1(x = L/2, s) = 1, w̃2(x = −L/2, s) = 1. (4.7)

The corresponding inverse problem is to find F (x) ∈ C[−L/2, L/2] given −L/2 < x0 <

L/2, v and w̃j,data(x0, s) for s > 0 and j = 1, 2.
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4.2 Solution to the Forward Problems

In this section, we give details on solving the forward problem (4.5)-(4.7) and

(4.1)-(4.4).

Solution to (4.5)-(4.7): Our method for finding w̃1(x0, s) and w̃2(x0, s) from

equations (4.5)-(4.7) is based on solving the boundary value problem using a pseu-

dospectral method [94] for different values of s ≥ 0: see Algorithm 3. The solutions

w̃1(x0, s) and w̃2(x0, s) are always infinitely differentiable, monotonically decreasing

functions in s that → 0 as s→∞.

Algorithm 3 Algorithm for solving the forward problem (4.5)-(4.7).

1: Require: flip rate function F (x), velocity v > 0, interval size L, starting position
−L/2 < x0 < L/2 and integer N ≫ 1.

2: for i = 1, 2, . . . , N do
3: let ξi = (i− 1)/N and si = ξi/(1− ξi).
4: With s = si, solve (4.5)-(4.7) using a pseudospectral discretization [94] in x.
5: Interpolate the solution at x = x0 to find w̃1(x0, si) and w̃2(x0, si).
6: end for
7: Output: Laplace transformed exit time distributions w̃1(x0, si) and w̃2(x0, si), i =

1, . . . , N .

Solution to (4.1)-(4.4): In contrast to w̃1(x0, s) and w̃2(x0, s), the solutions W1(x, t)

and W2(x, t) contain jump discontinuities that propagate into the domain of solution

with velocity ±v: the jump discontinuity in W1(x, t) (W2(x, t)) propagates along the

characteristic line t = −x/v+L/(2v) (t = +x/v+L/(2v)). This behavior in the singu-

larities is illustrated by the following theorem which uses an eigenfunction expansion

to construct an explicit solution to (4.1)-(4.4).

Theorem 1 (Series solution to the forward problem (4.1)-(4.4)). For 0 < t < L/v, the

solution to (4.1)-(4.4) is

W1(x, t) = a1(x)H [t + x/v − L/(2v)] + Z1(x, t), (4.8)

W2(x, t) = a2(x)H [t− x/v − L/(2v)] + Z2(x, t), (4.9)
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where H [·] is the heaviside step function and Z1(x, t), Z2(x, t) are continuous functions

given by the series (at least formally)

Z(x, t) = −
∞∑

m=1

um(x)

smDm

[h(1)m (t) + h(2)m (t)], (4.10)

where:

h(1)m (t) =

∫ −L/2+vt

−L/2

p(1)∗m (y)a2(y)F (y)(1− e(t−
y
v
− L

2v )sm)dy, (4.11)

h(2)m (t) =

∫ L/2

L/2−vt

p(2)∗m (y)a1(y)F (y)(1− e(t+
y
v
− L

2v )sm)dy, (4.12)

a1(x) = exp

[
−1

v

∫ L/2

x

F (x′)dx′

]
, (4.13)

a2(x) = exp

[
−1

v

∫ x

−L/2

F (x′)dx′
]
, (4.14)

Dm = 〈pm(x),um(x)〉 =
∫ L/2

−L/2

p∗
m(x)um(x)dx. (4.15)

In (4.10), sm ∈ C and um(x) ∈ C2 are the eigenvalues and eigenfunctions of A where

A


 u1

u2


 =






 v d

dx
0

0 −v d
dx


+ F (x)


 −1 1

1 −1








 u1(x)

u2(x)


 , (4.16)

along with the boundary conditions u1(L/2) = u2(−L/2) = 0. pm(x) =
[
p
(1)
m (x), p

(2)
m (x)

]T

are the eigenfunctions of the adjoint operator A∗.

We now discuss the behavior of the solutions W1(x, t) and W2(x, t) in light of

equations (4.8)-(4.9) and defer the proof of the theorem to the end of this section.

From (4.8) and (4.9) it is clear that discontinuities in the boundary conditions (4.3)

propogate into the interior. In Figure 4.1(a), W1 is discontinuous on the diagonal line

separating A,C and B,D whileW2 is discontinuous on the line separating A,D and B,C.

Because the hyperbolic system (4.1)-(4.4) has a finite wave speed v > 0, region C is

outside the region of influence of the disturbances originating at (x, t) = (L/2, 0) and

(−L/2, 0) and we expect thatW1(x, t) =W2(x, t) = 0 in C. This behavior is confirmed

in Figure 4.1(b) which shows the cumulative distribution functions W1(x = −L/4, t)
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Figure 4.1: (a) Propagation of discontinuities of equations (2.37) - (2.42) in the
x-t plane. The solution w1(x, t) is formally infinite on x = L/2 − vt
while w2(x, t) is infinite on x = −L/2 + vt. These singularities give
rise to discontinuities in W1 and W2 that can be seen in (b,c). (b) Nu-
merical computation of cumulative probability densities (cdfs) W1(x0 =
−L/4, t), W2(x0 = −L/4, t) and auxiliary functions Z1(x0 = −L/4, t),
Z2(x0 = −L/4, t) computed through (4.10) and Algorithm 4 using us-
ing 101 Chebyshev grid points and 51 eigenfunctions u1,u2, . . . ,u51. (c)
Numerical computation of cdfs W1(x0 = L/3, t) and W2(x0 = L/3, t)
(solid) along with results from Monte Carlo simulations (diamond). In-
set shows Laplace-transformed probability densities w̃1(x0 = L/3, s) and
w̃2(x0 = L/3, s). Common parameters in (b,c) are v = 1, F (y) = 1 + y
and L = 1.

and W2(x = −L/4, t) calculated using (4.8)-(4.10). The function W1(−L/4, t) has a

discontinuous derivative at t1 = L/(4v) and a jump discontinuity at t2 = 3L/(4v)

while W2(−L/4, t) has a jump discontinuity at t1 and a discontinuous derivative at t2.

Figure 4.1(c) shows cdfs evaluated at x0 = L/3. The inset shows associated Laplace-

transformed probability density functions w̃1(L/3, s) and w̃2(L/3, s), found by solving

equations (4.5)-(4.7)) using Algorithm 3. Cumulative density functions from Monte-

Carlo simulations are superposed to validate our numerical method; details of how

these simulations are performed are described in Chapter 3.

The expansions (4.8)-(4.9) in Theorem 1 are commonly used to analyze seismic

waves [93, 95, 96] and form the basis of our numerical method for the forward problem
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in t: see Algorithm 4. Numerically, the cdfsW1 andW2 are computed by taking a finite

number of terms in (4.10) and adding on a step discontinuity at t = ∓x/v + L/(2v)

with strength given by (4.13) and (4.14). A pseudo-spectral collocation method on a

Chebyshev grid was used to find the eigenvectors uj and Clenshaw-Curtis quadrature

[94] was used to quickly evaluate the integrals (4.11) and (4.12) for 0 < t < L/v. The

strength of this numerical method is that no integration in time is required to find

W1(x0, t), W2(x0, t), and the method allows quick evaluation of the cdfs at one fixed

value of x = x0. Its weakness is that many terms are usually required (& 100) in the

expansion to obtain accurate results when x0 is close to ±L/2. Furthermore we found

that when x0 = ±L/2, the expansion (4.10) converged to a discontinuous function,

giving W1(x0, t) > 1 and W2(x0, t) > 1 as t → ∞; hence the properties of the series

(4.10) still require further investigation at the domain boundaries.

Another important reason for separating out W1 and W2 into continuous and

discontinuous components is to avoid Gibbs oscillations when solving for Z(x, t) as

superpositions of eigenfunctions un. These oscillations would introduce large errors

into the solution to the forward problem (4.1)-(4.4) and therefore hinder the solution

of the inverse problem.

Proof of Theorem 1. Upon substituting (4.8), (4.9) into (4.1), (4.2), we find that Z1(x, t)

and Z2(x, t) satisfy

∂Z1

∂t
− v∂Z1

∂x
− F (x)(Z2 − Z1) = a2(x)F (x)H [t− x/v − L/(2v)], (4.18)

∂Z2

∂t
+ v

∂Z2

∂x
− F (x)(Z1 − Z2) = a1(x)F (x)H [t+ x/v − L/(2v)], (4.19)

subject to the homogeneous boundary conditions Z1(L/2, t) = 0, Z2(−L/2, t) = 0 and

initial conditions Z1(x, 0) = 0, Z2(x, 0) = 0 and a1,2 are defined by (4.13) and (4.14).

We now find a series representation for Z1(x, t) and Z2(x, t). After taking Laplace
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Algorithm 4 Algorithm for solving the forward problem (4.1)-(4.4). The same symbol
is used to refer to quantities in (4.10)-(4.15) as well as their numerical approximations.
For example, A refers to the differential operator as well as its matrix approximation.

1: Require: A target flip rate F (x), velocity v > 0, an integer N , a starting position
−L/2 < x0 < L/2 and a discretization of the interval [−L/2, L/2], {χ0, χ1, . . . , χn}.

2: Discretize the differential operators A and the adjoint A∗ where

A

(
u1
u2

)
=

{[
v d
dx

0
0 −v d

dx

]
+ F (x)

[
−1 1
1 −1

]}(
u1(x)
u2(x)

)
,

A∗

(
p1
p2

)
=

{[
−v d

dx
0

0 v d
dx

]
+ F (x)

[
−1 1
1 −1

]}(
p1(x)
p2(x)

)
.

Note that A must account for the boundary conditions u1(L/2) = 0 and
u2(−L/2) = 0 respectively and A∗ must account for the adjoint boundary con-
ditions p1(−L/2) = 0 and p2(L/2) = 0.

3: Compute s1, . . . , sN , the first N complex eigenvalues of A with smallest absolute
value.

4: Compute the corresponding N eigenvectors of u1, . . . ,uN of A and p1, . . . ,pN of
A∗.

5: Compute the inner products Dm =
∫ L/2

−L/2
p∗
m(x)um(x)dx for m = 1, . . . , N .

6: Compute the functions h
(1)
m (t) and h

(2)
m (t) in (4.11) and (4.12) for m = 1, . . . , N .

7: Compute a1(x) and a2(x) in (4.13) and (4.14).
8: Compute

Z(x0, t) = −
N∑

m=1

um(x0)

smDm
[h(1)m (t) + h(2)m (t)], (4.17)

as the N -term approximation to (4.10). If x0 does not coincide with a grid point
χj, use interpolation to find um(x0).

9: Compute W1(x0, t) and W2(x0, t) by adding discontinuities of strength a1(x0) and
a2(x0) at t = −x0/v + L/(2v) and t = x0/v + L/(2v) respectively to Z1 and Z2:
see equations (4.8) and (4.9).

10: Output W1(x0, t) and W2(x0, t).
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transforms of (4.18) and (4.19), we find that Z̃(x, s) =
[
Z̃1(x, s), Z̃2(x, s)

]T
satisfies

(A− sI)Z̃(x, s) = −Ñ(x, s)

s
, (4.20)

Ñ(x, s) = F (x)


 a2(x)e

−( L
2v

+x
v )s

a1(x)e
−( L

2v
−x

v )s


 . (4.21)

with boundary conditions Z̃1(L/2, s) = 0, Z̃2(−L/2, s) = 0. Equation (4.20) has a

solution of the form

Z̃(x, s) =
∞∑

n=1

cn(s)un(x)

s− sn
, (4.22)

where the vector eigenfunctions un(x) ∈ C2 satisfy Aun = snun for eigenvalues sn ∈ C.

As an aside, when F (x) = F0 is a constant, one can show that the eigenfunctions are

proportional to [−(α2+λ2n)
1/2 sinhλn(x+1/2)+λn coshλn(x+1/2), α sinhλn(x+1/2)]T

with α ≡ F0L/v, the λn ∈ C satisfy the transcendental equation −(α2+λ2n)
1/2 tanhλn+

λn = 0, and the eigenvalues are given by sn = −α− (α2 + λ2n)
1/2.

Recall that if {un} are the eigenfunctions of A and {pm} are the eigenfunctions
of the adjoint operator A∗, then 〈pm,un〉 = 0 unless m = n. Substituting (4.22) into

(4.20), left-multiplying both sides of by p∗
m and integrating, we find that

cn(s) =
〈pm(x), Ñ(x, s)〉

sDm
,

where Dm is defined by (4.15). (One cannot obtain cn by invoking orthogonality of

{un} because A is not self-adjoint.) We now take the inverse Laplace transform of

(4.22) and switch the order of integration to obtain the continuous parts of the cdfs:

Z(x, t) =

∞∑

m=1

um(x)

Dm

{∫ L/2

−L/2

dyp(1)∗m (y)a2(y)F (y)

∫ γ+i∞

γ−i∞

ds

2πi

e(t−
y
v
− L

2v )s

s(s− sm)
+

∫ L/2

−L/2

dyp(2)∗m (y)a1(y)F (y)

∫ γ+i∞

γ−i∞

ds

2πi

e(t+
y
v
− L

2v )s

s(s− sm)

}
, Reγ > 0,

= −
∞∑

m=1

um(x)

smDm
[h(1)m (t) + h(2)m (t)].

where h
(1)
m (t) and h

(2)
m (t) are given by equations (4.11) and (4.12) respectively.
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4.3 Projection Method to Solve Inverse Problem

In this section, we describe our algorithms for reconstructing the flip rate func-

tion F (x) from the two distributions of exit times w1,data(t) and w2,data(t). These distri-

butions can come from simulating the Broadwell process directly through Algorithm 2

or through a one-time solution of the forward problems (4.5)-(4.7) or (4.1)-(4.4). We

implement two related algorithms. The first method uses the exit time data directly (t-

method) and the second method uses Laplace-transformed exit time data (s-method).

Pseudocodes for the two methods are given in Algorithms 5 and 6.

In both methods, we represent the trial flip rate function FM(x) and the target

flip rate function F ∗(x) as linear combination of Legendre polynomials on [−L/2, L/2]:

FM(x) =

M−1∑

j=0

ajφj(x), (4.23)

For example, φ0(x) = 1, φ1(x) = 2x/L, φ2(x) = 6
(
x
L

)2 − 1
2
.

Our aim is to find coefficients a1, . . . , aM to minimize the objective functions for

the t-method and s-methods, Π1 and Π2 respectively. These take the form

Π1(a) =

∫ L/v

0

|W1(x0, t; a)−W1,data(x0, t)|2dt +
∫ L/v

0

|W2(x0, t; a)−W2,data(x0, t)|2dt,

Π2(a) =

∫ ∞

0

|w̃1(x0, s; a)− w̃1,data(x0, s)|2ds+
∫ ∞

0

|w̃2(x0, s; a)− w̃2,data(x0, s)|2ds.

The data sets Wj,data(x0, t), w̃j,data(x0, s) associated with F ∗(x) can be computed from

individual exit times using (3.4) and (3.5) respectively.

Minimization of Π1 and Π2 with respect to a was performed using the Matlab

routines fminunc.m and lsqnonlin.m for the t and s methods respectively, with the

tolerances TolFun and TolX set to 10−14. The initial guess for the coefficients was

always aj = 1 for j = 1, . . . ,M , unless otherwise stated. The minimizing coefficients

âj then define the reconstructed flip rate through F̂ (x) =
∑N

j=1 âjφj(x).

An obvious limitation of the projection method is that the method does not

converge for non-polynomial F ∗ and polynomial F ∗ with degree greater thanM . How-

ever, as we shall see in section 4.4, the method may still be used to find reasonable

approximations in these cases.
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Algorithm 5 Reconstruction of flip rate coefficients using the t-method

1: Require: An integer M , an interval length L, target flip rate function F ∗(x), a
particle speed v > 0, a starting position −L/2 < x0 < L/2 and the first M
legendre polynomials on (−L/2, L/2), φ1, . . . , φM (see text for details).

2: Generate noisy cdfs of the exit time W1,data(x0, t) and W2,data(x0, t) for F
∗(x) using

Algorithm 2.
3: For a given a = (a0, a1, . . . , aM−1) ∈ R

M , define FM(x) =
∑M−1

j=0 ajφj(x). Let
W1(x0, t; a) and W2(x0, t; a) be the solution to the forward problem (4.1)-(4.4)
with F = FM , calculated using Algorithm 4.

4: Find a = â that minimizes

Π1(a) =

∫ L/v

0

|W1(x0, t; a)−W1,data(x0, t)|2dt+
∫ L/v

0

|W2(x0, t; a)−W2,data(x0, t)|2dt.
(4.24)

Integrating through discontinuities can be avoided by noting thatW1(x, t) = 0 and
W2(x, t) = 0 when t < min

(
L
2v
− x

v
, x
v
+ L

2v

)
. The lower limits of integration in

(4.24) can be replaced with
(

L
2v
− x0

v

)+
when 0 ≤ x0 < L/2 and

(
x0

v
+ L

2v

)+
when

−L/2 < x0 ≤ 0.
5: Output F̂ (x) ≡∑M−1

j=0 âjφj(x) as the estimate of the flip rate function for the exit
time distributions W1,data(x0, t) and W2,data(x0, t).

4.4 Results and Discussion

4.4.1 Flip Rate Reconstruction

We used the projection algorithm discussed in section 4.3 to reconstruct flip rate

functions from data generated using Monte-Carlo simulation (see Chapter 3). In the

following discussion, let N be the number of exit times for each initial velocity +v, −v,
so that the total number of exit times is always 2N . We also take the starting position

x0 = 0, interval length L = 1 and particle speed v = 1 unless otherwise stated.

For Figure 4.2, we reconstruct some “structurally simple” smooth functions that

have few extrema within (−L/2, L/2) and find that the accuracy of the reconstructions

improves as the noise in the data decreases. For the “N =∞” cases, artificial, noiseless

data is generated by solving the forward problems equations (4.1)-(4.4) and (4.5)-(4.7)

with F = F ∗. Panels (a-f) indicate that for a given N , the t-method generally outper-

forms the s-method because the associated errors are smaller. In (a,b) we reconstruct

a cubic polynomial by recovering M = 4 Legendre coefficients. In (c,d) we attempt to
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Algorithm 6 Reconstruction of flip rate coefficients using the s-method

1: Require: An integer M , an interval length L, a target flip rate function F ∗(x), a
particle speed v > 0 and a starting position −L/2 < x0 < L/2 and the first M
Legendre polynomial on (−L/2, L/2), φ1, . . . , φM (see text for details).

2: Use F ∗(x) to generate Laplace-transformed exit time pdfs w̃1,data(x0, s) and
w̃2,data(x0, s) through Algorithm 2.

3: For a given a ∈ R
M , let w̃1(x0, s; a) and w̃2(x0, s; a) be the solution to the forward

problem (4.5)-(4.7) calculated using Algorithm 3 with flip rate function defined by
a = {a0, a2, . . . , aM−1}:

FM(x) =
M−1∑

j=0

ajφj(x).

4: Find a = â that minimizes

Π2(a) =

∫ ∞

0

|w̃1(x0, s; a)− w̃1,data(x0, s)|2ds+
∫ ∞

0

|w̃2(x0, s; a)− w̃2,data(x0, s)|2ds,
(4.25)

The integral in (4.25) is calculated using using a change of variable s[ξ] = ξ/(1−ξ)
so that

Π2 =
2∑

j=1

∫ 1

0

[w̃j(x0, s[ξ], a)− w̃j,data(x0, s[ξ])]
2 dξ

(1− ξ)2 ,

which can be computed using the trapezium rule on equally spaced abscissae on
[0,1].

5: Output F̂ (x) ≡∑M−1
j=0 âjφj(x) as the estimate of the flip rate function for the exit

time distributions w̃1(x0, s) and w̃2(x0, s).

reconstruct a transcendental function by representing F ∗(x) with M = 5 coefficients.

Although ||FM−F ∗||∞ 9 0 as the noise decreases, we are still able to find a reasonable

approximation FM so that ||FM − F ∗||∞ is not too large. The s-method converges to

the correct solution for perfect data but the inclusion of a small amount of noise renders

the method unstable, resulting in a large error. This kind of behavior also occurs with

the t-method whenM & 5 and is typical in many ill-posed problems (see below). In (e)

and (f), we reconstruct flip rate functions from a relatively small number of exit times

by taking M = 3 basis functions; however, smaller M restricts the range of admissible

target functions.
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Figure 4.2: Reconstructed approximations to flip rate functions F ∗(x) from noisy
exit time data. (a,b) F ∗(x) = 1 − 0.7x − 0.3x2 + 6x3, M = 4; (c,d)
F ∗(x) = x2e−x/10 + 1/10, M = 5; (e,f) F ∗(x) = 1 + x + 3x2, M = 3.
The t-method was used in the left panels and the s-method was used in
the right panels. N =∞ corresponds to perfect, noiseless data, which is
generated by solving the forward problems (4.1)-(4.4) and (4.5)-(4.7).

If we have no a-priori knowledge on F ∗(x) (e.g. it may be a high-degree poly-

nomial, have many extrema or be discontinuous), our method may not capture F ∗(x)

accurately. For our method to be successful, it is important that we know beforehand

that F ∗(x) is smooth and structurally not too complex. Increasing the number of basis

functions M increases the range of functions we can accurately represent. Providing

F ∗ is smooth enough, it can always be represented through its Taylor series and our

method strives to capture its first M coefficients. Ideally, we would like M to be as
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large as possible to represent any F ∗(x) ∈ C∞(−L/2, L/2). However in practice it is

difficult to reliably reconstruct F ∗(x) (even polynomials) when M & 5. The reason,

which is common with all projection methods [13, 97], is that as the finite-dimensional

approximation to F ∗(x) improves with M → ∞, the method becomes more unstable

due to ill-posedness of the inverse problem. In this limit, minimizing the objective

functions (4.24), (4.25) is prone to large errors.

4.4.2 Instability of Projection Method

Numerically, the instability discussed above may be quantified by examining the

condition number of the objective function near its minimum. Specifically, we study

the Hessian (matrix of second partial derivatives) of the objective functions Π1 and Π2

in (4.24) and (4.25) with respect to the coefficients aj , j = 0, . . . ,M − 1:

H
(1)
ij ≡

∂2Π1

∂ai∂aj

∣∣∣∣
ai=a∗i ,aj=a∗j

, H
(2)
ij ≡

∂2Π2

∂ai∂aj

∣∣∣∣
ai=a∗i ,aj=a∗j

, (4.26)

for i, j = 0, . . . ,M − 1. In (4.26), a∗i are the target coefficients of a polynomial flip

rate function: F ∗(x) =
∑M−1

i=0 a∗iφi(x). The condition number of a matrix A is defined

as the ratio of its largest eigenvalue to its smallest: κ = λmax(A)/λmin(A). Because

the eigenvalues represent the principle curvatures of Π1 and Π2 at the point a∗, they

are always positive; a very large condition number indicates that Π1 or Π2 is locally

very flat at a = a∗ and finding a∗ numerically is prone to errors. On the other hand, a

moderate-sized condition number indicates only a small difference in curvatures near a∗

and so finding the minimum numerically should not be difficult. Table 4.1 shows that

both condition numbers for the t- and s-methods grow exponentially as the number

of basis functions M increases. For M = 5 basis functions, the condition numbers

for the t-method are consistently two orders of magnitude smaller than those for the

s-method. This suggests that fitting to the exit time data directly (as opposed to its

Laplace transform) leads to more effective algorithms and better estimates for the flip

rate function. This is confirmed in our numerical experiments because occasionally the
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t-method is able to recover M = 5 coefficients of a quartic polynomial F (x), but the

s-method is seldom able to do so.

Table 4.1: Local condition numbers κs and κt for F
∗(x) corresponding to the objective

functions (4.25) and (4.24) respectively. M denotes the number of basis
functions used in (4.23).

F ∗(x) M κt κs

F ∗(x) = 1 + x

2 5.3× 102 3.1× 102

3 1.0× 104 3.3× 104

4 1.4× 105 3.5× 106

5 1.0× 106 1.6× 108

F ∗(x) = 1− x+ x2
3 5.0× 105 1.8× 105

4 3.5× 106 1.6× 107

5 6.7× 106 5.2× 108

4.4.3 Sensitivity of Reconstruction to Advection Speed

We also explore the accuracy of our reconstruction for different advection speeds

v, given a fixed number of exit times when F ∗(x) is a polynomial of degree ≤ M . In

Figure 4.3, we see that, for both methods, when the velocity is either much less or

much larger than unity, the associated error is large. (Although the upper limit of

the objective function (4.24) depends on the value of v used, we checked that the non-

monotonic behavior in ||FM−F ∗||∞ was not sensitive to the upper limit of integration.)

In practice, there are always two sources of error in the reconstruction of F ∗: the

first is from noise in the data and the second stems from the minimization procedure

itself:

Total error = error from noise in data + error from minimization. (4.27)

If the minimization of the objective functions (4.24) or (4.25) was achieved with zero

error, noisy exit times would still produce an error in the reconstructed F . On the other

hand, for noiseless data, the flat minima and large condition numbers discussed above

would produce an erroneous F from the minimization. It is hard to separate the two
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Figure 4.3: Error in reconstructed flip rate as a function of particle velocity. Each
point is an average over 10 sets of 2N = 20, 000 exit times. Target
flip rate F ∗(x) = 9

4
x2 − 3

4
x + 9

16
, corresponding to target coefficients

a∗ = [0.75,−0.375, 0.375, 0]. Initial guesses are (a) a = [1, 1, 1, 1], (b)
a = [0.76,−0.385, 0.365, 0.01]. The same exit times were used for both
(a) and (b). The difference in the errors is shown in (c).

types of error in (4.27), but some insight can be gained by comparing Figure 4.3(a) and

Figure 4.3(b) which differ only in the starting values for the coefficients a0, . . . , aM−1; in

particular the exit times for each value of v for each figure are identical. When we move

the initial guess for the coefficients closer to their target values in (b), we greatly reduce

the error in minimization because the accuracy of minimization algorithms depends on

the quality of the initial guess. Therefore, the error in (b) comes mainly from noise in

the data. Because the exit times were identical for (a) and (b), the difference of the

errors in (a) and (b) – shown in (c) – represents the error from minimization which

is associated with large condition numbers, flat extrema and perhaps multiple local

minima. We note that the error from minimization by the s-method is much larger

than the corresponding error by the t-method for a wide range of v values.

When the dominant error stems from noise in the data (as is the case in Fig-

ure 4.3(b)), we can understand why v = O(1) provides the most accurate reconstruction

by analyzing how well the Monte-Carlo simulations approximate the moments of the

exit time distribution. We prove
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Theorem 2. Let T
(n)
1 (x) and T

(n)
2 (x) be the nth moments of the exit time conditioned

on the particle starting at position x with initial velocity +v and −v respectively. Then

the moments have the asymptotic behavior

T
(k)
j (x) =





O

(
k!

v2k

)
, v ≪ 1,

O

(
k!

vk

)
, v ≫ 1,

(4.28)

where i = 1, 2.

Proof. We have T
(n)
i (x) = (−∂/∂s)n w̃i(x, s)|s=0 for n ≥ 0, i = 1, 2 and from Equa-

tions (4.5) and (4.6), these moments satisfy the coupled equations

−vdT
(n)
1

dx
− F (x)(T (n)

2 − T (n)
1 ) = nT

(n−1)
1 ,

v
dT

(n)
2

dx
− F (x)(T (n)

1 − T (n)
2 ) = nT

(n−1)
2 ,

subject to the boundary conditions T
(n)
1 (L/2) = 0 and T

(n)
2 (−L/2) = 0 where n ≥ 1

and T
(0)
i (x) = 1. After some algebra, we find expressions for the moments in terms of

indefinite integrals:

T
(n)
1 (x) = − n

v2

∫
dxF (x)

∫
dx[T

(n−1)
1 (x) + T

(n−1)
2 (x)]− n

v

∫
dxT

(n−1)
1 (x), (4.29)

T
(n)
2 (x) = − n

v2

∫
dxF (x)

∫
dx[T

(n−1)
1 (x) + T

(n−1)
2 (x)] + n

v

∫
dxT

(n−1)
2 (x). (4.30)

When v ≪ 1, we retain the first integral in each of equations (4.29) and (4.30) to

find to obtain T
(k)
i = O(k!/v2k). If v ≫ 1, we retain the second integral to find

T
(k)
i = O(k!/vk).

In (4.28), we see that the moments have a different asymptotic form depending

on whether v is small or large. When v ≪ 1, the random walker is the diffusive limit

where all the moments (except for the zeroth moment) diverge. On the other hand,

when v ≫ 1, the particle is in the ballistic limit: all moments except for the zeroth

moment are asymptotically small and, to leading order, independent of F (x).
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Now consider approximating w1(x0, t) or w2(x0, t) with their noisy counterparts

generated by the Monte-Carlo simulations. How well are the w1(x0, t) and w2(x0, t)

approximated? One way to quantify the accuracy is by calculating the error in the

moments of the noisy distribution. Given an initial velocity +v, let {τj}, 1 ≤ j ≤ N

be the N generated exit times (the following argument with initial velocity −v is

almost identical). Then by the central limit theorem, the kth moment is approximately

distributed according to

1

N

N∑

j=1

τkj ∼ N
(
T

(k)
1 ,

Var(τkj )

N

)
,

where N (µ, ν) is a normal distribution with mean µ and variance ν. Therefore a

measure of the error incurred when calculating the kth sample moment is

N−1/2
√
Var(τkj ) = N−1/2

√
T

(2k)
1 − T (k)

1

2
=





O(N−1/2v−2k), v ≪ 1,

O(N−1/2v−k), v ≫ 1,
(4.31)

using (4.28) and Var(τkj ) = E[(τkj − T
(k)
1 )2]. Therefore from (4.31), a quick rule-of-

thumb for the accuracy of the Monte-Carlo generated exit time distribution is that the

error scales as N−1/2 where N is the number of trials.

It is evident from (4.31) that for a fixed number of realizations, the error in the

kth moment diverges as v−2k as v → 0 and the underlying exit time distribution is

badly approximated in the limit of small v. On the other hand, as v → ∞, although

the error in the moments tend to zero, the moments themselves also tend to zero.

From equation (3.7) the probability that a Broadwell particle with initial velocity +v

exits in time tc tends to 1 as v → ∞: for large v, the generated list of exit times is

populated almost exclusively by tc (and tc → 0 as v →∞). From a single exit time it

is very difficult to infer any information about F (x). In both limiting cases, because

the distribution of exit times is poorly captured by a finite number of realizations, the

quality of the reconstruction suffers.

Finally, we systematically explore the effect of noise on the reconstruction qual-

ity. In Figure 4.4, we plot the error of the reconstructed FM(x) against the number of
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Figure 4.4: Dependence of error in reconstructed flip rate function F (x) on the num-
ber of exit times per initial particle state N when F (x) = 1 − 0.7x −
0.3x2 + 6x3 using (a) t-method and (b) s-method. For each N , the error
is calculated by performing minimizations for 10 data sets and taking the
average, with each set containing 2N exit times.

exits. For a wide range of polynomials F ∗(x), using both the t- and s-methods, we find

that the error in the reconstructed function scales as O(N−1/2). In particular, we see

that for N = O(104), the error ||FM−F ∗||∞ = O(10−1) whereas N must exceed O(106)

for the error to fall below O(10−2). These estimates are mean values: the accuracy

resulting from fitting one data set to the next will always vary because the noise in

each set is different.

4.5 Conclusions

In this chapter, we have developed a pair of algorithms, Algorithms 5 and 6,

which can be used to estimate the flip rate function of a 1D, constant-speed Broadwell

process from the distribution of exit times out of a finite interval. In particular, the

t-method is based on a novel series solution of the backward equation (4.1)-(4.4); see

Theorem 1. We also present a set of calculations and asymptotic results that quantify

the errors in approximating the exit time distribution with simulated data, and the
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corresponding error in the flip rate reconstruction.

We found that polynomial transition rates could be reconstructed if the degree

of the polynomial was not too large (. 4) and that fitting to the exit time distribution

(t-method) directly versus fitting to the Laplace-transformed distribution (s-method)

generally allowed the reconstruction of one extra coefficient in the representation of

F (x). Providing our initial guess for the coefficients of F (x) was not too far from

the target coefficients, we were able to find F (x) to within O(10−1) using O(104)

exit times. We were also able to find good approximations to non-polynomial flip-rate

functions providing they are smooth and slowly varying. Finally, we experimented with

reconstructions using different advection speeds. We found that v = O(1) yielded the

most accurate reconstructions because very small or large values of v in the Monte-Carlo

simulations gave poor representations of the true underlying exit time distribution.

Our results suggest that the t-method is an effective method to infer the spatially-

dependent flip rate function of a two-state Broadwell process, if it is known a-priori

that this function is smooth and structurally simple. The t-method involves explicitly

solving for the cumulative density functions (4.1)-(4.4), tracking the discontinuities via

(4.8)-(4.9) and minimizing the objective function (4.24). With this method, one can of-

ten find M = 4 coefficients from about 2N = 20, 000 exit times. The s-method usually

reconstructs one less coefficient than the t-method for the same number of exit times,

and is more sensitive to the initial guess. However, it is much simpler to implement

and only involves solving the ordinary differential equations (4.5)-(4.7) and minimizing

(4.25).
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Chapter 5

RECONSTRUCTION OF BROADWELL PROCESS USING LAYER
STRIPPING METHOD

The layer stripping algorithm (or downward continuation algorithm) [36, 98] was

developed by geophysicists to study the one-dimensional inverse scattering (impulse-

response) problem in reflection seismology [36]. It has a wide range of applications,

such as speech synthesis [37] and transmission-line models [38]. In this chapter, we

implement the layer stripping algorithm, which utilizes the finite difference method and

the method of characteristics to reconstruct the spatially dependent flip rate function

from the exit time distribution layer by layer, where the exit time is defined as the

travel time needed for the particle starting from one endpoint of a finite interval to

exit from either endpoint. We also study the convergence rate of the algorithm.

In Section 5.1, we describe a two-state Broadwell process and restrict our study

to the case with a constant speed and spatially dependent flip rate. We then state

both the forward problem and inverse problem. In Section 5.2, we provide details on

solving the forward problem. In Sections 5.3 and 5.4, we discuss the numerical scheme

implementing the layer stripping algorithm to reconstruct the flip rate functions using

the cdf of the exit time data instead of the pdf of exit time data. In Section 5.5, we

present our results of reconstruction obtained from simulated exit time data and the

convergence rate of the layer stripping algorithm. In Section 5.6, we summarize our

findings.

5.1 Two-state Broadwell Model and Statement of Inverse Problem

The two-state Broadwell model can be described as a particle’s random walk

parameterized by a starting position x ∈ [−L/2, L/2], a velocity +v (state 1, where
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v is a positive constant) or −v (state 2) and, a flip rate F (y), where y ∈ [−L/2, L/2]
represents the current position at time σ. While traveling with speed v, the particle

shifts between the two states with probability F (y)dσ within the time interval (σ, σ +

dσ). When the particle exits from either endpoint, the total travel time is recorded.

If the Broadwell process is repeated a large number of times, we obtain the exit time

distribution w1(x, t) for a particle that initially started from x in state 1 and w2(x, t)

for a particle initially starting from x in state 2, where t is the exit time.

In this chapter, we consider the exit time distributions w1(−L/2, t) and w2(L/2, t)

conditioned on the particle initially being at position ∓L/2, having a positive (+v) and

negative (−v) velocity respectively and with a given flip rate function F (y), the exit

time distributions also satisfy (2.37) - (2.42). The forward problem is to solve (2.37)

- (2.42) for exit time distributions w1(x, t) and w2(x, t), −L/2 < x < L/2 and t > 0,

given starting position x, flip rate F (y) and velocity ±v. Therefore, in Figure 5.1,

the forward problem is that given Figure (a), we want to generate plots (b) and (c).

However, we are more interested in the inverse problem:

Inverse Problem Statement: Consider (2.37) - (2.42). Given velocities ±v
and exit time distributions at the boundaries x = ±L/2: w1(−L/2, t) and w2(L/2, t),

t > 0, reconstruct the flip rate F (x) ∈ C[−L/2, L/2].
To illustrate the problem, given Figure 5.1(b) and Figure 5.1(c), we want to

reconstruct F (y) in Figure 5.1(a). Notice that Figure 5.1(b) and Figure 5.1(c) contain

‘spikes’. The spike is a numerical approximation of a Dirac delta function, which

corresponds to an immediate particle exit at time t = L/v. For more details see [14].
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Figure 5.1: Simulated exit time distributions of a Broadwell process with flip rate
F (y) = 0.5 + 0.2 cos(16y) + 0.1 sin(64y), constant velocity v = 1, and
L = 1. (a) The flip rate function F (y). (b) Exit time distribution w1

starting from x = −0.5 with velocity +v, generated by F (y) in (a).
(c) Exit time distribution w2 starting from x = 0.5 with velocity −v,
generated by flip rate F (y) in (a). The number of exit times to generate
each distribution is M = 105.

5.2 Solution to The Forward Problem

5.2.1 Propagation of Singularities

We break up the forward problem (2.37) - (2.42) into two subproblems. First

consider

∂w1

∂t
− v∂w1

∂x
= F (x)(w2 − w1), (5.1)

∂w2

∂t
+ v

∂w2

∂x
= F (x)(w1 − w2), (5.2)

w1(L/2, t) = 0, (5.3)

w2(−L/2, t) = δ(t), (5.4)

for t ≥ 0, and

w1(x, t) = 0, w2(x, t) = 0, for t < 0.

Let H be the Heaviside function, we look for a solution of (5.1) - (5.4) in the form

w1(x, t) = a0(x, t)δ(ξ) + a1(x, t)H(ξ), (5.5)

w2(x, t) = b0(x, t)δ(ξ) + b1(x, t)H(ξ), (5.6)
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where a0, a1, b0, b1 are differentiable functions and ξ = t− x/v − L/(2v). Substituting
(5.5) - (5.6) into boundary conditions (5.3) - (5.4), matching the coefficients of δ(ξ)

and H(ξ), we have

a0(L/2, t) = 0,

a1(L/2, t) = 0,

b0(−L/2, t) = 1,

b1(−L/2, t) = 0. (5.7)

Substituting (5.5) - (5.6) into (5.1) - (5.2), we have

2a0δ
′(ξ) +

[
∂a0
∂t
− v∂a0

∂x
+ 2a1 − F (b0 − a0)

]
δ(ξ)+

[
∂a1
∂t
− v∂a1

∂x
− F (b1 − a1)

]
H(ξ) = 0,

[
∂b0
∂t

+ v
∂b0
∂x
− F (a0 − b0)

]
δ(ξ) +

[
∂b1
∂t

+ v
∂b1
∂x
− F (a1 − b1)

]
H(ξ) = 0,

from which we match the coefficients of δ′(ξ) and δ(ξ), and deduce that on ξ = 0,

a0δ
′(ξ) = 0, (5.8)

2a1 = F (b0 − a0)−
∂a0
∂t

+ v
∂a0
∂x

,

∂b0
∂t

+ v
∂b0
∂x

= F (a0 − b0). (5.9)

We shall see in the Appendix A that (5.8) implies

a0 = 0, on ξ = 0, (5.10)

∂a0
∂t
− v∂a0

∂x
= 0, on ξ = 0. (5.11)

Substituting (5.10) - (5.11) into (5.8) - (5.9), we have that when ξ = 0, a0(x) = 0,

b0(x) = exp

[
−
∫ x

−L/2

F (x′)

v
dx′
]
, and

a1(x, t) = a1(x, x/v + L/(2v)) =
F (x)

2
exp

[
−
∫ x

−L/2

F (x′)

v
dx′
]
, (5.12)
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We also match the coefficients of H(ξ), so that when ξ > 0,

∂a1
∂t
− v∂a1

∂x
= F (x)(b1 − a1), (5.13)

∂b1
∂t

+ v
∂b1
∂x

= F (x)(a1 − b1). (5.14)

So, solving (5.1) - (5.4) is equivalent to solving (5.13)− (5.14) in the triangular domain

x > −L/2, t−x/v−L/(2v) > 0, t < L/(2v) with boundary conditions (5.7) and (5.12).

Note that, because in the hyperbolic system, the wave moves in a one-dimensional

medium with speed v, a disturbance at x = −L/2, t = 0 can have no ‘effect’ at x

until t > x/v + L/(2v), so we have b1(x, t) = a1(x, t) ≡ 0 in the region x < L/2,

t− x/v − L/(2v) < 0, t > 0. See subplot (a) of Figure 5.2.

Subproblem 1

−L/2 L/2 −L/2

(a) (b)

0

L/v

L/20

c
1
(L./2,t)=0

ξ=0 η=0

x x

t t
Subproblem 2

a
1
(x,t), given by 

(5.12) 

c
1
(x,t) = d

1
(x,t) ≡ 0

d
1
(x,t), given 

by (5.21)

L/v

b
1
(−L/2,t)=0

a
1
(x,t) = b

1
(x,t) ≡ 0

Figure 5.2: (a) Singularity structure of (5.7) and (5.12) − (5.14). (b) Singularity
structure of (5.21) - (5.24)

Similarly, we look for a solution to the second subproblem

∂w1

∂t
− v∂w1

∂x
= F (x)(w2 − w1), (5.15)

∂w2

∂t
+ v

∂w2

∂x
= F (x)(w1 − w2), (5.16)

w1(L/2, t) = δ(t), (5.17)

w2(−L/2, t) = 0, (5.18)
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for t ≥ 0, and

w1(x, t) = 0, w2(x, t) = 0, for t < 0,

in the form

w1(x, t) = c0(x, t)δ(η) + c1(x, t)H(η), (5.19)

w2(x, t) = d0(x, t)δ(η) + d1(x, t)H(η), (5.20)

where η = t+x/v−L/(2v). After some similar calculations, we have that when η = 0,

d0(x, t) = 0, c0(x, t) = exp

[
−
∫ L/2

x

F (x′)

v
dx′

]
and

d1(x, t) =
F (x)

2
exp

[
−
∫ L/2

x

F (x′)

v
dx′

]
. (5.21)

We also have that when η > 0,

∂c1
∂t
− v∂c1

∂x
= F (x)(d1 − c1), (5.22)

∂d1
∂t

+ v
∂d1
∂x

= F (x)(c1 − d1). (5.23)

So, solving (5.15) - (5.18) is equivalent to solving (5.22) - (5.23) in the triangular

domain x < L/2, t + x/v − L/(2v) > 0, t < L/(2v) with boundary conditions (5.21)

and

c1(L/2, t) = 0, (5.24)

which comes from setting x = L/2 in (5.19) and comparing with (5.17). Note that,

because in the hyperbolic system, the wave moves in a one-dimensional medium with

speed v, a disturbance at x = L/2, t = 0 can have no ‘effect’ at x until t > −x/v +
L/(2v), so we have c1(x, t) = d1(x, t) ≡ 0 in the region x < L/2, t+ x/v−L/(2v) < 0,

t > 0. See subplot (b) of Figure 5.2. In fact, we can solve (5.22) - (5.23) by noting
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the following steps: (i) Let x → −x in (5.21) - (5.24) (ii) Let c̃1(x, t) = c1(−x, t) and
d̃1(x, t) = d1(−x, t). Then equations (5.21) - (5.24) become

∂c̃1
∂t

+ v
∂c̃1
∂x

= F (−x)(d̃1 − c̃1), (5.25)

∂d̃1
∂t
− v∂d̃1

∂x
= F (−x)(c̃1 − d̃1),

c̃1(−L/2, t) = 0,

d̃1(x, t) =
F (−x)

2
exp

[
−
∫ x

−L/2

F (−y)
v

dy

]
, (5.26)

on t = x/v + L/(2v),

which are exactly the same as (5.12) − (5.7) except F (x) is replaced by F (−x). This

symmetry is used to quickly generate solutions to the full problem (2.37) - (2.42), whose

solution arises from a superposition of the subproblem solutions and can be represented

as

w1(x, t) = a1(x, t)H(ξ) + c0(x, t)δ(η) + c̃1(−x, t)H(η), (5.27)

w2(x, t) = b0(x, t)δ(ξ) + b1(x, t)H(ξ) + d̃1(−x, t)H(η). (5.28)

In Section 5.2.2, we give a numerical algorithm to generate the perfect data of the

exit time distributions w1(−L/2, t) and w2(L/2, t). We could also generate noisy data

w1(−L/2, t) and w2(L/2, t) by simulating a Broadwell random walk using a Monte-

Carlo method which is based on a Rejection-Acceptance algorithm [91]. A full de-

scription of our Monte-Carlo simulation is presented in our previous paper [14]. Once

w1(−L/2, t), w2(L/2, t) are calculated, we are able to find the corresponding cumulative

distribution functions:

W1(−L/2, t) =
∫ t

0

w1(−L/2, t′)dt′≡W1,data(t),

W2(L/2, t) =

∫ t

0

w2(L/2, t
′)dt′ ≡W2,data(t),

which will be used for flip rate reconstruction in Section 5.4.
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5.2.2 Numerical Method for The Forward Problems

In this section, we numerically solve the forward problem (5.1) - (5.4) to generate

the exit time distribution (perfect data) w1(−L/2, t), w2(L/2, t). From (5.27) - (5.28),

we know that the exit time distributions are then given by

w1(−L/2, t) = c0(−L/2, t)δ(t− L/v) + a1(−L/2, t)H(t) + c̃1(L/2, t)H(t− L/v),
(5.29)

w2(L/2, t) = b0(L/2, t)δ(t− L/v) + b1(L/2, t)H(t− L/v) + d̃1(−L/2, t)H(t),

(5.30)

for t > 0. From Figure 5.4, we see that the values of w1(−L/2, t) at t = L/(2v) and

w2(L/2, t) at t = L/(2v) only affect F (x) at x = 0, a set of zero measure. So the delta

functions included in (5.29) - (5.30) will only affect F (x) at a single point; hence we

ignore the deltas, and only need to solve for a1, b1, c̃1, and d̃1.

Now we describe the algorithm for solving a1, b1. Rewrite (5.13)− (5.7) as

da1(c− vt, t)
dt

= F (x)(b1 − a1), on t + x/v = c/v, (5.31)

db1(c− vt, t)
dt

= F (x)(a1 − b1), on t− x/v = c/v , (5.32)

a1(x, t) =
F (x)

2
exp

[
−
∫ x

−L/2

F (x′)

v
dx′
]
, on t = x/v + L/(2v), (5.33)

b1(−L/2, t) = 0, (5.34)

where c is a constant. Let ∆x = L/N, x0 = −L/2, xN = L/2, t0 = 0, tN = L/v, a
(j,i)
1 =

a1(xj , ti), b
(j,i)
1 = b1(xj , ti), then follow the procedure and Figure 5.3 below to calculate

a1 and b1:

1. From (5.33) and (5.34), we know that a1 (cross) is known on the diagonal t =

x/v+L/(2v), b1 (circle) is known on the left boundary x = −L/2. Rewrite (5.31)
and (5.32) as

b
(j,i)
1 = ∆tFj−1

[
a
(j−1,i−1)
1 − b(j−1,i−1)

1

]
+ b

(j−1,i−1)
1 , (5.35)

a
(j,i)
1 = ∆tFj+1

[
b
(j+1,i−1)
1 − a(j+1,i−1)

1

]
+ a

(j+1,i−1)
1 , (5.36)

from which the value of b1 along Diag1 t = x/v + L/(2v) is updated.
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Figure 5.3: Finite difference stencils for forward problem (5.13)− (5.7). a1 is known
on the diagonal t = x/v + L/(2v), b1 is known on the left boundary
x = −L/2

2. Use (5.36) and (5.35) to update the values of a1 and b1 along Diag 3.

3. Repeat the previous steps to update a1 and b1 along every other diagonal.

4. Use linear interpolation to calculate a1 and b1 along Diag2, Diag4, . . . , etc.

From Section 5.2.1, we know that c̃1 and d̃1 can be solved through (5.25)− (5.26) using

the same algorithm as (5.13) − (5.7), but using F (−x) instead of F (x). Hence, the

solution to the full forward problem (2.37) - (2.42) is constructed by solving (5.31) -

(5.32) numerically.

5.3 Relationship between F (x) and w1, w2 along t = L
2v
± x

v

In this section, we derive the relationship between F (x) and w1,2 along t =
L
2v
± x

v

using (5.27) and (5.28).
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Assume −L/2 ≤ x ≤ 0. Defining w1(x, [
x
v
+ L

2v
]+) as U1(x), we have

U1(x) ≡ w1

(
x,

[
x

v
+
L

2v

]+)
= a1

(
x,

[
x

v
+
L

2v

]+)
,

=
F (x)

2
exp

[
−
∫ x

−L/2

F (x′)

v
dx′
]
,

= −v
2

d

dx
exp

[
−
∫ x

−L/2

F (x′)

v
dx′
]
,

⇒ F (x) =
2U1(x)

1− 2

∫ x

−L/2

U1(x
′)

v
dx′

, for − L/2 ≤ x ≤ 0, (5.37)

and in particular,

F (−L/2) = 2U1(−L/2). (5.38)

For 0 ≤ x ≤ L/2, similarly, define w2(x, [
L
2v
− x

v
]+) as U2(x). A similar calculation

yields

F (x) =
2U2(x)

1− 2

∫ L/2

x

U2(x
′)

v
dx′

, for 0 ≤ x ≤ L/2, (5.39)

and in particular,

F (L/2) = 2U2(L/2). (5.40)

Equations (5.37) - (5.40) are the cornerstones of our numerical method for the recovery

of F (x).

5.4 Layer Stripping Algorithm to Solve Inverse Problem

We now describe our algorithm for reconstructing the flip rate function F (x)

from the exit time distributions w1(−L/2, t) and w2(L/2, t). These distributions come

from either the solution of the forward problem (perfect data), or directly simulating

a Broadwell process (noisy data), details can be found in [14]. However, because the

boundary data w1(−L/2, t) and w2(L/2, t) are very noisy, we will use W1(−L/2, t) and
W2(L/2, t) in reconstruction.
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Let W1(x, t) =
∫ t

0
w1(x, t

′)dt′, W2(x, t) =
∫ t

0
w2(x, t

′)dt′, then we rewrite (2.37)

- (2.40) in terms of cumulative distribution functions W1(x, t) and W2(x, t):

∂W1

∂t
− v∂W1

∂x
= F (x)(W2 −W1), (5.41)

∂W2

∂t
+ v

∂W2

∂x
= F (x)(W1 −W2), (5.42)

W1(L/2, t) = H(t),

W2(−L/2, t) = H(t).

for t ≥ 0, and

W1 = 0, W2 = 0, for t < 0,

where H(t) is Heaviside function. Then our inverse problem becomes: given exit time

distribution data W1(−L/2, t) ≡W1,data(t), W2(L/2, t) ≡ W2,data(t), recover F (x).

To reconstruct F (x), first of all, we use the method of characteristics to rewrite

equations (5.41) and (5.42) as

dW1

dx
=

F (x)

v
(W1 −W2), along

x

v
+ t = constant, (5.43)

dW2

dx
=

F (x)

v
(W1 −W2), along

x

v
− t = constant. (5.44)

Let W
(j,i)
1 = W1(xj , ti) and W

(j,i)
2 = W2(xj, ti), U1,j = U1(xj) = w1(xj , tj), U2,j =

U2(xj) = w2(xj , tj) and Fj = F (xj), where xj = j∆x, ti = i∆t, ∆x = L/(2N),

∆t = L/(vN).

We present both first order and second order numerical methods to reconstruct

flip rate function F (x).

5.4.1 First Order Layer Stripping Algorithm

The first order method is realized by using the simple Euler method to solve the

ODEs and the rectangle rule to integrate numerically. Firstly, we rewrite (5.43) and

(5.44) as

W
(j,i)
1 = W

(j−1,i+1)
1 + Fj−1

(
W

(j−1,i+1)
1 −W (j−1,i+1)

2

)
∆x/v, (5.45)

W
(j,i)
2 = W

(j−1,i−1)
2 + Fj−1

(
W

(j−1,i−1)
1 −W (j−1,i−1)

2

)
∆x/v. (5.46)
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The finite difference stencils for (5.45) and (5.46) are indicated in Figure 5.4.

W
1 , W

2  k
n
o
w

nW
1
, 
W

2
 k

n
o
w

n

Figure 5.4: Layer stripping algorithm. Dashed circles are values ofW1(x, [
x
v
+ L

2v
]+) ≡

U1(x). Solid circles are values of W2(x, [
L
2v
− x

v
]+) ≡ U2(x). W

(j,i)
1 and

W
(j,i)
2 are updated along solid and dashed arrows respectively.

Note that we have the values of W1(x0, ti) = W1,data(ti), W2(x0, ti) = H(ti),

W1(xN , ti) = H(ti) and W2(xN , ti) = W2,data(ti) for all i = 0, 1, 2, . . . , N − 1, as well

as W1,data(tN ) = limt→t−
N
W1(x0, t) and W2,data(tN ) = limt→t−

N
W1(x0, t). When −L/2 ≤

x ≤ 0 and N is even, the first order layer stripping algorithm to find F (x) is as follows:

1. Use boundary data W1,data(ti) and H(ti), (5.37) and (5.38) to compute U1(x0),

F (x0):

U1,0 = U1(x0) = w1(x0, t0) = w
(0,0)
1 =

W
(0,1)
1 −W (0,0)

1

∆t
,

F0 = F (x0) = 2U1(x0).
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2. At each layer x = xj , j = 1, . . . , N
2
− 1, we use (5.45), (5.46), (5.37) and (5.39)

to calculate the values of W1(xj, ti), W2(xj , ti), U1(xj) and F (xj), for i = j, j +

1, . . . , N − j − 1, respectively:

W
(j,i)
1 = W

(j−1,i+1)
1 + Fj−1

(
W

(j−1,i+1)
1 −W (j−1,i+1)

2

) ∆x

v
,

W
(j,i)
2 = W

(j−1,i−1)
2 + Fj−1

(
W

(j−1,i−1)
1 −W (j−1,i−1)

2

) ∆x

v
,

U1,j = w
(j,j)
1 =

W
(j,j+1)
1 −W (j,j)

1

∆t
,

Fj =
2U1,j

1− 2(U1,0 + . . .+ U1,j−1)∆x/v
.

A similar procedure can be repeated for the right triangle to find F (xj) when

j = N
2
+ 1, N

2
+ 2, . . ., N , given boundary data W2,data(t) and H(t). We use linear

interpolation to find F (xN/2).

5.4.2 Second Order Layer Stripping Algorithm

The second order layer stripping algorithm is developed by replacing the simple

Euler method and rectangle rule in Section 5.4.1 by the Predictor-corrector method

and trapezoid rule respectively.

When −L/2 ≤ x ≤ 0 and N is even, the second order layer stripping algorithm

to find F (x) is as follows:

1. Use first order algorithm, boundary data W1,data(ti) and H(ti), i = 0, 1, ..., N ,

where W1,data(tN) = limt→t−
N
W1(x0, t), as well as (5.37) and (5.38) to predict

U1(x0), F (x0), which are written as Û1(x0), F̂ (x0):

Û1,0 = Û1(x0) =
W

(0,1)
1 −W (0,0)

1

∆t
,

F̂0 = F̂ (x0) = 2Û1(x0).

Then correct Û1(x0) by second order differentiation:

U1,0 = U1(x0) =
−W (0,2)

1 + 4W
(0,1)
1 − 3W

(0,0)
1

2∆t
, (5.47)

F0 = F (x0) = 2U1(x0). (5.48)
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In practice, because U1,0 and F0 do not depend on Û1,0 and F̂0, we just use (5.47)

and (5.48) immediately.

2. At each layer x = xj , j = 1, . . . , N
2
− 1, we use the first order algorithms in

Section 5.4.1, (5.43), (5.44), (5.37) and (5.39) to predict the values of W1(xj , ti),

W2(xj , ti), U(xj) and F (xj), for i = j, j + 1, . . . , N − j,

Ŵ
(j,i)
1 = W

(j−1,i+1)
1 + Fj−1

(
W

(j−1,i+1)
1 −W (j−1,i+1)

2

) ∆x

v
,

Ŵ
(j,i)
2 = W

(j−1,i−1)
2 + Fj−1

(
W

(j−1,i−1)
1 −W (j−1,i−1)

2

) ∆x

v
,

Û1,j =
Ŵ

(j,j+1)
1 − Ŵ (j,j)

1

∆t
,

F̂j =
2Û1,j

1− 2(Û1,0 + . . .+ Û1,j−1)∆x/v
.





Predictor

Then use trapezoid rule to correct them:

W
(j,i)
1 = W

(j−1,i+1)
1 +

∆x

2v

{
Fj−1(W

(j−1,i+1)
1 −W (j−1,i+1)

2 )

+ F̂j(Ŵ
(j,i)
1 − Ŵ (j,i)

2 )
}
,

W
(j,i)
2 = W

(j−1,i−1)
2 +

∆x

2v

{
Fj−1(W

(j−1,i−1)
1 −W (j−1,i−1)

2 )

+ F̂j(Ŵ
(j,i)
1 − Ŵ (j,i)

2 )
}
,

U1,j =
−W (j,j+2)

1 + 4W
(j,j+1)
1 − 3W

(j,j)
1

2∆t
,

Fj =
2U1,j

1− 2(U1,0/2 + U1,1 + . . .+ U1,j−1 + U1,j/2)∆x/v
.





Corrector

A similar procedure can be repeated for the right triangle in Figure 5.4 to find

F (xj) when j = N
2
+ 1, N

2
+ 2, . . ., N , given boundary data h2(t) and H(t). We use

linear interpolation to find F (xN/2) from F (xN/2−1) and F (xN/2+1).

5.5 Results and Discussion

We used the layer stripping algorithm discussed in Section 5.4 to reconstruct

flip rate functions from data generated by simulating a Broadwell random walk using a

Monte-Carlo method [14]. In the discussion below, the interval length L = 1, particle
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speed v = 1, N is the number of subintervals in [−L/2, L/2], and M is the number of

exit times used to generate each exit time distribution w1(−L/2, t), w2(L/2, t). Hence,

the total number of exit times is always 2M . Also, notice that the layer stripping

algorithm we used does not find the value of F (x) at x = 0; so it leaves a “hole” in the

F (x), which is filled by interpolation.

In Figure 5.5, we reconstruct four continuous flip rate functions using the first

order layer stripping method. The function in 4(a) is a trigonometric function, the

function in 4(b) is a combination of trigonometric and exponential functions, the func-

tion in 4(c) has discontinuous derivatives within (−L/2, L/2), and the function in 4(d)

has many extrema within (−L/2, L/2). Let F (x) be the target flip rate function, Fp(x)

be the flip rate function reconstructed from perfect data which is generated by solving

the forward problem (2.37) - (2.42) and Fn(x) be the flip rate function reconstructed

from noisy data which is generated by simulating the Broadwell process. Define the

error for perfect data Ep and the error for noisy data En in the L2 norm as

Ep =

(
N∑

i=0

|F (xi)− Fp(xi)|2∆x
)1/2

≈
(∫ L/2

−L/2

|F (x)− Fp(x)|2 dx
)1/2

,

En =

(
N∑

i=0

|F (xi)− Fn(xi)|2∆x
)1/2

≈
(∫ L/2

−L/2

|F (x)− Fn(x)|2 dx
)1/2

.

In principle, with N = 100, we are able to reconstruct any continuous flip rate function

with Ep and En always within O(10−2) given M = 200, 000. The reconstructed curve

becomes less noisy, and the accuracy of the flip rate reconstructions from noisy data im-

proves asM increases. For instance, En decreases by 30% - 50% whenM = 1, 000, 000,

see Figure 5.6. The reconstruction results and errors obtained from first order and sec-

ond order methods are identical to within three decimal places. Because W1 and W2

are noisy, the second order finite difference formula (5.47) is only first order accurate.

Hence the accuracy of the Predictor-Corrector method is first order overall. We now

validate the correct convergence rate of the layer stripping algorithms used in Sec-

tion 5.4.1 and 5.4.2, provided that the boundary data for reconstruction is noiseless

and corresponds to an actual flip rate function. Assume we are given 0 ≤ x ≤ L/2,
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Figure 5.5: Reconstruction of flip rate functions F (x): (a) F (x) = 0.5 sin(8x) + 1,
(b) F (x) = sin(5x) cos(8x) + cos(0.3x) exp(0.5x) + x2 sin(−0.6x3) + 0.5,
(c) F (x) = 2.5x + 1.55 for −0.5 ≤ x ≤ −0.3, F (x) = −x + 0.5 for
−0.3 < x < 0.2, F (x) = 0.25x + 0.25 for 0.2 ≤ x ≤ 0.5, and (d)
F (x) = 0.5 + 0.2 cos(16x) + 0.1 sin(64x), N = 100, M = 200, 000.

W2(L/2, t) ≡ W2,data(t). Let FN be the reconstructed flip rate function for an N + 1

point discretization (see Figure 5.4). Define the error in terms of L2 norm:

EN =

(
N∑

i=0

|FN(xi)− F6000(xi)|2∆x
)1/2

≈
(∫ L/2

0

|FN(x)− F6000(x)|2 dx
)1/2

,

where we use F6000 to approximate the true F (x). In Figure 5.7, we plot the error EN

against the number of subintervals in [−L/2, L/2]. We find that the reconstruction

error scales as O(N−1) when using the first order algorithm, which agrees with simple
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Figure 5.6: Reconstruction of flip rate functions F (x): (a) F (x) = 0.5 sin(8x) + 1,
(b) F (x) = sin(5x) cos(8x) + cos(0.3x) exp(0.5x) + x2 sin(−0.6x3) + 0.5,
(c) F (x) = 2.5x + 1.55 for −0.5 ≤ x ≤ −0.3, F (x) = −x + 0.5 for
−0.3 < x < 0.2, F (x) = 0.25x + 0.25 for 0.2 ≤ x ≤ 0.5, (d) F (x) =
0.5 + 0.2 cos(16x) + 0.1 sin(64x), N = 100, M = 1, 000, 000.

Euler and the rectangle rule leading to a first order layer stripping algorithm. The

error scales as O(N−2) when using second order algorithm, which is consistent with

Predictor-Corrector method and the trapezoid rule leading to a second order layer

stripping algorithm.

Our original motivation for studying the Broadwell process was to better-understand
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Figure 5.7: Dependence of error in flip rate function F (x) reconstruction on the num-
ber of subintervals N . (a) The probability density function W2(L/2, t) ≡
W2,data(t) = −0.1403t6 − 0.7352t5 + 2.9494t4 − 3.1707t3 + 1.1536t2 +
0.1476t + 0.0015 for t ∈ [0, L/v]. (b) Given W2(L/2, t), we use both
first and second order layer stripping methods to reconstruct F (x),
0 ≤ x ≤ L/2.

reconstruction from the exit times of a Brownian motion. In the Broadwell process,

the transition distance between the two states is shorter if the flip rate is larger, or

the velocity is smaller. This property indicates that in the limit of large dimensionless

flip rate LF (x)
v

, the Broadwell process behaves like a diffusive motion. In Figure 5.8,

we reconstruct the flip rate F (x) when v is small from two types of noisy data. In

Figure 5.8(a) and Figure 5.8(b) the exit time distribution is generated from Monte-

Carlo simulation, while in Figure 5.8(c) and Figure 5.8(d), the distribution is generated

by adding artificial noise which is uniformly distributed U [−ε, ε] to w1p(−L/2, t) and
w2p(L/2, t), with ε = 10−5. From Figure 5.8(a) and Figure 5.8(b), we observe that

the reconstruction is poor near x = 0, because the noise in the pdfs w1(−L/2, t) and
w2(L/2, t) for t ∈ (0, L/v] propagates along characteristics dx/dt = ±v. Our algo-

rithm for reconstructing F (x) accumulates the noise because it requires computing the

integrals of w1(x, [
L
2v

+ x
v
]+)/v and w2(x, [

L
2v
− x

v
]+)/v through equations (5.37) and

(5.39).
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Figure 5.8: Reconstruction of flip rate functions F (x) with small velocity from Monte-
Carlo simulation data and artificial noisy data: (a) and (c) F (x) =
0.3 sin(5x) cos(8x)+0.3 cos(0.3x) exp(0.5x)+0.3x2 sin(−0.6x3)+0.15, (b)
and (d) F (x) = 0.5 + 0.2 cos(16x) + 0.1 sin(64x), N = 200, v = 0.1.
(a) and (b) are reconstructed from simulated noisy data with M =
1, 000, 000. (c) and (d) are reconstructed from artificial noisy data.

We use artificial data to reconstruct flip rate functions in Figure 5.8(c) and

Figure 5.8(d) for two main reasons. First of all, in our previous paper [14], we find

that all the moments (except for the zeroth moment) of the exit time distribution di-

verge when v ≪ 1, so for fixed M , the noisy data generated from simulation becomes

less accurate when v gets smaller. Also, given F (x) = O(1), x ∈ [−L/2, L/2] and
v ≪ 1, it takes a longer time to generate a fixed number of exit times as v → 0; this
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also makes the reconstruction more difficult. Specifically, let w1p(−L/2, t), w2p(L/2, t),

and w1n(−L/2, t), w2n(L/2, t) for t ∈ (0, L/v] be probability density functions ob-

tained from perfect data and from Monte-Carlo simulation respectively. The pdfs

w1n(−L/2, tj) and w2n(L/2, tj), where tj , j = 0, 1, . . . , N , are defined in Section 5.4,

and can be computed as follows. Suppose the two sets of M exit times are {τ (1)k } and
{τ (2)k }, 1 ≤ k ≤ M . Then let

w1n(−L/2, t) =
m

M∆t
, if tj−1 ≤ t < tj ,

where ∆t = tj − tj−1, m is the number of exit times satisfying tj−1 ≤ τ
(1)
k < tj, for

1 ≤ j ≤ N . w2p(L/2, tj) can be computed similarly. Define the magnitude of noise in

w1n(−L/2, t) and w2n(L/2, t) by

ε1 = max
t∈(0,L/v]

|w1n(−L/2, t)− w1p(−L/2, t)|, ε2 = max
t∈(0,L/v]

|w2n(L/2, t)− w2p(L/2, t)|,

respectively. For the data used to generate Figure 5.8(a) and Figure 5.8(b), we find

that both ε1 and ε2 are O(10
−3) with N = 200 and 2M = 2, 000, 000 exit times in total,

which takes more than 11 days to generate. To reduce the order of ε1 and ε2 to ε = 10−5,

the noise level of the data in Figure 5.8(c) and (d), we need to generate more exit

times. However, reducing ε1 and ε2 to O(10−5) would require about 2M = 4, 000, 000

exit times, which would take MATLAB 22 days to complete on an AMD Opteron 6174

CPU (Base frequency 2200 MHz).

5.6 Conclusion

In this chapter, we successfully utilize a layer stripping method, which is used

by geophysicists in seismology, to study a stochastic inverse problem arising from neu-

roscience and medical imaging. In principle, we are able to reconstruct a wide range of

continuous flip rate functions of a one-dimensional, constant-speed Broadwell process

from the exit time distributions, and the error is within O(10−2) using 2M = 400, 000

exit times in total. The reconstructed flip rate functions become less noisy, and the
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accuracy improves as the number of exit times increases. For instance, the reconstruc-

tion error in the L2 norm decreases by 30% - 50% when using 2M = 2, 000, 000 exit

times in total.

We develop first order and second order layer stripping methods for flip rate re-

construction, where the second order layer stripping algorithm is developed by replac-

ing the first order simple Euler method and rectangle rule with a Predictor-Corrector

method and trapezoid rule. In both of the algorithms, we do not find the value of F (x)

at x = 0; so it leaves a “hole” in the F (x), which is filled by interpolation. However, the

second order finite difference method is second order accurate only when the boundary

data is noiseless and corresponds to an actual flip rate function; otherwise, it is only

first order accurate.

We are also able to reconstruct the flip rate function F (x) from noisy (artificial

and Monte-Carlo simulated) data even when v is small, which is the important limit

corresponding to a Brownian random walk. When we reconstruct the flip rate function

F (x) from simulated noisy data for small v, we usually have larger deviation near x = 0,

because the pdfs of the boundary data become less accurate when v gets smaller. To

reduce the noise in the pdfs, we can increase the number of exit times, which turns out

to be time consuming. The difficulty in data generation and the noise in pdfs explains

the difficulties in reconstructing flip rate function for small velocity.

A sequence of studies [22, 13] shows that the inverse problem associated with

Brownian motion is ill-posed, and the related existence and uniqueness of the spatially

dependent parameters are not well established. However, the reconstruction using

Broadwell as the underlying model is well-posed and unique [44]. This motivates

the use of regularization of the inverse problem by better-modeling of the underlying

physics.

The layer stripping algorithm is more powerful than the projection method used

in our previous paper [14], where we could reconstruct only fourth order polynomials

robustly. However, the layer stripping algorithm can only reconstruct flip rate functions

from boundary data generated by starting a Broadwell process from either endpoint
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of the interval, while the projection method can reconstruct from data generated by

starting a Broadwell process from any position within the interval.

5.7 Future Work

We see three main extensions to this work. The first is to reconstruct spatially

dependent advection velocities v(x) as well as transition rates F (x). The second is to

develop alternative algorithms for reconstruction. We showed in the last chapter that

as the number of coefficients representing the flip rate function increases, our projection

method becomes unstable due to the presence of flat minima in the objective functions

(see equations (4.24) and (4.25) and Table 4.1. This instability could be alleviated by

introducing a small regularization parameter in the objective functions (4.24), (4.25)

or developing iterative algorithms based directly on (2.37) - (2.42) and (4.1)-(4.4). The

third is to smooth the noisy simulation data by filtering so that we can retain the

accuracy of the second order layer stripping method. We will also apply the layer

stripping method to a Broadwell process of two advection velocities v1(x) and −v2(x),
as well as extend our study to higher dimensional Broadwell processes.
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Chapter 6

FIRST PASSAGE TIMES IN CLINICAL TRIALS

Clinical trials are an important part of the drug development process and must

be performed before pharmaceutical companies can commercialize their new drugs. It

takes about 7 years [52] for an oncology drug to complete a trial. This is a significant

fraction of the 20 years of patent protection time in the US. Thus, it is very important

for pharmaceutical companies to avoid clinical trial delays to guarantee profitability.

In this chapter, we are interested in how to accurately estimate the mean recruit-

ing time and efficiently plan drug inventory among multiple testing centers so that

the mean recruiting time is minimized. The format of this chapter is as follows. In

Section 6.1, we give a detailed description of the clinical trial recruitment process at

multiple testing centers, and set up a stochastic model for the recruitment process. In

Section 6.2, we derive analytic approximations for the optimal drug distribution and

associated (minimal) mean recruiting time for the case of two testing centers. Then we

postulate analytic formulas for the general m-site case. In Section 6.3, we show how

to implement Laplace’s method to approximate the mean recruiting time. In Section

6.4, we show how to generate the mean recruiting times from Monte Carlo simulations.

In Section 6.5, we confirm the validity of the analytical solutions by checking against

Monte-Carlo simulations. In Section 6.4, we present the conclusions and the future

work.

6.1 Stochastic Model of A Clinical Drug Trial

Suppose a pharmaceutical company would like to recruit h patients (h is called

the patient horizon), and there are a total of n doses of drugs in the central warehouse

to be distributed to m ≥ 1 testing centers so that each has ni drugs, 1 ≤ i ≤ m, and
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n =

m∑

i=1

ni. The drugs must be given to patients who arrive at the testing sites. For

each center i, assume that patients arrive independently with Poisson rate λi > 0. See

Figure 6.1. Assuming patients are instantly recruited into trials as soon as they arrive

at a site, we wish to calculate the time for h patients to be recruited.

Figure 6.1: Patient recruitment in a drug trial. m sites are allocated n1, n2, . . . , nm

drug doses which must be tested. Patients arrive at each site at a rate
λj, consume the drugs and are recruited into patient horizon is reached.

To gain some insight into the problem, assume that the pharmaceutical company

is able to provide a large number of doses to each site so that ni = h for each i. In

that case, none of the centers run out of drugs before the patient horizon is reached

and the total patient arrival rate is always λ =
∑m

i=1 λi throughout the duration of

the trial. For each center, the inter-arrival time between events follows an exponential

distribution exp(λ). The recruiting time, which is the sum of all the h inter-arrival

times, follows a Gamma distribution Γ(h, 1/λ). The mean time taken to recruit h

patients is therefore h/λ. However, the ni = h assumption is unreasonable. It is

unwise to keep a large supply of drugs in testing centers, because it increases the cost

of the trial dramatically. The problem of interest is when h ≤ n < ∞, ni ≤ n < ∞.

If one of the sites runs out of drugs and cannot recruit patients anymore, then the
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overall recruitment rate is reduced, and makes the overall recruiting time longer than

h/λ, which is the theoretical minimum. This scenario is called a stock-out and triggers

our interest in exploring how to optimally dispense the drugs to the centers in order

to minimize the recruiting time.

In this chapter, we focus on two problems when the total number of doses equals

the number of patients needed (n = h =
m∑

i=1

ni):

1. Given n = [n1, n2, . . . , nm], predict the mean recruiting time t(n1, n2, . . . , nm; h)

taken to recruit h = n patients.

2. Given the total number of doses n and a patient horizon h = n, determine

the optimal distribution of drugs n∗ = [n∗
1, n

∗
2, . . . , n

∗
m] that minimizes the mean

recruiting time, and calculate what this time is. In other words, we want to find

n∗ such that t∗ = t(n∗
1, n

∗
2, . . . , n

∗
m; h) = min

ni≤n<∞
n1+n2+...+nm=n

t(n1, n2, . . . , nm; h).

The clinical trial recruitment process can be described as a particle undergoing

a random walk on a m-dimensional integer-valued lattice [0, n1] × [0, n2] × . . . [0, nm],

where the particle moves one step in positive direction of ith coordinate with probability

pi if center i recruits one patient, where
∑m

i=1 pi = 1, Once the walker moves h steps in

total, the travel time is recorded as the exit time. This exit time is actually the desired

recruiting time. The mean recruiting time can be obtained by repeating the random

walk a large number of times, and taking an average.

Let (k1, k2, . . . , km), 0 ≤ ki ≤ ni, i = 1, 2, . . . , m be the number of patients

recruited by each testing center by time t, and P (k1, k2, . . . , km, t)dt be the probability

that the particle is in state (k1, k2, . . . , km) in the time interval (t, t+dt). Then define

P (k1, k2, . . . , km, t) = 0 whenever any one of the kj < 0. We have the master equations
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describing the in-flux and out-flux of probability from state (k1, k2, . . . , km):

Ṗ (k1, k2, . . . , km, t) = λ1P (k1 − 1, k2, k3, . . . , km, t)

+λ2P (k1, k2 − 1, k3, . . . , km, t) + . . .

+λmP (k1, k2, k3, . . . , km − 1, t)

−P (k1, k2, k3, . . . , km, t)
m∑

j=1

λj(1− δkj ,nj
), (6.1)

with the absorbing boundary condition

P (k1, k2, . . . , km, t) = 0, if
m∑

j=1

kj = h,

where δkj ,nj
is the Kronecker delta function. Note that in equations (6.1), kj = nj

corresponds to a site stocking out of drugs and reduces the out-flux of probability

from the state (k1, k2, . . . , km). The master equations (6.1) form a set of coupled linear

ODEs. The mean exit time is given by

t(n1, n2, . . . , nm; h) =

∫ ∞

0

nm∑

km=1

. . .

n1∑

k1=1

P (k1, . . . , km, t) dt. (6.2)

For future reference, we define

Λ = [λ1, λ2, . . . , λm],

λ =

m∑

i=1

λi,

pi = λi/λ, i = 1, 2, . . . , m. (6.3)

6.2 Calculation of Mean Exit Time

6.2.1 The 2-site Case

We first perform the calculation for the m = 2 case. We use this case to gain

insight into the more general problem and to set up notation.
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Figure 6.2: Interpretation of λt(n1, n2; h) in equation (6.12) by summing terms in

the regions R1, R2 and R3.

Let P (i, j, t)dt be the probability that the particle is in state (i, j) at time

(t, t+ dt). The master equations are

Ṗ (i, j, t) = λ1P (i− 1, j, t) + λ2P (i, j − 1, t)− λP (i, j, t), 0 ≤ i < n1, 0 ≤ j < n2,

Ṗ (n1, j, t) = λ1P (n1 − 1, j, t) + λ2P (n1, j − 1, t)− λ2P (n1, j, t), 0 ≤ j < n2,

Ṗ (i, n2, t) = λ1P (i− 1, n2, t) + λ2P (i, n2 − 1, t)− λ1P (i, n2, t), 0 ≤ i < n1,

with the absorbing boundary condition

P (n1, n2, t) = 0.

We can solve these equations analytically following Algorithm 7 below. The exact

Algorithm 7 Solving master equations analytically

1: Solve the differential equation for P (0, 0, t) with initial condition P (0, 0, t = 0) = 1.

2: for l = 1 : h− 1 do
3: Solve differential equations for P (i, j, t), with initial conditions P (i, j, t = 0) = 0,

where i+ j = l, i ≤ n1, j ≤ n2.
4: end for
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solutions are

P (i, j, t) =
(λ1t)

i

i!

(λ2t)
j

j!
e−λt, 0 ≤ i < n1, 0 ≤ j < n2, (6.4)

P (i, n2, t) =
∞∑

j=n2

(λ1t)
i

i!

(λ2t)
j

j!
e−λt, 0 ≤ i < n1, (6.5)

P (n1, j, t) =

∞∑

i=n1

(λ1t)
i

i!

(λ2t)
j

j!
e−λt, 0 ≤ j < n2. (6.6)

Figure 6.3: Interpretation of equations (6.4) - (6.6). (a) shows the number of drugs
consumed. (b) extends the grids to infinity in i and j direction with
ghost nodes, and shows the number of patients arrive.

Equation (6.4) is the probability of the particle in the interior of R3, where the

number of drug consumed equals the number of patients arrived, see Figure 6.3. It

can be interpreted as the probability of i patients arrive at center 1 and j patients

arrived at center 2. Equations (6.5) and (6.6) are the probabilities that the particle is

on the boundary of R3, where the number of drugs consumed is less than or equal to

the number of patients that arrive. For example, when the particle is at point A in

Figure 6.3(a), center 2 runs out of drugs, and only one drug is available at center 1.

Then two patients arrive at center 2 afterwards with waiting time three seconds, and

one second; but no drugs are available. Then after four seconds, one patient arrives at

center 1, and takes the drug. The clinical trial completes. The time taken to recruit
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the last patient is eight seconds. So the probabilities of the particle at point A is the

sum of all probabilities that patients arrive at center 2 without drugs available. In

other words, Equations (6.5) and (6.6) can be interpreted as follows: after site 1 stocks

out, the stochastic evolution of the system is equivalent to the particle traversing ghost

nodes i ≥ n1. Likewise, after site 2 stocks out, the stochastic evolution of the system

is equivalent to the particle traversing ghost nodes j ≥ n2.

Define

σij = λ

∫ ∞

0

P (i, j, t)dt, (6.7)

where (i, j) lies in the bounded region Ω = {(i, j) : 0 ≤ i ≤ n1, 0 ≤ j ≤ n2}. Then,

from equation (6.2),

λt(n1, n2; h) =
∑

(i,j)∈Ω

σij =

n1−1∑

i=0

n2−1∑

j=0

σij +

n1−1∑

i=0

σi,n2 +

n2−1∑

j=0

σn1,j + σn1,n2, (6.8)

where

σij =
(i+ j)!

i!j!
pi1p

j
2, 0 ≤ i < n1, 0 ≤ j < n2,

σi,n2 = λ

∫ ∞

0

P (i, n2, t) dt =

∞∑

j=n2

(i+ j)!

i!j!
pi1p

j
2,

σn1,j = λ

∫ ∞

0

P (n1, j, t) dt =

∞∑

i=n1

(i+ j)!

i!j!
pi1p

j
2,

σn1,n2 = 0.

Equation (6.8) can also be written in the form

λt(n1, n2; h) =
∑

(i,j)∈Ω′

σ̃ij , (6.9)

where Ω′ and the regions R1, R2 and R3 (see Figure. 6.2) are defined by

Ω′ = (R1 ∪R2) \R3,

R1 = {(i, j) : 0 ≤ i <∞, 0 ≤ j ≤ n2},

R2 = {(i, j) : 0 ≤ i ≤ n1, 0 ≤ j <∞},

R3 = {(i, j) : 0 ≤ i ≤ n1, 0 ≤ j ≤ n2},
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and

σ̃ij =
(i+ j)!

i!j!
pi1p

j
2, for all (i, j) ∈ Ω′. (6.10)

Then the boundary terms σn1,j and σi,n2 are actually

σn1,j =
∞∑

i=n1

σ̃i,j , σi,n2 =
∞∑

j=n2

σ̃i,j . (6.11)

In many cases, σn1,j and σi,n2 in equation (6.8) are given more weight than interior

nodes. This is in line with intuition because hopping rates are reduced on bound-

ary nodes, increasing the dwell time of the particle on the node and the associated

probability.

When finding the optimal distribution of drugs n∗ = [n∗
1, n

∗
2], where the “op-

timal” means the minimum recruiting time over all combinations of n1, n2 such that

n1+n2 = n, i.e. t∗ = min
n1+n2=n

t(n1, n2; h), the sum (6.8) must be computed many times

and this can be quite laborious. Here we seek to approximate the sum with simple

elementary functions so that the optimization problem becomes easier.

Let us assume that n1 < n2 < h = n1 + n2. Equation (6.9) involving the mean

exit time becomes

λt(n1, n2; h) =

n1−1∑

i=0

n2−1∑

j=0

σ̃ij +

n1−1∑

i=0

(

∞∑

j=0

−
n2−1∑

0

)σ̃i,j ,+

n2−1∑

j=0

(

∞∑

i=0

−
n1−1∑

i=0

)σ̃i,j,

=

n1−1∑

i=0

∞∑

j=0

σ̃ij +

n2−1∑

j=0

∞∑

i=0

σ̃ij −
n1−1∑

i=0

n2−1∑

j=0

σ̃ij ,

=
∑

R2

σ̃i,j +
∑

R1

σ̃i,j −
∑

R3

σ̃i,j. (6.12)
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Now consider each of the sums in (6.12) separately:

I1 ≡
∑

R2

σ̃i,j =

n1−1∑

i=0

∞∑

j=0

σ̃i,j ,

=

n1−1∑

i=0

∞∑

j=0

(
i+ j

i, j

)
pi1p

j
2,

=

n1−1∑

i=0

pi1

∞∑

j=0

(
i+ j

i, j

)
pj2,

=

n1−1∑

i=0

pi1(1− p2)−(i+1),

=
n1

p1
,

where we used the fact that

(1− x)−(m+1) =
∞∑

r=0

(
m+ r

m, r

)
xr, 0 < |x| < 1, (6.13)

p1 + p2 = 1.

A similar calculation yields I2 ≡
∑

R1

σ̃i,j =
n2

p2
. The final sum is

I1,2 ≡
∑

R3

σ̃i,j =

n2−1∑

j=0

n1−1∑

i=0

(
i+ j

i, j

)
pi1p

j
2. (6.14)

In Section 6.3, we demonstrate how to approximate I1,2 using elementary functions

through Laplace’s method. We will show in Section 6.3, Lemma 3, that for 0 <

p1, p2 < 1, p1 + p2 = 1, when h is large,

(1) I1,2 ∼
n1

p1
, as n2 →∞ for n1 fixed, and n = n1 + n2 →∞.

(2) I1,2 ∼
n2

p2
, as n1 →∞ for n2 fixed, and n = n1 + n2 →∞.

Overall, when h is large and n2 ≫ n1 or n1 ≫ n2, we have

I1,2 =

n2−1∑

j=0

n1−1∑

i=0

(
i+ j

i, j

)
pi1p

j
2 ∼ min

[
n1

p1
,
n2

p2

]
. (6.15)
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Putting all the pieces together,

λt(n1, n2; h) ∼ I1 + I2 − I1,2 =
n1

p1
+
n2

p2
−min

[
n1

p1
,
n2

p2

]
= max

[
n1

p1
,
n2

p2

]
. (6.16)

Equation (6.16) is our main result for the two-site case. The result essentially says

that the mean recruiting time is determined by the site that has the longest expected

recruiting time. Furthermore, the mean recruiting time cannot fall below h/λ, which

is the lower bound for the mean recruiting time (see Figure 6.4), because

t(n1, n2; h)−
h

λ
=

1

λ
max

[
n1

p1
,
n2

p2

]
− n1 + n2

λ
,

=





1

λ

[
n1

p1
− (n1 + n2)

]
=
n1p2 − p1n2

λp1
, if

n1

p1
≥ n2

p2
,

1

λ

[
n2

p2
− (n1 + n2)

]
=
n2p1 − p2n1

λp2
, if

n1

p1
<
n2

p2
,

≥ 0.

The minimum time h/λ is obtained when taking n∗
1 = p1n, n

∗
2 = p2n, i.e. dividing

up the total number of drugs according to the arrival probability. And we define

n∗ = [n∗
1, n

∗
2] be the predicted optimal drug inventory, such that the mean recruiting

time is the minimum.

6.2.2 The 3-site Case

Before we postulate our analytical method to a general m-site case, we will

illustrate how to implement our analytical solution to a three-site problem.

Consider the case where h = n1 + n2 + n3. From equation (6.2), we have

λt(n1, n2, n3; h = n1 + n2 + n3) =

n1∑

i=0

n2∑

j=0

n3∑

k=0

σijk, (6.17)

where

σijk = σ̃ijk =
(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3, if (i, j, k) ∈ [0, n1 − 1]× [0, n2 − 1]× [0, n3 − 1],

σn1,j,k =

∞∑

i=n1

σ̃ijk, σi,n2,k =

∞∑

j=n2

σ̃ijk, σi,j,n3 =

∞∑

k=n3

σ̃ijk,

σn1,n2,k =
∞∑

i=n1

∞∑

j=n2

σ̃ijk, σn1,j,n3 =
∞∑

i=n1

∞∑

k=n3

σ̃ijk, σi,n2,n3 =
∞∑

j=n2

∞∑

k=n3

σ̃ijk,
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Figure 6.4: Comparison of simulated and analytical mean recruiting time. The total
number of drugs n = 1200, the number of patients h = n, Λ = [2, 4],
the number of exit times used to generate the mean recruiting time is
K = 103. (a, b) both show simulated and analytical mean recruiting
time (equation (6.16)), but (b) zooms in (a), and shows the simulated
and analytical mean recruiting time in the neighborhood of the predicted
optimal drug inventory n∗ = [n∗

1, n
∗
2].

are the three dimensional analogues to equations (6.10) and (6.11). We break equa-

tion (6.17) up as follows:

λt(n1, n2, n3; h) =

n1−1∑

i=0

n2−1∑

j=0

n3−1∑

k=0

σijk

+

n2−1∑

j=0

n3−1∑

k=0

σn1,jk +

n1−1∑

i=0

n3−1∑

k=0

σi,n2,k +

n1−1∑

i=0

n2−1∑

j=0

σi,j,n3

︸ ︷︷ ︸
symmetric terms I

+

n3−1∑

k=0

σn1,n2,k +

n2−1∑

j=0

σn1,j,n3 +

n1−1∑

i=0

σi,n2,n3

︸ ︷︷ ︸
symmetric terms II

+ σn1,n2,n3︸ ︷︷ ︸
=0

. (6.18)

Each of the three terms in “symmetric terms I” and “symmetric terms II” have identical

mathematical structure but with indices permuted. We now calculate each of the terms

in (6.18) through the following lemma.
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Lemma 1. Let 0 < p1, p2, p3 < 1 be fixed probabilities so that p1 + p2 + p3 = 1,

n = n1 + n2 + n3, define

I1,2,3 ≡
n1−1∑

i=0

n2−1∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3.

Then we can have the asymptotic relations

1. I1,2,3 ∼
n1

p1
, as n2, n3 →∞ for n1 fixed, and n→∞.

2. I1,2,3 ∼
n2

p2
, as n1, n3 →∞ for n2 fixed, and n→∞.

3. I1,2,3 ∼
n3

p3
, as n1, n2 →∞ for n3 fixed, and n→∞.

As a shorthand, we write

I1,2,3 ∼ min

[
n1

p1
,
n2

p2
,
n3

p3

]
.

when h is large and for l such that nl ≪ ni, i 6= l.

Proof. We show the proof by considering three cases: 1 ≪ n1 ≪ n2, n3, 1 ≪ n2 ≪
n1, n3, and 1≪ n3 ≪ n1, n2.

1. If 1≪ n1 ≪ n2, n3,

lim
n2→∞
n3→∞

n1−1∑

i=0

n2−1∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3

=

n1−1∑

i=0

∞∑

j=0

(i+ j)!

i!j!
pi1p

j
2

∞∑

k=0

(i+ j + k)!

(i+ j)!k!
pk3, (6.19)

=

n1−1∑

i=0

pi1(1− p3)−(i+1)
∞∑

j=0

(i+ j)!

i!j!
pj2(1− p3)−j , (6.20)

=
n1−1∑

i=0

pi1(p1 + p2)
−(i+1)

(
1− p2

p1 + p2

)−(i+1)

,

=

n1−1∑

i=0

pi1(p1 + p2)
−(i+1)

(
p1

p1 + p2

)−(i+1)

,

=
n1

p1
,

where we used equation (6.13) to simplify equations (6.19) - (6.20).
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2. When 1≪ n2 ≪ n1, n3, and n3 ≪ n1, n2, using equation (6.13), we can have

lim
n1→∞
n3→∞

n1−1∑

i=0

n2−1∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3 =

n2

p2
.

3. When 1≪ n3 ≪ n1, n2, using equation (6.13), we can have

lim
n1→∞
n2→∞

n1−1∑

i=0

n2−1∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3 =

n3

p3
.

Finally, combining the above results, we have

n1−1∑

i=0

n2−1∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3 ∼ min

[
n1

p2
,
n2

p2
,
n3

p3

]
.

Lemma 2. Let 0 < p1, p2, p3 < 1 be fixed probabilities so that p1 + p2 + p3 = 1,

n = n1 + n2 + n3, define

I3 ≡
∞∑

i=0

∞∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3, I2 ≡

∞∑

i=0

n2−1∑

j=0

∞∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3,

I1 ≡
n1−1∑

i=0

∞∑

j=0

∞∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3, I23 ≡

∞∑

i=0

n2−1∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3,

I13 ≡
n1−1∑

i=0

∞∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3, I12 ≡

n1−1∑

i=0

n2−1∑

j=0

∞∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3.

Then we can have the following results:

1. I3 ∼
n3

p3
, I2 ∼

n2

p2
, I1 ∼

n1

p1
.

2. I2,3 ∼ min

[
n2

p2
,
n3

p3

]
, I1,3 ∼ min

[
n1

p1
,
n3

p3

]
, I1,2 ∼ min

[
n1

p1
,
n2

p2

]
.
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Proof. We only show the proof for I3 and I2,3, other results can be proved similarly.

First of all, we used equation (6.13) twice to simplify I3:

I3 ≡
∞∑

i=0

∞∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3,

=

n3−1∑

k=0

∞∑

i=0

(i+ k)!

i!k!
pi1p

k
3

∞∑

j=0

(i+ j + k)!

(i+ k)!j!
pj2,

=
n3−1∑

k=0

pk3(1− p2)−(k+1)
∞∑

i=0

(i+ k)!

i!k!
pi1(1− p2)−i,

=

n3−1∑

k=0

pk3(p1 + p3)
−(k+1)

(
1− p1

p1 + p3

)−(k+1)

,

=

n3−1∑

k=0

pk3(p1 + p3)
−(k+1)

(
p3

p1 + p3

)−(k+1)

,

=
n3

p3
.

I2,3 ≡
∞∑

i=0

n2−1∑

j=0

n3−1∑

k=0

(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3,

=

n2−1∑

j=0

n3−1∑

k=0

pj2p
k
3

∞∑

i=0

(i+ j + k)!

i!j!k!
pi1,

=

n2−1∑

j=0

n3−1∑

k=0

(j + k)!

j!k!

pj2p
k
3

(p2 + p3)−(j+k+1)
, (6.21)

∼ 1

p2 + p3
min

[
n2

p2/(p2 + p3)
,

n3

p3/(p2 + p3)

]
,

∼ min

[
n2

p2
,
n3

p3

]
.

where we utilize (6.15) to simplify (6.21). We can obtain I1, I2, I1,2, I1,3 similarly.

Then the first term in “symmetric terms I” and “symmetric terms II” can be

rewritten as

n2−1∑

j=0

n3−1∑

k=0

σn1,jk =

n2−1∑

j=0

n3−1∑

k=0

∞∑

i=n1

σ̃ijk =

n2−1∑

j=0

n3−1∑

k=0

(
∞∑

i=0

−
n1−1∑

i=0

)
σ̃ijk = I2,3 − I1,2,3.
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n3−1∑

k=0

σn1,n2,k =

n3−1∑

k=0

∞∑

i=n1

∞∑

j=n2

σ̃ijk,

=

n3−1∑

k=0

(
∞∑

i=0

∞∑

j=0

−
n1−1∑

i=0

n2−1∑

j=0

−
∞∑

i=n1

n2−1∑

j=0

−
n1−1∑

i=0

∞∑

j=n2

)
σ̃ijk,

=
n3−1∑

k=0

[
∞∑

i=0

∞∑

j=0

−
n1−1∑

i=0

n2−1∑

j=0

−
n2−1∑

j=0

(
∞∑

i=0

−
n1−1∑

i=0

)

−
n1−1∑

i=0

(
∞∑

j=0

−
n2−1∑

j=0

)]
(i+ j + k)!

i!j!k!
pi1p

j
2p

k
3,

= I3 − I1,2,3 − (I2,3 − I1,2,3)− (I1,3 − I1,2,3),

= I3 − I1,3 − I2,3 + I1,2,3.

We can obtain the other terms in “symmetric terms I” and “symmetric terms II” in a

similar way. Then

λt(n1, n2, n3)

= I1,2,3 + (I2,3 − I1,2,3) + (I1,3 − I1,2,3) + (I1,2 − I1,2,3)︸ ︷︷ ︸
symmetric terms I

+ (I3 − I1,3 − I2,3 + I1,2,3) + (I2 − I1,2 − I2,3 + I1,2,3) + (I1 − I12 − I1,3 + I1,2,3)︸ ︷︷ ︸
symmetric terms II

= (I1 + I2 + I3)− (I1,2 + I1,3 + I2,3) + I1,2,3,

=
n1

p1
+
n2

p2
+
n3

p3
−
(
min

[
n1

p1
,
n3

p3

]
+min

[
n2

p2
,
n3

p3

]
+min

[
n1

p1
,
n2

p2

])

+min

[
n1

p1
,
n2

p2
,
n3

p3

]
,

= max

[
n1

p1
,
n2

p2
,
n3

p3

]
.

⇒ t(n1, n2, n3) =
1

λ
max

[
n1

p1
,
n2

p2
,
n3

p3

]
. (6.22)

6.2.3 The m-site Case

For general m-site case, we solve the master equation (6.1) for the probability

flux P (k1, k2, . . . , km, t), and calculate the mean exit time through (6.2), which involves

m sums and is much more complicated than 2-site case. From the results of 2-site case
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(see equation (6.16)) and 3-site case (see equation (6.22)), we postulate our results

to general m-site case. For m-site problem with h = n =

m∑

i=1

ni, 0 < pi < 1, i =

1, 2, . . . , m, and
m∑

i=1

pi = 1, the mean recruiting time can be approximated as

λt

(
n1, n2, . . . , nm; h =

m∑

i=1

ni

)
∼ max

1≤i≤m

[
ni

pi

]
, (6.23)

t

(
n1, n2, . . . , nm; h =

m∑

i=1

ni

)
∼ max

1≤i≤m

[
ni

λi

]
. (6.24)

We now provide an alternative interpretation of (6.24). At site i, the time

between recruiting the (q − 1)st and qth patient follows an exponential distribution:

X
(q)
i ∼ exp(λi). The time taken for the ith site to recruit ni patients therefore satisfies

an Erlang distribution, a special case of the Gamma distribution:

Ti ≡
ni∑

q=1

X
(q)
i ∼ Erlang(ni, λi).

The mean of the Erlang distribution is E[Ti] = ni/λi. The time taken to recruit

n =
m∑

i=1

ni patients is identical to the time taken for the slowest site to recruit all its

patients, i.e.

T (n1, . . . , nm) = max(T1, T2, . . . , Tm), (6.25)

and the mean recruitment time is

t = E[T (n1, . . . , nm)] = E[max(T1, T2, . . . , Tm)]. (6.26)

The order statistics of Erlang random variables has been studied in [99] but the cal-

culations require counting individual trajectories of a random walk which can become

extremely laborious in high dimensions. Equation (6.24) essentially interchanges max

and expectation operation, replacing equation (6.26) with

t ≈ max (E[T1], E[T2], . . . , E[Tm]) ,

= max

[
n1

λ1
,
n2

λ2
, . . . ,

nm

λm

]
. (6.27)
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The approximation becomes more accurate whenever nj ≫ n1, n2, . . . , nj−1, nj+1, . . . , nm.

Equation (6.27) approximates the minimizer of (6.26) as

n∗ = [p1n, p2n, . . . , pmn]. (6.28)

By comparing against Monte-Carlo simulations, we find that the approximation

(6.27) typically gives the optimal distribution (minimizer of (6.26)) to within a few

percent of n.

6.3 Approximation Using Laplace’s Method

Our aim is to approximate the sum I1,2 =

n2−1∑

j=0

n1−1∑

i=0

(
i+ j

i, j

)
pi1p

j
2. We show how

to calculate I(n1, n2; p1, p2) in this section. Using the first term in its Euler-Maclaurin

series, taking ∆X = ∆Y = 1, X = i∆X , Y = j∆Y , we have

I1,2 = ∆X∆Y

n2−1∑

j=0

n1−1∑

i=0

(
i+ j

i, j

)
pi1p

j
2,

≈
∫ n1

0

∫ n2

0

dXdY
Γ(X + Y + 1)

Γ(X + 1)Γ(Y + 1)
exp[X ln p1 + Y ln p2],

≡ Ĩ .

Let Ni = ni/n, i = 1, 2, N1 +N2 = 1, X = nrN1 cos θ, Y = nrN2 sin θ, we have

Ĩ = n2N1N2

∫ π/2

0

∫ f(θ)

0

eG(R,θ)rdrdθ, (6.29)

where R = nr,

G(R, θ) = R(N1 cos θ ln p1 +N2 sin θ ln p2)

+ ln
Γ(1 +R(N1 cos θ +N2 sin θ))

Γ(1 +RN1 cos θ)Γ(1 +RN2 sin θ)
, (6.30)

Typically in drug trials, n is large (typically many hundreds of patients need to be

recruited), which motivates the use of Laplace’s method. We prove

Lemma 3. Let 0 < p1, p2 < 1 be fixed probabilities so that p1 + p2 = 1. Then with Ĩ

defined in (6.29), we have the asymptotic relations
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1. I1,2 ∼ n1

p1
, as n2 →∞ for n1 fixed, and n = n1 + n2 →∞.

2. I1,2 ∼ n2

p2
, as n1 →∞ for n2 fixed, and n = n1 + n2 →∞.

As a shorthand, we write

I1,2 ∼ min

[
n1

p1
,
n2

p2

]
.

when h is large and n2 ≫ n1 or n1 ≫ n2.

Proof. First assume that the point near r = 0 does not give the dominant contribution

to I; we will show this later. So assume r > 0 and R is large and positive. Because

h ≫ 1, we can expand (6.30) through the Stirling series ln Γ(1 + z) ∼ z ln z − z +

1
2
ln z + 1

2
ln 2π +O

(
1
z

)
, when z ≫ 1 so that

G(R, θ) ∼





RG0(θ) + ln
[
N1 cos θ+N2 sin θ
N1N2 cos θ sin θ

1
R

]1/2
− 1

2
ln 2π +O(|R|−1), 0 < θ < π

2
,

RN1 ln p1, θ = 0,

RN2 ln p2, θ = π/2.

where

G0(θ) = N1 cos θ ln p1 +N2 sin θ ln p2 + (N1 cos θ +N2 sin θ) ln(N1 cos θ +N2 sin θ)

−N1 cos θ ln(N1 cos θ)−N2 sin θ ln(N2 sin θ).

Most of the mass of the integrand lies along a ray θ = θ̄ such that G′
0(θ̄) = 0:

G′
0(θ̄) = cos θ̄ ln p2 − ρ sin θ̄ ln p1 + (cos θ̄ − ρ sin θ̄) ln

(
cos θ̄ +

sin θ̄

ρ

)

− cos θ̄ ln

(
sin θ̄

ρ

)
+ ρ sin θ̄ ln cos θ̄ = 0,

and

G0(θ) ≈
G′′

0(θ̄)

2
(θ − θ̄)2 +O(θ − θ̄)2,

G′′
0(θ̄) = −G0(θ̄)−

(
N2 cos

2 θ̄

sin θ̄
+
N1 sin

2 θ̄

cos θ̄

)
+

(N2 cos θ̄ −N1 sin θ̄)
2

N1 cos θ̄ +N2 sin θ̄
,

= − N1N2 csc θ̄ sec θ̄

N1 cos θ̄ +N2 sin θ̄
< 0.
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Therefore

I1,2 ∼
h2N1N1√

2πh

∫ π/2

0

∫ f(θ)

0

√
rerhG0(θ)

(
N1 cos θ +N2 sin θ

N1N2 cos θ sin θ

)1/2

drdθ.

where

f(θ) =





(sin θ)−1, π/4 ≤ θ < π/2,

(cos θ)−1, 0 < θ ≤ π/4.

Therefore

I1,2 ∼ N1N2h
2 × 1√

2πh

(
N1 cos θ̄ +N2 sin θ̄

N1N2 cos θ̄ sin θ̄

)1/2 ∫ f(θ̄)

0

dr
√
r

∫ ∞

−∞

dθe
hrG′′

0 (θ̄)(θ−θ̄)2

2δ ,

= N1N2h×
f(θ̄)√
|G′′

0(θ̄)|

(
N1 cos θ̄ +N2 sin θ̄

N1N2 cos θ̄ sin θ̄

)1/2

,

= f(θ̄)
(
n1 cos θ̄ + n2 sin θ̄

)
,

=





n1 + n2 tan θ̄, 0 < θ̄ ≤ π/4,

n1 cot θ̄ + n2, π/4 ≤ θ̄ < π/2,

where θ̄ = θ̄(q) satisfies

cos θ̄ ln p2 − q sin θ̄ ln p1 + (cos θ̄ − q sin θ̄) ln
(
cos θ̄ +

sin θ̄

q

)

− cos θ̄ ln

(
sin θ̄

q

)
+ q sin θ̄ ln cos θ̄ = 0, (6.31)

and q = N1/N2 = n1/n2 = O(1). Substituting θ̄ = aq for some constant a and taking

q → 0+ in (6.31), we find that a = p2/(1 − p2). Note that q (and hence θ̄) is strictly

positive because we take n1 > 0 while n2 →∞.

Therefore

θ̄ ∼ p2q

1− p2
=
p2q

p1
, q → 0+.

Similarly, substituting θ̄ = π
2
− b

q
for some constant b in (6.31) and taking q →∞,

we find that b = p1/(1− p1) or

θ̄ ∼ π

2
− p1
q(1− p1)

=
π

2
− p1
qp2

, q →∞.
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Note that from (6.3), θ̄ is strictly less than π/2. Therefore we have

I1,2 ∼





n1 + n2θ̄, θ̄→ 0+,

n1

(
π
2
− θ̄
)
+ n2, θ̄ → π

2
−,

or

I1,2 ∼





n1 + n2

(
p2q
p1

)
, q → 0+,

n1

(
p1
qp2

)
+ n2, q → +∞,

or

I1,2 ∼





n1

p1
, n1 ≪ n2,

n2

p2
, n1 ≫ n2.

(6.32)

Now let’s study equation (6.29) near r = 0. Expanding equation (6.30) around

R = 0, we find that

G(R, θ) ∼ R(N1 cos θ ln p1 +N2 sin θ ln p2) +O(R2),

so that

I1,2 ∼ h2N1N2

∫ π/2

0

dθ

∫ f(θ)

0

rdr exp [hr(N1 cos θ ln p1 +N2 sin θ ln p2)] .

Taking η = hr, we have

I1,2 ∼
∫ π/2

0

dθ

∫ ∞

0

ηdη exp [η(N1 cos θ ln p1 +N2 sin θ ln p2)] = O(1),

whereas the contribution from r > 0 is O(n1, n2) in equation (6.32). Therefore r = 0

does not contribute significantly to I.

Thus, when h is large, and n2 ≫ n1 or n1 ≫ n2,

I1,2 =

n2∑

j=0

n1∑

i=0

(
i+ j

i, j

)
pi1p

j
2 ∼ min

[
n1

p1
,
n2

p2

]
.

6.4 Monte-Carlo Simulation

Suppose there are a total of N doses of drugs in the warehouse to be distributed

to m ≥ 1 testing centers, each with a supply of ni, 1 ≤ i ≤ m drugs. Let the total

number of patients to be recruited be h. We develop simulation algorithm for general
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case 1 ≤ h ≤ n, but we will test analytical solutions for h = n. For each center i, the

patients arrive with independent Poisson arrival rate λi > 0. The time between each

pair of consecutive patients at center i has an exponential distribution with parameter

λi and each of these inter-arrival times is assumed to be independent of the other inter-

arrival times. We are interested in finding the mean time taken to recruit h patients

t(n1, n2, . . . , nm; h).

We now show details of the Monte-Carlo method (Algorithm 8) used to simulate

the process of recruiting h patients fromm testing centers. This method is based on the

inverse transform method [91, 100, 101], a widely used method for generating random

variables from a cdf whose functional form is known. In the context of our problem,

the cdf for generating inter-arrival times is

F (θ) =




1− exp(−λθ), if θ ≥ 0,

0, if θ < 0.

We notice that when the number of drugs in total equals the number of patients

recruited, i.e. h = n =
∑m

i=1 ni, the time taken to recruit ni patients at the i
th testing

center is just Ti =
∑ni

j=1 θ
(i)
j , i = 1, 2, . . . , m (see equation (6.34)). Therefore, the time

taken to recruit h patients is identical to the time taken for the site with the slowest

rate to recruit all its patients, i.e. equation (6.25), and the mean recruiting time is

obtained from equation (6.26).

6.5 Results and Discussion

In this section, we want to test our analytic approximation, equation (6.24),

and the optimal drug distribution, equation (6.28) by comparing the results with those

obtained from Monte-Carlo simulation. Now let

• Λ = [λ1, λ2, . . . , λm] be patient arrival rates for m testing centers,

• n = [n1, n2, . . . , nm] ∈ Ω0, where Ω0 = {[n1, n2, . . . , nm] :
∑m

i=1 ni = n, 0 ≤ ni ≤ n},

• t(n; h) be the predicted mean recruiting time calculated from (6.24), given drug

distribution n,

88



Algorithm 8 Generating mean recruiting times

1: Require: the number of testing centers m, parameters λi, the number of drugs in
each center ni, where i = 1, 2, . . . , m, the number of realizations K.

2: for j = 1 : K do
3: for i = 1 : m do
4: for k = 1 : ni do
5: Generate inter-arrival time θ

(i)
k ∼ exp (λi), which is the time between kth

and (k − 1)th patient arrivals at center i, :

u
(i)
k = U(0, 1), (6.33)

θ
(i)
k = − ln(u

(i)
k )/λi,

where equation (6.33) generates a uniformly distributed random number.

6: Calculate the kth patient’s arrival time t
(i)
k at center i:

t
(i)
k =

k∑

j=1

θ
(i)
j . (6.34)

7: end for
8: end for
9: Sort all the n arrival times t

(i)
k from m centers in ascending order, the hth one is

the time taken to recruit h patients from m testing centers, denoted as τj .
10: end for
11: The mean recruiting time t = 1

K

∑K
i=1 τi.
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• tsim(n; h) be the simulated mean recruiting time obtained from Monte-Carlo sim-

ulation (Algorithm 8), given drug distribution n,

• K be the number of simulations run to calculate tsim(n; h),

• n∗ = [n∗
1, n

∗
2, . . . , n

∗
m], where n

∗
i = pin, be the the predicted optimal drug distri-

bution and let t∗ ≡ t(n∗; h),

• n∗
sim = [N∗

1 , N
∗
2 , . . . , N

∗
m] be the simulated optimal drug distribution, such that

t∗sim ≡ tsim(n
∗
sim; h) = min

n∈Ωg or Ωl

tsim(n; h), where Ωg,Ωl ∈ Ω0, are domains for

Global Search and Local Search which are defined in Algorithm 9 and Algo-

rithm 10.

To test the analytical approximation, equation (6.24), we can compare t(n; h)

with tsim(n; h), for any n ∈ Ωg or Ωl. Here, we choose the pair: t(n
∗; h) and tsim(n

∗; h).

We define the relative percentage error εt for predicted recruiting time

εt =
|t(n∗; h)− tsim(n∗; h)|

tsim(n∗; h)
× 100.

Notice that because of the randomness in stochastic simulation, the accuracy of tsim(n; h)

depends on the number of simulations K. To estimate the accuracy of tsim(n; h), we

generate K simulated recruiting times τ1, τ2, . . . , τK , and calculate the variance σ2.

From the Central Limit Theorem, we know that the mean recruiting time is normal

distributed with standard deviation σ̃ = σ/
√
K, which roughly gives the accuracy of

tsim(n; h). When K ≤ 5, 000, σ̃ = O(10−1); when 5, 000 < K < 106, σ̃ = O(10−2);

when K ≥ 106, σ̃ = O(10−3).

Table 6.1, where we take K = 1000 to obtain simulation results, show the

comparison results of tsim(n
∗; h) and t(n∗; h) for m = 3, 4, 5. tsim(n

∗; h) is correct to

O(1) and the relative errors are always within 10%.

To test the optimal drug distribution, equation (6.28), we compare n∗ with n∗
sim,

and define the relative percentage error εn for optimal drug distribution prediction in

the Euclidean norm

εn =
||n∗ − n∗

sim||2
||n∗

sim||2
× 100.
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Table 6.1: Compare t(n∗; h) and tsim(n
∗; h) for different number of sites

Λ n n∗ t(n∗; h) tsim(n
∗; h) εt(%)

3-site
[3, 4, 7] 800 [172, 229, 399] 57.25 60 4.6
[8, 6, 4] 900 [400, 300, 200] 50.00 52 3.9

[4, 4.1, 4.2] 1100 [358, 367, 375] 89.51 94 4.8

4-site
[10, 8, 6, 3] 1000 [371, 297, 223, 109] 37.17 40 7.1
[15, 5, 3, 2] 1200 [720, 240, 144, 96] 48.00 52 7.7
[6, 5, 3, 3] 1000 [353, 295, 177, 175] 59.00 63 6.8

5-site
[1, 2, 3, 4, 5] 800 [54, 107, 160, 214, 265] 54.00 59 8.5
[2, 4, 6, 8, 10] 1200 [80, 160, 240, 320, 400] 40.00 43 7.0
[1, 3, 5, 7, 9] 800 [32, 96, 160, 225, 287] 32.14 35 8.2

We develop two algorithms: Global Search (Algorithm 9) and Local Search (Algo-

rithm 10), to calculate n∗
sim.

In Table 6.2, we show the Global Search and Local Search results n∗
sim for

m = 3, 4, 5, when n = h. For Global Search, we take the number of points M in Ωg

be equal to 50, 000. For Local Search, we take the number of simulation repeated for

recruiting time calculation K = 1000, the m− 1 dimensional ball B(n∗, R) centered at

n∗ = [n∗
1, n

∗
2, . . . , n

∗
m−1] with radius R = 25. We also see that the relative error of n∗

through Global Search and Local Search are all within 6%. Notice that when m > 5,

B(n∗, R) contains (2R + 1)m−1 ( ≥ 515) grid points. It takes a tremendous amount of

time to complete the simulation using Local Search. As m increases, the dimension of

n increases, the sample sizeM = 50, 000 for n is not large enough to search globally, or

provide a reliable result. The simulation time rapidly increases if M increases. Hence,

we only give results for m ≤ 5.

For the Local Search of the three-site problem, we are able to display the results

of Table 6.1 and Table 6.2 in Figure 6.5, where we extend the search radius R to 100.

In (a, d, g), we show the contour plot for tsim in the region of B(n∗, R). In (b, e, h),

we show the contour plot for t in the region of B(n∗, R). The contours in (a, d, g) and

(b, e, h) are almost the same, except that (a, d, g) have smooth corners, while (b, e,
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Algorithm 9 Global Search for optimal drug distribution

1: Require: m, the number of testing centers; λi, i = 1, 2, . . . , m, patient arrival rates;
K, the number of realizations; Ω0 = {[n1, n2, . . . , nm] :

∑m
i=1 ni = n, 0 ≤ ni ≤ n},

M , the number of points randomly drawn from Ω0.
2: Randomly draw M points: n(j) = [n

(j)
1 , n

(j)
2 , . . . , n

(j)
m ], j = 1, 2, . . . ,M , from Ω0.

These M points form the Global Search Region Ωg:

Ωg =

{
[n

(j)
1 , n

(j)
2 , . . . , n(j)

m ] :
m∑

i=1

n
(j)
i = n, 0 ≤ n

(j)
i ≤ n, j = 1, 2, . . . ,M

}
,

and are randomly and uniformly generated using the MATLAB code
randfixedsum.m written by Roger Stanfford [102].

3: Calculate the simulated recruiting time tsim(n
(j); h), for j = 1, 2, . . . ,M . See Algo-

rithm 8.
4: Take the minimum of the M simulated recruiting times calculated in step 3, the

corresponding n(j) is the optimal drug distribution n∗
sim = [N∗

1 , N
∗
2 , . . . , N

∗
m]. In

other words, n∗
sim satisfies

tsim(n
∗
sim; h) = min

n∈Ωg

tsim(n; h).

Algorithm 10 Local Search

1: Require: m, the number of testing center; λi, i = 1, 2, . . . , m, patient arrival rates;
K, the number of realizations;

2: Let B(n∗, R) = {[n1, n2, . . . , nm−1] : [n
∗
1 − R, n∗

1 + R] × [n∗
2 − R, n∗

2 + R] × . . . ×
[n∗

m−1 −R, n∗
m−1]} be a m− 1 dimensional ball centered at n∗ = [n∗

1, n
∗
2, . . . , n

∗
m−1]

with radius R, the Local Search region:

Ωl =

{
[n1, n2, . . . , nm] : [n1, n2, . . . , nm−1] ∈ B(n∗, R), and nm = n−

m−1∑

j=1

nj

}
.

3: Calculate the simulated recruiting time tsim(n), for any n ∈ Ωl. See Algorithm 8.
4: Take the minimum of all the simulated recruiting times calculated in step 3, the

corresponded n is the optimal drug distribution n∗
sim = [N∗

1 , N
∗
2 , . . . , N

∗
m]. In other

words,
t∗sim = tsim(n

∗
sim; h) = min

n∈Ωl

tsim(n; h).
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Table 6.2: Global and local search results for different number of sites.

Λ n n∗ n∗
sim εn(%)

3-site

Global
[3, 4, 7] 800 [172, 229, 399] [166, 228, 406] 2.16
[8, 6, 4] 900 [400, 300, 200] [408, 299, 193] 1.97

[4, 4.1, 4.2] 1100 [358, 367, 375] [356, 364, 380] 0.97

Local
[3, 4, 7] 800 [172, 229, 399] [161, 229, 410] 3.13
[8, 6, 4] 900 [400, 300, 200] [403, 301, 196] 0.94

[4, 4.1, 4.2] 1100 [358, 367, 375] [359, 364, 377] 0.59

4-site

Global
[10, 8, 6, 3] 1000 [371, 297, 223, 109] [385, 290, 220, 105] 3.04
[15, 5, 3, 2] 1200 [720, 240, 144, 96] [748, 224, 138, 90] 4.18
[6, 5, 3, 3] 1000 [353, 295, 177, 175] [362, 291, 173, 174] 2.03

Local
[10, 8, 6, 3] 1000 [371, 297, 223, 109] [382, 297, 219, 102] 2.52
[15, 5, 3, 2] 1200 [720, 240, 144, 96] [740, 238, 136, 86] 3.00
[6, 5, 3, 3] 1000 [353, 295, 177, 175] [361, 297, 170, 172] 2.13

5-site

Global
[1, 2, 3, 4, 5] 800 [54, 107, 160, 214, 265] [51, 106, 164, 222, 257] 3.14
[2, 4, 6, 8, 10] 1200 [80, 160, 240, 320, 400] [76, 159, 246, 332, 387] 3.23
[1, 3, 5, 7, 9] 800 [32, 96, 160, 225, 287] [30, 86, 148, 240, 296] 5.62

Local
[1, 2, 3, 4, 5] 800 [54, 107, 160, 214, 265] [48, 101, 162, 216, 273] 3.00
[2, 4, 6, 8, 10] 1200 [80, 160, 240, 320, 400] [92, 156, 227, 323, 402] 3.12
[1, 3, 5, 7, 9] 800 [32, 96, 160, 225, 287] [25, 91, 160, 229, 295] 2.98

h) have sharp corners. They are the 3-dimensional generalizations of Figure 6.4. In

(c, f, i), we can see that the largest difference between the predicted and simulated

mean recruiting time occurs at n∗. In 3-dimensional space, t(n1, n2, n − n1 − n2; h) is

a paraboloid near n∗; (a, d, g) show the level of the curves. We can also see that the

predicted and simulated optimal drug distributions n∗ and n∗
sim are very close to each

other.
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Figure 6.5: Contour plots for tsim, t and surface plot for tsim−t. (a, b, c) n = 800, Λ =
[3, 4, 7], R = 100, n∗ = [172, 229, 399],n∗

sim = [168, 224, 408]. (d, e, f) n =
900, Λ = [8, 6, 4], R = 100, n∗ = [400, 300, 200],n∗

sim = [404, 298, 198].
(g, h, i) n = 1100, Λ = [4, 4.1, 4.2], R = 100, n∗ = [358, 367, 375],n∗

sim =
[356, 364, 380].

6.6 Conclusions and Future Work

In this chapter, we make two contributions. First, we model clinical trial re-

cruitment as a random walk and use the theory of exit times of a random walk to
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describe the clinical trial recruitment process and its completion time when the num-

ber of drugs available in total is equal to the number of patients needed. Secondly,

we utilize Laplace’s method to approximate the clinical trial’s mean recruiting time,

and use two algorithms (Global Search Algorithm 9 and Local Search Algorithm 10)

to find the optimal drug distribution such that the mean recruiting time is minimized.

By comparing analytical and Monte-Carlo simulations, which calculate the mean re-

cruiting time from K = 1000 realizations, we find that when the number of testing

centers m ≤ 5, equation (6.24) typically gives a good estimate, with relative error less

than 10%, and equation (6.28) typically gives the optimal distribution (minimizer of

(6.26)) to within 6% of relative error. We are also able to display the analytical solu-

tion (equation (6.24)) and simulated solution for the 3-site problem through contour

plots. The contour plots for both solutions are similar except that the contours in the

analytical solution have sharp corners, while the contours in the simulated solution are

smooth. We also find that the maximum deviation between the analytical and simu-

lated solutions occurs at the predicted optimal drug distribution n∗, see Figure 6.5 (c,

f, i). Our analytical solution also has an intuitive explanation in reality. The mean

recruiting time is actually equal to the time taken for the test center with slowest rate

to complete recruitment. The shortest mean recruiting time occurs when the drugs

are distributed according to patient arrival probability, so that the centers are able to

complete at the same time.

Our study has a couple of limitations. First of all, the approximated solution

of mean recruiting time is valid only when h is large and there exists an nk such

that nk ≪ nj, for all j 6= k. Secondly, because it takes a long time to find the

optimal drug distribution through simulation and local search, we are only able to

verify our analytical solution for up to five test centers. Thirdly, we only consider the

case when the number of drugs is equal to the number of patients. But in practice,

supply managers keep a number of drugs larger than h at testing centers to shorten

the recruiting time.
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In the future, we would consider iteratively conducting Local Search ( Algo-

rithm 10 ) by reducing the radius R and increasing the number of realizations K in

simulation for each iteration. We will also extend our work to the case when the total

number of drugs provided by the pharmaceutical company is strictly larger than the

target number of patients, which is more practical in clinical trials.

96



BIBLIOGRAPHY

[1] S. D. Servetto and G. Barrenechea. Constrained random walks on random graphs:
routing algorithms for large scale wireless sensor networks, 2002.

[2] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling and
analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks,
1(2):215–233, 2003.

[3] E. F. Fama. The behavior of stock-market prices. The journal of Business,
38(1):34–105, 1965.

[4] E. F. Fama. Random walks in stock market prices. Financial Analysts Journal,
51(1):75–80, 1995.

[5] F. Bartumeus, M. G. E. Da Luz, G. M. Viswanathan, and J. Catalan. Animal
search strategies: A quantitative random-walk analysis. Ecology, 86(11):3078–
3087, 2005.

[6] P. Bovet and S. Benhamou. Spatial analysis of animals’ movements using a
correlated random walk model. Journal of theoretical biology, 131(4):419–433,
1988.

[7] S. Redner. A Guide to First-Passage Processes. Cambridge University Press,
2001.

[8] A. N. Burkitt. A review of the integrate-and-fire neuron model: I. homogeneous
synaptic input. Biological Cybernetics, 95(1):1–19, 2006.

[9] W. Gerstner and W. M. Kistler. Spiking neuron models: Single neurons, popu-
lations, plasticity. Cambridge University Press, 2002.

[10] H. C. Tuckwell. Stochastic processes in the neurosciences. SIAM, 1989.

[11] H. C. Tuckwell, R. Rodriguez, and F. Y. M. Wan. Determination of firing
times for the stochastic fitzhugh-nagumo neuronal model. Neural Computation,
15(1):143–159, 2003.

[12] J. Dshalalow. On exit times of multivariate random walk with some applications
to finance. Nonlinear Analysis: Theory, Methods and Applications, 63(5):e569–
e577, 2005.

97



[13] P.-W. Fok and T. Chou. Reconstruction of potential energy profiles from multiple
rupture time distributions. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 466(2124):3479–3499, 2010.

[14] P.-W. Fok, Q. Han, and T. Chou. Reconstruction of a persistent random walk
from exit time distributions. IMA Journal of Applied Mathematics, 2013.

[15] V. Rajani, G. Carrero, D. E. Golan, G. De Vries, and C. W. Cairo. Analysis of
molecular diffusion by first-passage time variance identifies the size of confinement
zones. Biophysical journal, 100(6):1463–1472, 2011.

[16] O. K. Dudko. Single-molecule mechanics: New insights from the escape-over-a-
barrier problem. Proceedings of the National Academy of Sciences of the United
States of America, 106(22):8795–6, 2009.

[17] L. B. Freund. Characterizing the resistance generated by a molecular bond as
it is forcibly separated. Proceedings of the National Academy of Sciences of the
United States of America, 106(22):8818–23, 2009.

[18] G. Hummer and A. Szabo. Kinetics from nonequilibrium single-molecule pulling
experiments. Biophysical journal, 85(1):5–15, 2003.

[19] M. Schlierf and M. Rief. Single-molecule unfolding force distributions reveal a
funnel-shaped energy landscape. Biophysical journal, 90(4):L33–L35, 2006.

[20] S. R. Arridge. Optical tomography in medical imaging. Inverse Problems, 41:41–
93, 1999.

[21] S. R. Arridge and J. C. Hebden. Optical imaging in medicine: Ii. modelling and
reconstruction. Physics in medicine and biology, 42(5):841–53, 1997.

[22] G. Bal and T. Chou. On the reconstruction of diffusions from first-exit time
distributions. Inverse Problems, 20:1053–1065, 2003.

[23] J. E. Broadwell. Shock structure in a simple discrete velocity gas. Physics of
Fluids, 7:1243, 1964.

[24] J. E. Broadwell. Study of rarefied shear flow by the discrete velocity method.
Journal of Fluid Mechanics, 19(03):401–414, 1964.

[25] A. J. Christlieb, J. A. Rossmanith, and P. Smereka. The broadwell model in a
thin channel. Communications in Mathematical Sciences, 2(3):443–476, 2004.

[26] T. Nishida and M. Mimura. On the broadwell’s model for a simple discrete
velocity gas. Proceedings of the Japan Academy, Series A, Mathematical Sciences,
50(10):812–817, 1974.

98



[27] C. Xue and H. G. Othmer. Multiscale models of taxis-driven patterning in bac-
terial populations. SIAM Journal on Applied Mathematics, 70(1):133–167, 2009.

[28] D. J. Bicout. Green’s functions and first passage time distributions for dynamic
instability of microtubules. Physical Review E, 56, 1997.

[29] P.-W. Fok, C.-L. Guo, and T. Chou. Charge-transport mediated recruitment of
dna repair enzymes. Journal of Chemical Physics, 129:235101, 2008.

[30] P. Degond and S. Motsch. Continuum limit of self-driven particles with ori-
entation interaction. Mathematical Models and Methods in Applied Sciences,
18(supp01):1193–1215, 2008.

[31] S. Goldstein. On diffusion by discontinuous movements and on the telegraph
equation. Quarterly journal of mechanics and applied mathematics, 4:129–156,
1951.

[32] J. Masoliver and G. H. Weiss. Telegrapher’s equations with variable propagation
speeds. Physical Review E, 49:3852–3854, 1994.

[33] J. F. Claerbout. Fundamentals of geophysical data processing. Geophysical Jour-
nal of the Royal Astronomical Society, 86(1), 1986.

[34] R. W. Clayton. Common midpoint migration. In SEP-14: Stanford Exploration
Project, pages 21–36, 1978.

[35] C. C. Stolk and M. V. De Hoop. Modeling of seismic data in the downward
continuation approach. SIAM journal on applied mathematics, 65(4), 2005.

[36] K. P. Bube and R. Burridge. The one-dimensional inverse problem of reflection
seismology. SIAM Review, 25(4):497–559, 1983.

[37] M. M. Sondhi and J. R. Resnick. The inverse problem for the vocal tract: nu-
merical methods, acoustical experiments, and speech synthesis. The Journal of
the Acoustical Society of America, 73(3):985–1002, 1983.

[38] A. M. Bruckstein and T. Kailath. Inverse scattering for discrete transmission-line
models. SIAM Review, 29(3), 1987.

[39] F. Santosa and H. Schwetlick. The inversion of acoustical impedance profile by
methods of characteristics. Wave Motion, 4(1):99–110, 1982.

[40] M. G. Krein. On a method for the effective solution of the inverse boundary
value problem. Doklady Akademii Nauk Sssr, 94(6):987–990, 1954.

[41] B. Gopinath and M. M. Sondhi. Determination of the shape of the human vocal
tract from acoustical measurements. Bell System Technical Journal, 49:1195–
1214, 1970.

99



[42] B. Gopinath and M. M. Sondhi. Inversion of the telegraph equation and the
synthesis of nonuniform lines. Proceedings of the IEEE, 59(3):383–392, 1971.

[43] R. Burridge. The gelfand-levitan, the marchenko, and the gopinath-sondhi in-
tegral equations of inverse scattering theory, regarded in the context of inverse
impulse-response problems. Wave Motion, 2(4):305–323, 1980.

[44] I. M. Gelfand and B. M. Levitan. On the Determination of a Differential Equation
from Its Spectral Function. American Mathematical Society, 1955.

[45] Z. S. Agranovich, V. A. Marchenko, and B. D. Seckler. The inverse problem of
scattering theory. Gordon and Breach, New York, 1964.

[46] T. Kailath, B. Levy, L. Ljung, and M. Morf. The factorization and representation
of operators in the algebra generated by toeplitz operators. SIAM Journal on
Applied Mathematics, pages 467–484, 1979.

[47] J. Rissanen. Algorithms for triangular decomposition of block hankel and toeplitz
matrices with application to factoring positive matrix polynomials. Mathematics
of computation, 27(121):147–154, 1973.

[48] M. T. Giraudo and L. Sacerdote. An improved technique for the simulation of first
passage times for diffusion processes. Communications in Statistics - Simulation
and Computation, 28:1135–1163, 1999.

[49] M. T. Giraudo, L. Sacerdote, and C. Zucca. A monte carlo method for the sim-
ulation of first passage times of diffusion processes. Methodology and computing
in applied probability, 3:215–231, 2001.

[50] R. Mannella and V. Palleschi. Fast and precise algorithm for computer simulation
of stochastic differential equations. Physical Review A, 40, 1989.

[51] T. Taillefumier and M. O. Magnasco. A fast algorithm for the first-passage times
of gauss-markov processes with holder continuous boundaries. Journal Statistical
Physics, 140:1–27, 2010.

[52] M. L. Lanthier, R. Sridhara, J. R. Johnson, A. Farrell, P. Keegan, R. Justice,
and R. Pazdur. Accelerated approval and oncology drug development timelines.
Journal of Clinical Oncology, 28(14):e226–e227, 2010.

[53] F. A. Thiers, A. J. Sinskey, and E. R. Berndt. Trends in the globalization of
clinical trials. Nature Reviews Drug Discovery, 7(1):13–14, 2008.

[54] S. W. Glickman, J. G. Mchutchison, E. D. Peterson, C. B. Cairns, R. A. Harring-
ton, R. M. Califf, and K. A. Schulman. Ethical and scientific implications of the
globalization of clinical research. New England Journal of Medicine, 360(8):816–
823, 2009.

100



[55] M. Powell. Bristol-myers squibb’s evolution from a big pharma company to a
mid size biopharma company, 2010.

[56] P. Vallance. Bristol-myers squibb’s evolution from a big pharma company to a
mid size biopharma company, 2011.

[57] M. K. Campbell, C. Snowdon, D. Francis, D. Elbourne, A. M. Mcdonald,
R. Knight, V. Entwistle, J. Garcia, I. Roberts, A. Grant, A. Grant, and Steps
Group. Recruitment to randomised trials: strategies for trial enrollment and
participation study. the steps study. Health technology assessment, 11(48), 2007.

[58] K. A. Getz and A. De Bruin. Breaking the development speed barrier: Assessing
successful practices of the fastest drug development companies. Drug information
journal, 34(3):725–736, 2000.

[59] R. E. Carter, S. C. Sonne, and K. T. Brady. Practical considerations for esti-
mating clinical trial accrual periods: application to a multi-center effectiveness
study. BMC medical research methodology, 5:11, 2005.

[60] M. A. Moussa. Planning a clinical trial with allowance for cost and patient
recruitment rate. Computer programs in biomedicine, 18(3):173–179, 1984.

[61] V. V. Anisimov. Using mixed poisson models in patient recruitment in multicen-
tre clinical trials, 2008.

[62] V. V. Anisimov and V. V. Fedorov. Modelling, prediction and adaptive adjust-
ment of recruitment in multicentre trials. Statistics in medicine, 26(27):4958–
4975, 2007.

[63] R. E. Carter. Application of stochastic processes to participant recruitment in
clinical trials. Controlled Clinical Trials Controlled Clinical Trials, 25(5):429–436,
2004.

[64] W. O. Williford, S. F. Bingham, D. G. Weiss, J. F. Collins, K. T. Rains, and W. F.
Krol. The ”constant intake rate” assumption in interim recruitment goal method-
ology for multicenter clinical trials. Journal of chronic diseases, 40(4):297–307,
1987.

[65] B. J. Gajewski, S. D. Simon, and S. E. Carlson. Predicting accrual in clinical
trials with bayesian posterior predictive distributions. Statistics in medicine,
27(13):2328–2340, 2008.

[66] I. Abbas, J. Rovira, and J. Casanovas. Clinical trial optimization: Monte carlo
simulation markov model for planning clinical trials recruitment. Contemporary
clinical trials, 28(3):220–231, 2007.

101



[67] C. Abdelkafi, B. H. L. Beck, B. David, C. Druck, and M. Horoho. Balancing
risk and costs to optimize the clinical supply chain - a step beyond simulation.
Journal of Pharmaceutical Innovation, 4(3):96–106, 2009.

[68] Y. Chen, L. Mockus, S. Orcun, and G. V. Reklaitis. Simulation-optimization ap-
proach to clinical trial supply chain management with demand scenario forecast.
Computers and Chemical Engineering, 40:82–96, 2012.

[69] Y. Chen, L. Mockus, S. Orcun, and G. V. Reklaitis. Simulation-based opti-
mization approach to clinical trial supply chain management. Computer Aided
Chemical Engineering, 28:145–150, 2010.

[70] Y. Chen, J. F. Pekny, and G. V. Reklaitis. Integrated planning and optimization
of clinical trial supply chain system with risk pooling. Industrial and Engineering
Chemistry Research, 52(1):152–165, 2013.

[71] M. Peterson, B. Byrom, N. Dowlman, and D. Mcentegart. Optimizing clinical
trial supply requirements: simulation of computer-controlled supply chain man-
agement. Clinical Trials, 1(4):399–412, 2004.

[72] N. Shah. Pharmaceutical supply chains: key issues and strategies for optimisa-
tion. Computers and Chemical Engineering, 28(6-7), 2004.

[73] W. D. Dupont and W. D. Plummer Jr. Power and sample size calculations: A
review and computer program. Controlled Clinical Trials, 11(2):116–128, 1990.

[74] J. M. Lachin. Introduction to sample size determination and power analysis for
clinical trials. Controlled clinical trials, 2(2):93–113, 1981.

[75] D. Machin, M. J. Campbell, S.-B. Tan, and S.-H. Tan. Sample Size Tables for
Clinical Studies. John Wiley and Sons, 2011.

[76] T. V. Sakpal. Sample size estimation in clinical trial. Perspectives in Clinical
Research, 1(2):67–69, 2010.

[77] J. R. Beeler Jr. Distribution functions for the number of distinct sites visited in
a random walk on cubic lattices: Relation to defect annealing. Physical Review,
134(5A):A1396–A1401, 1964.

[78] E. Montroll. Random walks on lattices. In Proceedings of the Symposium on
Applied Mathematics, volume 16, pages 193–230, Providence, RI, 1964. American
Mathematical Society.

[79] E. W. Montroll and G. H. Weiss. Random walks on lattices. ii. Journal of
Mathematical Physics, 6(2):167–181, 1965.

[80] G. Polya. ber eine aufgabe der wahrscheinlichkeitsrechnung betreffend die irrfahrt
im straennetz. Mathematische Annalen, 84(1-2):149–160, 1921.

102



[81] H. B. Rosenstock. Random walks on lattices with traps. Journal of Mathematical
Physics, 11(2):487–490, 1970.

[82] G. H. Weiss. Asymptotic form for random walk survival probabilities on three-
dimensional lattices with traps. Proceedings of the National Academy of Sciences,
77(8):4391–4392, 1980.

[83] G. Zumofen and A. Blumen. Random-walk studies of excitation trapping in
crystals. Chemical Physics Letters, 88(1):63–67, 1982.

[84] D. G. Cahill and R. O. Pohl. Heat flow and lattice vibrations in glasses. Solid
State Communications, 70(10):927–930, 1989.

[85] A. C. Damask and G. J. Dienes. Point defects in metals. Gordon and Breach,
1963.

[86] R. H. J. Fastenau, C. M. Van Baal, P. Penning, and A. Van Veen. On the sink
concentration dependence of reaction constants for point defect trapping. Physica
Status Solidi (A), 52(2):577–586, 1979.

[87] H. B. Rosenstock. Luminescent emission from an organic solid with traps. Phys-
ical Review, 187(3):1166–1168, 1969.

[88] H. Scher and M. Lax. Continuous time random walk model of hopping transport:
Application to impurity conduction. Journal of Non-Crystalline Solids, 8-10:497–
504, 1972.

[89] H. Scher and M. Lax. Stochastic transport in a disordered solid. i. theory. Physical
Review B, 7(10):4491–4502, 1973.

[90] L. J. S. Allen. An introduction to stochastic processes with applications to biology.
Pearson/Prentice Hall, 2003.

[91] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis.
Springer, 2010.

[92] R. G. Novikov. The inverse scattering problem at fixed energy for the three-
dimensional schrödinger equation with an exponentially decreasing potential.
Communications in Mathematical Physics, 161:569–595, 1994.

[93] M. V. De Hoop, H. Smith, G. Uhlmann, and R. D. Van Der Hilst. Seismic
imaging with the generalized radon transform: a curvelet transform perspective.
Inverse Problems, 25, 2009.

[94] L. N. Trefethen. Spectral Methods in Matlab. SIAM, 2000.

[95] P. Sacks and W. Symes. Recovery of the elastic parameters of a layered half-space.
Geophysical Journal of the Royal Astronomical Society, 88:593–620, 1987.

103



[96] W. W. Symes. A differential semblance algorithm for the inverse problem of
reflection seismology. Computers and Mathematics with Applications, 22:147–
178, 1991.

[97] R. Kress. Linear Integral Equations. Springer-Verlag, 1989.

[98] G. M. L. Gladwell. Inverse Problems in Scattering: An Introduction. Springer,
1993.

[99] M. Hlynka, P. H. Brill, and W. Horn. A method for obtaining laplace transforms
of order statistics of erlang random variables. Statistics and Probability Letters,
80:9–18, 2010.

[100] G. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer,
1996.

[101] J. E. Gentle. Random Number Generation and Monte Carlo Methods. Springer,
2003.

[102] R. Stafford. Random vectors with fixed sum (from matlab central online), Jan-
uary 2006.

104



Appendix

DERIVATION OF EQUATIONS

We now show that from

a0δ
′(ξ) = 0, (A.1)

we can derive (5.10) − (5.11) (recall that a0 is continuous and differentiable). We

first represent a0 in terms of characteristic variables ξ = t − x/v − L/2/v and η =

t+x/v−L/2/v so that a0(x, t) = f(ξ, η) for some function f . Define the inner product

〈α, β〉 =
∫
α(ξ)β(ξ) dξ. Then eq. (A.1) implies that for all test functions φ(ξ),

〈a0(x, t)δ′(ξ), φ(ξ)〉 = 0, (A.2)

⇒ 〈 δ′(ξ), f(ξ, η)φ(ξ) 〉 = 0, (A.3)

⇒ −〈 δ(ξ), ∂ξ[f(ξ, η)φ(ξ)] 〉 = 0, (A.4)

⇒ −
(
fξ(ξ, η)φ(ξ)

∣∣∣
ξ=0

+ f(ξ, η)φ′(ξ)
∣∣∣
ξ=0

)
= 0. (A.5)

Taking φ(ξ) ≡ 1, we find fξ(0, η) = 0. Taking φ(ξ) = ξψ(ξ) with ψ(0) 6= 0, we have

f(0, η) = 0. Since ∂ξ = ∂t − v∂x, we find that

a0(x, t) = 0, (A.6)

∂a0
∂t
− v∂a0

∂x
= 0, (A.7)

on ξ = t− x/v − L/2/v = 0.
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