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Damaged or mismatched bases in DNA can be repaired by base excision repair enzymes �BER� that
replace the defective base. Although the detailed molecular structures of many BER enzymes are
known, how they colocalize to lesions remains unclear. One hypothesis involves charge transport
�CT� along DNA �Yavin et al., Proc. Natl. Acad. Sci. U.S.A. 102, 3546 �2005��. In this CT
mechanism, electrons are released by recently adsorbed BER enzymes and travel along the DNA.
The electrons can scatter �by heterogeneities along the DNA� back to the enzyme, destabilizing and
knocking it off the DNA, or they can be absorbed by nearby lesions and guanine radicals. We
develop a stochastic model to describe the electron dynamics and compute probabilities of electron
capture by guanine radicals and repair enzymes. We also calculate first passage times of electron
return and ensemble average these results over guanine radical distributions. Our statistical results
provide the rules that enable us to perform implicit-electron Monte Carlo simulations of repair
enzyme binding and redistribution near lesions. When lesions are electron absorbing, we show that
the CT mechanism suppresses wasteful buildup of enzymes along intact portions of the DNA,
maximizing enzyme concentration near lesions. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3026735�

I. INTRODUCTION

The genomes of all living organisms are constantly un-
der attack by mutagenic agents such as reactive oxygen spe-
cies and ionizing radiation. Such processes can damage
bases, giving rise to localized lesions in the DNA �Refs. 1
and 2� that can lead to harmful mutations and diseases such
as cancer. For example, guanine residues can be oxidized,
generating a radical called 7,8-dihydro-8-oxoguanine
�oxoG�. Unlike the nonoxidized form, this radical can pair
with both cytosine and adenine, ultimately giving rise to
GC→TA transversion mutations1 upon multiple replications.
Lesions can also arise through alkylation, hydration, and
deamination.1

One defense mechanism against these mutation pro-
cesses is the base excision repair �BER� pathway. BER en-
zymes recognize and undo damage to DNA by adsorbing
onto the sugar-phosphate backbone, locating the lesion, and
excising it. The biomechanical functions of repair enzymes
have been well established and their three-dimensional struc-
tures are known in great detail.3 There are four main types of
BER enzyme: DNA glycosylases, apurinic and apyrimidinic
�AP� endonucleases, DNA polymerases, and DNA ligases.
Each of these enzymes has a different role in the BER fam-
ily. For example, DNA glycosylases initiate the repair path-
way, detecting and recognizing distinct forms of DNA dam-
age, while the endonucleases are responsible for cleaving the

sugar-phosphate backbone. Together, these enzymes main-
tain the overall integrity of DNA, generally ensuring that
miscoded proteins are kept to a minimum.

The problem of how a BER enzyme locates a lesion on
DNA is a specific example of how enzymes find localized
targets. The DNA of E. coli contains about 106 base pairs. If
we assume that BER enzymes find lesions through a pure
one-dimensional �1D� diffusive “sliding” process with diffu-
sion constant D base pairs2 /s, the search time is roughly
1012 /D. Estimating D to be 5�106 base pairs2 /s, the value
for a human DNA glycosylase,6 we obtain a search time of
about 2�105 s�2 days, much longer than even the repro-
ductive period of E. coli. Therefore, it is likely that other
mechanisms are responsible for DNA target location.

In 1970, Riggs et al.7,8 measured the association rate of
the LacI repressor protein to its target on DNA to be about
1010 M−1 s−1. This was puzzling because the theoretical up-
per limit for the association rate of a LacI enzyme diffusing
in three dimensions is predicted �via the Debye–
Smoluchowski formula� to be about two orders of magnitude
less. This fundamental biophysical problem was studied in
the seminal work of von Hippel and co-workers9–12 and the
“faster-than-diffusion” search of targets on DNA has re-
ceived recent attention.13–18 Facilitated diffusion is one
mechanism11,14,16,19 proposed to explain the accelerated
search. Instead of diffusing directly to their target, the
searching enzymes can spend part of their time attached to
the DNA and perform a 1D random walk along part of the
strand. If the enzyme is able to spend 50% of its time on the
DNA and 50% of its time diffusing in three dimensions and
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the diffusion constants in one and three dimensions are com-
parable, the association rate is predicted to increase by as
much as 100,16 bringing it in line with the experiments in
Riggs et al.7,8 However, other authors have shown that �i�
typical enzymes are highly associated with DNA, spending
over 99.999% of their time on the strand,14 and �ii� the dif-
fusion constant in one dimension can be 1000 times smaller
than in three dimensions,20 resulting in a negligible reduction
in the search time. Hence, facilitated diffusion in its basic
form is not adequate to explain the fast reaction rates ob-
served. Extensions to the facilitated diffusion theory can in-
corporate finite enzyme concentrations,18 “antenna” effects
resulting from the conformation of the DNA,17 fast interseg-
ment transfers of the protein,16 specific/nonspecific protein-
DNA interactions,16 and directed DNA sliding.21

Although BER enzymes may colocalize to lesions by
exploiting the facilitated diffusion mechanisms cited above,
other mechanisms are likely required for efficient and timely
recruitment to lesions. A charge-transport �CT� mechanism
has been recently proposed as a possible basis for efficient
scanning by MutY, a type of DNA glycosylase.4,5 MutY is
known to contain an iron-sulfur cluster which plays a key
role in the CT mechanism. The cluster can take one of two
forms: �4Fe-4S�2+ and �4Fe-4S�3+. When MutY is in solu-
tion, the cluster is in the 2+ state and is resistant to oxidation.
However, upon binding to DNA, the cluster potential is
shifted, making the 3+ state more accessible. The result is
that after binding, MutY-�4Fe-4S�2+ is easily oxidized and
releases an electron along the DNA, as shown in Fig. 1�a�. It
should be noted that the 3+ state of MutY has a binding
affinity that is about four orders of magnitude larger than that
of the 2+ state.22 Therefore MutY-�4Fe-4S�2+ spends most of
its time in solution whereas MutY-�4Fe-4S�3+ exists prima-
rily adsorbed onto DNA.

Although controversial about 15 years ago, long range
electron transport in DNA is now a well accepted
phenomenon.23,24 Experiments indicate that CT can occur
over 40 Å �about 12 base pairs� in less than a nano-
second25,26 and the influence of DNA strand crossovers on
CT is generally small.23 Although electron dynamics along
DNA is, in general, very complicated, some aspects of the
process are now understood. For example, both guanine and
adenine can act as carriers of positive charge; in analogy
with semiconductors, oxidized DNA can transport charge via
the transfer of holes from base to base.

Quantifying how BER enzymes adsorb to DNA and how
they are recruited to lesions has so far been restricted to
simple scaling arguments.27 In this paper, in order to explore
the implications of DNA target selection solely by CT, we
assume that adsorbed MutY BER enzymes do not slide along
the DNA. However, upon first attachment to DNA, the en-
zyme will emit an electron that propagates along the strand
in a random direction and its cluster will go from the
�4Fe-4S�2+ to the �4Fe-4S�3+ state. Should this electron be-
come absorbed by another MutY-�4Fe-4S�3+ enzyme further
along the DNA, the 3+ form is reduced and desorbs �Fig.
1�b��. If the electron backscatters and returns to the original
MutY, it self-desorbs. Although the model proposed in this
paper is intended to specifically describe the colocalization
and redistribution of MutY through the redox reaction of its
iron-sulfur cluster, many BER enzymes, in fact, contain such
a cluster, e.g., endonuclease III. Therefore, we think that our
model may be more general and could also describe the
binding kinetics of other enzymes.

Since unbiased stochastic motion in one dimension al-
ways leads to return of the electron,28 in the absence of any
other electron absorbers on the DNA, a MutY BER enzyme
that is deposited will eventually self-desorb with probability
of 1. However, BER enzymes can be recruited to DNA by
pre-existing electron absorbers. These are typically guanine
radicals �“oxoG”� and other lesions, indicated in Fig. 1�c� by
circumscribed dots and filled diamonds, respectively. It has
been suggested that oxoG plays an important role in the
seeding of MutY onto DNA.4 The oxoG radicals, like ad-
sorbed enzymes, are able to absorb electrons, preventing
them from returning and desorbing BER enzymes that origi-
nally released them. Therefore, the oxoG radical in Fig. 1�a�
can absorb one left-moving electron and prevent it from
backscattering and desorbing the rightmost enzyme. Upon
reduction, oxoG radicals convert to normal guanine bases, no
longer absorb electrons, and no longer take part in the CT
mechanism.

Other lesions do not simply annihilate by absorbing elec-
trons; rather, they require the physical presence of BER en-
zymes to excise them. These lesions may recruit smaller,
more abundant proteins from solution that permit multiple
electron absorption. Another possibility is that the lesions
reflect electrons. Both cases are shown in Fig. 1�c�. There-
fore, our basic model consists of right- and left-moving elec-
trons, guanine radicals, oxidized and reduced forms of BER
enzymes, and lesions on the DNA strand. Newly adsorbed
BER enzymes instantly release electrons �right or left mov-
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FIG. 1. �Color online� Redox mechanism for repair enzyme interaction
based on the papers by Yavin et al. �Ref. 4� and Boon et al. �Ref. 5�. �a� A
MutY in the 2+ state �solid hexagon� adsorbs and oxidizes to the 3+ state
�empty hexagon� by releasing an electron along the DNA. The electron is
emitted to the left or right of the enzyme with equal probability. Guanine
radicals �circumscribed dots� can absorb electrons and prevent oxidation of
nearby adsorbed enzymes. �b� A MutY repair enzyme in the 3+ state absorbs
an electron and is reduced, causing it to desorb. �c� Lesions also prevent
passage of electrons, through either electron absorption or reflection. In our
analysis, lesions act differently from oxoG radicals in that they can continu-
ously absorb electrons.
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ing�, while oxoG radicals, lesions, and oxidized BER en-
zymes absorb electrons and prevent their passage.

In this paper, we model the adsorption, desorption, and
redistribution of repair enzymes using the redox mechanism
shown in Fig. 1. We first derive some exact results in the
absence of any lesions; in particular, enzyme adsorption
probabilities and the time it takes for returning electrons to
induce enzyme desorption. These results enable us to define
rules for Monte Carlo �MC� simulations of the dynamics of
multiple enzymes. For electron-absorbing lesions, simula-
tions show that if enzymes are deposited onto a DNA at a
rate that is slow compared to the electron dynamics, the dis-
tance between a lesion and the closest enzyme scales as
O�n−2/3� for large n, while the total number of enzymes ad-
sorbed between two lesions scales as O�n1/3�. However, be-
cause of the CT mechanism, this accumulation is not uniform
along the DNA and the maximum enzyme density always
occurs at lesions. Hence for electron-absorbing lesions, the
CT mechanism concentrates enzymes to damaged bases in
DNA, consistent with the qualitative predictions by Yavin
et al.4 and Boon et al.5

The outline of this paper is as follows. In Sec. II, we
develop a model for the electron dynamics based on the sto-
chastic Broadwell model.29–32 Pairs of guanine radicals, BER
enzymes, or lesions define the boundary of a segment �a
“gap”� over which an electron can propagate. Section III
contains our results. In Sec. III A, we derive enzyme sticking
probabilities and the time it takes for returning electrons to
desorb the enzymes that originally emitted them. In particu-
lar, we derive the MutY desorption rate in terms of the elec-
tron scattering �flip rate� and the electron speed. In Sec. III B,
we perform implicit-electron MC simulations to study the
redistribution and accumulation of enzymes between two
fixed lesions on the DNA. Finally, in Sec. IV, we discuss
facilitated recruitment of enzymes to lesions in the context of
the CT hypothesis as well as the biological advantages and
disadvantages of the proposed CT mechanism.

II. STOCHASTIC CHARGE TRANSPORT MODEL

A. One-sided Broadwell problem

In analogy with Bicout’s analysis for the unrelated prob-
lem of microtubule growth dynamics,29 we now present
similar equations for the dynamics of electrons associated
with repair enzymes. Consider Fig. 2�a�. OxoG guanine radi-
cals with density � are distributed randomly along an infinite
strand of DNA. A single repair enzyme initially attaches to
the DNA at a random position, in between two electron-
absorbing oxoGs. The enzyme immediately emits an electron
along the DNA to the left or right with equal probability. The
electron can only move with speed V in the positive or nega-
tive X directions, executing random flips between the two
directions with rate F. Furthermore, emitted electrons can be
annihilated with rate M through nonspecific interactions with
random electron absorbers diffusing in the bulk.

In general, two steps are required for a MutY enzyme to
bind to DNA. First, when MutY-�4Fe-4S�2+ is in contact
with the DNA, it has to undergo oxidation by releasing an
electron. The oxidized form of the enzyme binds more

strongly to DNA. Second, the released electron must be ab-
sorbed by some particle other than the enzyme �an oxoG, an
already adsorbed MutY, or a lesion� to prevent it from return-
ing and reducing the enzyme. This allows the enzyme bind-
ing to become “permanent.” Therefore the net binding prob-
ability depends on �i� the probability of electron release by
MutY-�4Fe-4S�2+ �when in contact with the DNA� and �ii�
how far neighboring electron absorbers are from the ad-
sorbed MutY. In this paper, we assume that when enzymes
adsorb onto the DNA, they always oxidize, releasing an elec-
tron with probability of 1; in Fig. 2�b�, the electron is re-
leased to the right with probability of 1 and in Fig. 2�c�, the
electron is released to the left or right with probability of 1/2.
In principle, an enzyme can attach to and then immediately
detach from the DNA without releasing its electron, but as-
suming the electron release rate is large, we neglect this pro-
cess. The adsorption probabilities we derive later in this sec-
tion will depend only on the gap size L and the parameters
for electron motion.

Finally, we assume that the DNA is immersed in an in-
finite reservoir of enzymes which is kept at a fixed chemical
potential. The rate of deposition of enzymes onto the DNA
is assumed to be constant. A deposited enzyme can either
adsorb by having its released electron captured by neighbor-
ing electron absorbers or it can desorb due to its electron
returning.

To build our full solution, we first derive exact analytical
expressions for the “one-sided” problem shown in Fig. 2�b�
which consists of an enzyme at X=0 and a guanine radical at
X=L. At time T=0, an electron is emitted from a position
X0�0 �subsequently, we will take the limit X0→0� with
speed V in the positive X direction. For the one-sided prob-
lem, the electron is emitted only to the right. The probability
that the electron is at a position between X and X+dX at time
T and moving to the right with velocity V is denoted
P+�X ,T�. Similarly, P−�X ,T� denotes the probability density
of an electron moving with speed V in the negative X direc-
tion. The electron can flip directions by scattering from in-
homogeneities and thermally excited conformational varia-
tions along the DNA.33,34 We model this flipping process as a
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FIG. 2. �Color online� �a� A repair enzyme �hexagon� adsorbs onto a DNA
which is initially populated by guanine radicals �circled dots� with a density
�. An electron is emitted to the left or right with equal probability. The
emitted electron has flip rate F, speed V, and decay rate M. �b� The one-
sided Broadwell problem. An electron is emitted from X=0 with probability
1 toward a guanine radical at X=L. �c� The two-sided Broadwell problem.
An enzyme is deposited between two guanine radicals which are a distance
L apart. Immediately after landing inside this segment, an electron is emitted
to the left or right with equal probability.

235101-3 Recruitment of DNA repair enzymes J. Chem. Phys. 129, 235101 �2008�

Downloaded 16 Jan 2009 to 131.215.225.9. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



spatially homogeneous process occurring with constant rate
F independent of any structure along the DNA such as a base
pair sequence.

The evolution equations for the probability densities
P��X ,T� are

�P+

�T
= − V

�P+

�X
− FP+ + FP− − MP+,

�1�
�P−

�T
= V

�P−

�X
+ FP+ − FP− − MP−,

where 0�X�L. Equation �1� describes the probability den-
sity of electrons being advected to the right and left. The
flipping of the electron motion is represented through F and
couples the equations for P+ and P−. Furthermore, the den-
sities decay in time with an annihilation rate M. Electrons
can be annihilated by being absorbed by other proteins �be-
sides BER enzymes� in solution. If these proteins adsorb
onto the DNA, absorb an electron, and desorb back into so-
lution, an electron is permanently removed from the DNA.

The boundary conditions and initial conditions are

P+�0,T� = P−�L,T� = 0, �2�

P+�X,0� = ��X − X0� , �3�

P−�X,0� = 0. �4�

The boundary conditions in Eq. �2� arise because the enzyme
at X=0 and the oxoG at X=L �see Fig. 2�b�� are both perfect
electron absorbers. When X0→0, the initial condition �3�
reflects the fact that an electron is released to the right from
the enzyme at X=0. Initially, there are no leftward traveling
electrons in Fig. 2�b�, justifying Eq. �4�. All variables and
parameters are listed in Table I.

We now define dimensionless independent variables
through the guanine radical density � and the rightward elec-
tron travel time 1 / ��V�:

x = �X, t = �VT , �5�

so that Eq. �1� can be written in the form

�Q

�t
= LQ, Q = �Q+�x,t�

Q−�x,t�
� , �6�

where Q�= P� /� and

L = �−
�

�x
− f − � f

f
�

�x
− f − �	 , �7�

and 0�x��
�L. In Eq. �7�,

f =
F

�V
, � =

M

�V
�8�

are the dimensionless flipping rate and electron decay rate.
The boundary and initial conditions �2�–�4� become

Q+�0,t� = Q−��,t� = 0,

Q+�x,0� = ��x − x0� , �9�

Q−�x,0� = 0,

where x0=�X0. In the physical problem, an electron is re-
leased from the enzyme as soon as it initially attaches to the
DNA. Therefore, we solve Eq. �6� with Eqs. �7� and �9�
taking the limit x0→0 �for details, see Appendix A�. The
dimensionless variables are tabulated and defined in Table II.
Henceforth all of our results and analyses will be presented
for �=0.

The probability of the enzyme in Fig. 2�b� self-desorbing
before time t is given by �0

t Q−�0, t��dt�, where Q− can be

TABLE I. Table of dimensional variables and parameters. The analysis per-
formed assumes M =0. L represents length and T represents time.

Symbol Definition Units

P+
Probability density of

rightward electron
1 /L

P−
Probability density of

leftward electron
1 /L

X Position along DNA L

X0 Position of electron release L

T Time T

� Density of oxoG guanine radicals on DNA 1 /L

L Distance between two oxoGs/enzymes L

F Electron flip rate 1 /T

V Electron speed L /T

M Electron decay rate 1 /T

kon Deposition rate of enzymes 1 / �LT�

TABLE II. Definitions of dimensionless symbols in terms of the dimen-
sional quantities in Table I.

Symbol Math definition Descriptive definition

Q� P� /�
Rightward/leftward electron

probability density

x �X Coordinate along DNA

x0 �X0 Position of electron release

t �VT Time

� �L
“Gap size:” distance between
two oxoGs/enzymes/lesions

f F /�V Electron flip rate

� M /�V Electron decay rate

� — Position of enzyme adsorption

d1 ,d2 —
Enzyme-lesion/enzyme-

enzyme distance �see Fig. 6�
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found by taking the inverse Laplace transform of Eq. �A4� in
Appendix A. Therefore, the enzyme desorption and sticking
probabilities for the one-sided problem are

f�

1 + f�
and 1 −

f�

1 + f�
=

1

1 + f�
, �10�

respectively.

B. Two-sided Broadwell problem

Now consider the two-sided problem depicted in Fig.
2�c�. A repair enzyme lands at position � between two oxoG
guanine radicals that are a distance � apart. The solution to
the full problem can be found by splitting it into two sub-
problems and using our results from Sec. II A. Instead of
solving for the densities on �0,��, we can solve for Q� sepa-
rately on �� ,� /2� �with the enzyme initially deposited at �
and the guanine radical at � /2� and on �� ,−� /2� �with the
enzyme at � and the guanine radical at −� /2� and combine
the results. The enzyme desorption and adsorption probabili-
ties �10� extend straightforwardly:

	desorb��,�� =
1

2� f��

2
− ��

1 + f��

2
− �� +

f��

2
+ ��

1 + f��

2
+ ��	 ,

�11�

	adsorb��,�� =
1

2� 1

1 + f��

2
− �� +

1

1 + f��

2
+ ��	 .

A plot of the sticking probability 	adsorb for different values
of f and for two different gap sizes is shown in Fig. 3. For a
fixed gap size and sufficiently large f �corresponding to a
diffusive electron motion�, permanent BER enzyme adsorp-
tion is less likely to occur near the center of the gap because
absorption of the electron by guanine radicals is less likely to
occur. The permanent adsorption or sticking probability is
more uniform when f is small �corresponding to a ballistic
electron motion�: whether the oxoG radical is close or far
away from the enzyme makes little difference to the adsorp-
tion probability. Finally, for fixed f , increasing the gap size

decreases the adsorption probability because guanine annihi-
lation by the electron is less likely to occur. The diffusive
and ballistic behaviors of the Broadwell model are derived in
Appendix B.

III. RESULTS AND DISCUSSION

A. Statistics of repair enzymes away from lesions

In this section, we present and discuss deposition statis-
tics that are valid far away from lesions. First, using Eq. �11�,
we average over the landing position � to calculate mean
sticking/adsorption probabilities of repair enzymes that are
deposited between two guanine radicals that are a distance �
apart. The inter-radical distances �gaps� in DNA will, in gen-
eral, be randomly distributed. Therefore we ensemble aver-
age our results over the distribution that � is expected to
obey. Second, we find the mean return times of electrons,
i.e., the time it takes for a deposited enzyme to be desorbed
by its own electron, providing it desorbs. Again, our results
are ensemble averaged over randomly distributed gap sizes.
The quantities we shall compute and analyze in this section
are listed in Table III.

All the results presented are for adiabatic depositions. A
deposition is adiabatic if the interdeposition time is much
larger than the time scale of the electron dynamics. In other
words, for every enzyme deposited, its released electron
completes its motion before the deposition of the next en-
zyme. At any given time, there is at most one traveling elec-
tron on the DNA. For details, see Appendix C.
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FIG. 3. �Color online� Dependence of enzyme sticking probability 	adsorb

�see Eq. �11�� on dimensionless flip rate f and landing position −� /2
�

� /2 for the deposition of a single enzyme into a gap �the segment of DNA
between two guanine radicals� of size �. �a� �=1 with radicals located at
�0.5. �b� �=2 with radicals located at �1.

TABLE III. Derived adsorption/desorption probabilities, electron return
times, and related quantities.

Symbol Descriptive definition Eq.

	adsorb�� ,�� Enzyme adsorption probability �11�

	desorb�� ,�� Enzyme desorption probability �11�

	̄adsorb���
Enzyme adsorption probability

averaged over landing
position �

�12�

	̄desorb���
Enzyme desorption probability

averaged over landing
position �

�20�

�	̄adsorb
Enzyme adsorption probability

averaged over landing position �
and gap size �

�14� and �16�

tr

Random variable for
conditional return time of

electron
�17�

�r�� ,�� Mean conditional return time
�MCRT� of an electron

�18�

�̄r���
MCRT of an electron
averaged over landing

position �
�19�

��̄r
MCRT of an electron

averaged over landing position �
and gap size �

�21�
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1. Repair enzyme sticking probability

One quantity of interest is the probability that any given
repair enzyme that lands on the DNA will not be kicked off
by its own electron and will remain adsorbed. Enzyme stick-
ing relies on efficient capture of the released electron by
neighboring electron absorbers �guanine radicals and ad-
sorbed enzymes�. Intuitively, one would expect that a greater
density of absorbers with smaller gaps would result in a
more efficient capture of enzymes.

For a single repair enzyme deposited onto the DNA land-
ing at a position −� /2
�
� /2 �see Fig. 2�c�� inside a gap
of length �, centered about x=0, the probability of it remain-
ing on the DNA is given by 	adsorb in Eq. �11�. This quantity
can be averaged over all possible deposition positions �
within the gap to obtain

	̄adsorb =
1

2�
�

−�/2

�/2

� 1

1 + f��

2
− �� +

1

1 + f��

2
+ ��	d�

=
2

f�
tanh−1� f�

2 + f�
� . �12�

This result is plotted in Fig. 4 �dashed line�. Equation �12�
gives the sticking probability of a repair enzyme newly de-
posited between two electron absorbers separated by � uni-
formly averaged over its deposition position within the gap.

We now average over the gap length distribution to com-
pute the sticking probability for deposited enzymes that land
anywhere along the entire DNA strand. For an infinite,
lesion-free DNA, depositing an enzyme will, in general,
change the local guanine and enzyme distribution. Hence,
the sticking probabilities will also change with each succes-
sive deposition, making the calculation difficult in the con-
text of the Broadwell model. However, it is possible to cal-
culate the sticking probability for a given gap distribution. In

special cases where this distribution is known or simple to
calculate, we can compute the efficiency of enzyme recruit-
ment onto the DNA.

Consider the case of a DNA with a discrete distribution
of gaps �1 ,�2 ,�3 , . . . . Suppose that on the DNA, a fraction
� j of the gaps have size � j. Now consider many realizations
of a single enzyme deposited onto this DNA. The fraction of
enzymes that lands in gaps of size � j is � j� j /� j=1

 � j� j and the
fraction of these that stays adsorbed, using Eq. �12�, is

2

f

� j tanh−1� f� j

2 + f� j
�

� j=1


� j� j

. �13�

The fraction of enzymes that stays adsorbed �in any gap� is
obtained by summing over j. In the continuum limit, � j→�,
� j→����d�, where � is the continuous gap length and ����
is the probability distribution function �PDF� for �. We
obtain

�	̄adsorb =
2

f���0



����tanh−1� f�

2 + f�
�d� . �14�

Note that �	̄adsorb��0
����	̄adsorb���, the result that one

might expect by naively averaging Eq. �12� over the gap
distribution.

Since ���� depends on the number of enzymes depos-
ited, it is time dependent. In principle, one could calculate
how ���� changes as enzymes are adiabatically deposited.
The corresponding evolution of the sticking probability is
then given by Eq. �14�. One possible way of finding how
���� evolves is to use a mean field theory for the particle
distributions, but we leave this as the subject of a future
investigation.

In the special case where one enzyme is deposited onto a
DNA that only has guanine radicals, we can calculate ����
and hence �	̄adsorb explicitly. If the guanine radicals have a

FIG. 4. �Color online� Enzyme sticking probabilities as a function of dimen-
sionless flip rate f . The simulation data were obtained by performing single
depositions onto a DNA of length of 100 �i.e., with physical length 100 /��.
The fraction of enzymes that remain on the DNA after performing 105 trials
was recorded. Increasing the DNA length did not significantly affect the
simulation results.

FIG. 5. �a� For adiabatic enzyme depositions into a gap of size �, �̄r, the
mean conditional return time �MCRT� of an electron, averaged over the
enzyme landing position �, is recorded for different gap sizes and dimen-
sionless flip rates f . The symbols represent data from MC simulations and
the solid line represents the analytic expression from Eq. �19�. �b� For ran-
dom, uniform, adiabatic enzyme depositions onto a DNA with randomly and
uniformly distributed guanine radicals, ��̄r as predicted by Eq. �21� is plot-
ted as a function of the dimensionless flip rate f .
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number density �, then the gap lengths, on average, are 1 /�,
which corresponds to a unit dimensionless gap size �see
Eq. �5��. Hence ��=1 and the dimensionless gap sizes Y are
exponentially distributed �see Appendix D� according to

Prob�� 
 gap size 
 � + d�� = e−�d� , �15�

so we set ����=e−�. Substituting this result into Eq. �14�, we
obtain

�	̄adsorb =
e1/f Ei�1/f�

f
, �16�

where Ei�x�=�x
�e−t / t�dt is the exponential integral. This

analytic result is plotted in Fig. 4 �solid line� and is con-
firmed by MC simulations �circles�. The sticking probability
increases when either the electron-absorber density � in-
creases, the electron velocity V increases, or the flip rate F
decreases.

Equation �16� is valid only when the number of enzymes
that have stuck is much less than the initial number of oxoG
radicals. In this limit, the distribution of gap lengths will
remain approximately exponential. For the human genome
of �109 base pairs, there are approximately 104 oxoGs
present at any given time.35 In this case, we expect that
Eq. �16� should be fairly accurate for about the first dozen
depositions.

Note that 	̄adsorb �Eq. �12�� with �=1 gives the enzyme
sticking probability inside an inter-radical gap of unit length,

whereas �	̄adsorb �Eq. �16�� gives the enzyme sticking prob-
ability averaged over exponentially distributed inter-radical
gap lengths but with unit mean. Intuitively, one would expect
the boundaries defining the smaller gaps to be more efficient
at sequestering electrons than those associated with larger
gaps. However, the enhanced electron trapping by smaller
gaps, leading to otherwise increased sticking probabilities, is
compensated by a higher deposition flux into larger gaps
�large gaps collect more enzymes than small gaps�. The net
result of averaging over exponentially distributed gap sizes is
for the larger gaps to dominate and lower the overall gap-
averaged sticking probability. This is shown in Fig. 4 where

for all values of f , �	̄adsorb
	̄adsorb when �=1.

2. Mean conditional return time of electrons

We now find the mean time that a BER enzyme stays on
the DNA after its initial deposition, conditioned on its own
electron returning and knocking the enzyme off the DNA.
This quantity allows us to estimate a rate of desorption that
can be used in more coarse-grained, higher level descriptions
of the CT mechanism.

Consider depositing an enzyme into a gap of size � at
a position � satisfying −� /2
�
� /2. The probability that
the electron �e−� returns in a time tr
 t given that it returns
is

Prob�tr
t�e− returns =
Prob�tr 
 t�

Prob�e− returns�
=

Prob�tr
t�e− shoots right + Prob�tr
t�e− shoots left

Prob�e− returns�e− shoots right� + Prob�e− returns�e− shoots left�

=
1
2�0

t Q−�x = 0,t�;0,�/2 − ��dt� + 1
2�0

t Q−�x = 0,t�;0,�/2 + ��dt�
1
2�0

Q−�x = 0,t�;0,�/2 − ��dt� + 1
2�0

Q−�x = 0,t�;0,�/2 + ��dt�
. �17�

In Eq. �17�, Q−�x , t ;x0 ,�� is the leftward electron density at
position 0
x
� at time t given that the electron was re-
leased from x=x0 at t=0 �see Fig. 1�b� for the x0=0 case�.
This density comes from solving Eqs. �6� and �7� along with
the conditions �9�.

The mean conditional electron return time �r can then be
computed from

�r��;�, f� = �
0



t
�

�t
Prob�tr
t�e− returnsdt . �18�

Using Eq. �17�, �r�� ;� , f� in Eq. �18� can be found in terms

of the Laplace-transformed density Q̃��x ,s� which is given
in Eq. �A4� of Appendix A. Upon averaging �r�� ;� , f� over
the initial landing positions �, we obtain

�̄r��, f� =
2

3f

3 + f�
�f��2 + f��

tanh−1� �f�
�2 + f�

�
+

1

3f
� f� − 1 −

2

f�
log�1 + f��� . �19�

We plot �̄r�� , f� and validate Eq. �19� using MC simulations
in Fig. 5�a�. Finally, we further ensemble average �̄r over gap
lengths �. Consider many realizations of the deposition of a
single enzyme onto an infinite DNA with oxoGs whose gaps
are exponentially distributed. The average time that the en-
zyme stays adsorbed, given that its electron eventually re-
turns to knock it off, is ��̄r. The calculation of ��̄r is similar

to that of �	̄adsorb described in Sec. III A 1 but modified to
account for the fact that the number of enzymes that self-
desorb �i.e., the number of return times that are finite� de-
pends on �. If an enzyme is deposited into a gap of size �,
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the probability of self-desorbing after a finite time is given
by �see Eq. �12��

	̄desorb��, f� = 1 −
2

f�
tanh−1� f�

2 + f�
� . �20�

Therefore, the required expression for ��̄r is

��̄r�f� =
� 0

 	̄desorb��, f��̄r��, f��e−�d�

� 0
 	̄desorb��, f��e−�d�

. �21�

In the numerator of Eq. �21�, 	̄desorb�� , f��e−�d� is the frac-
tion of deposited enzymes that �i� land in a gap that has a
length between � and �+d� and �ii� self-desorb after a finite

time. In the denominator, �0
	̄desorb�� , f��e−�d� is the frac-

tion of deposited enzymes that self-desorb after a finite time.
The result �21� is confirmed by simulation data in Fig. 5�b�.

Equation �21� was derived by considering the deposition
of a single enzyme onto an infinite DNA with exponentially
distributed gap lengths. However, as is the case with Eq.
�16�, it is also approximately true for a small number of
depositions onto a finite DNA: provided the number of ox-
oGs annihilated is small compared to the total number of
oxoGs, the distribution of gap lengths is still approximately
exponential. Hence, for a given deposition rate of enzymes
per unit length onto an infinite DNA, Eq. �21� will hold
approximately for times such that the fraction of oxoGs an-
nihilated is small.

Given a deposition rate of enzymes �per unit length�, we
can estimate a desorption rate �per unit length� from Eq.
�21�. If desorption were a Poisson process, then the desorp-
tion rate koff is found from the inverse of the mean unbinding
time of the repair enzyme. Although the desorption process
in our model depends on the dynamics of electron CT �ren-
dering it to be non-Poisson�, the inverse of the ensemble
averaged conditional return time of an electron 1 / ��̄r is
nonetheless a reasonable definition for the detachment rate
koff. We expect this value of koff to be accurate as long as the
fraction of oxoGs annihilated by repair enzymes is small.
The probabilities and times relevant to electron dynamics are
summarized in Table III.

B. Colocalization of enzymes to lesions

We now consider a permanent lesion on the DNA �one
that does not annihilate upon absorption of an electron�.
Such a lesion may be bound to other enzymes and cofactors
so that it can act as a sink for multiple electrons or it can
reflect electrons. In this section, we consider lesions that can
either absorb or reflect electrons, as shown in Fig. 1�c�. We
are primarily interested in the average number of depositions
required for a repair enzyme to be adsorbed within a certain
�small� distance from the lesion.

For the sequential deposition of many enzymes onto a
DNA populated with guanine radicals and lesions, the evo-
lution of enzyme and guanine densities is not amenable to an
exact analytical solution. Therefore, our approach will be to
track enzyme-lesion distances and enzyme concentrations on
the DNA by performing MC simulations.

Each simulation consists of a series of adiabatic deposi-
tions. A deposition is simply the spontaneous appearance of a
MutY-�4Fe-4S�3+ enzyme at a randomly chosen position
along the DNA. Note that a deposition is an attempted ad-
sorption: it can result in the enzyme either sticking to the
DNA or desorbing from it. In our simulations, the number of
enzymes on the DNA can grow without bound. We do not
model the bulk dynamics for MutY-�4Fe-4S�2+ enzymes in
solution.

In our model, each enzyme that is deposited releases an
electron along the DNA. However, rather than performing
time-consuming, explicit simulations of a Broadwell process,
we exploit our analytic results to implicitly account for the
electrons. The rules for enzyme desorption and adsorption
come from the probabilities 	desorb and 	adsorb found in Eq.
�11�. Specifically, consider the deposition of an enzyme E
between two already adsorbed enzymes E1 and E2 �see Fig.
6�a��. Let the distance from E to Ei be di, i=1,2. Then the
probability of E adsorbing and knocking off Ei is �1 /2�
��1 / �1+ fdi�� and the probability of E self-desorbing is
�1 /2���fd1 / �1+ fd1��+ �fd2 / �1+ fd2���. In the case where an
enzyme is deposited between a lesion and an adsorbed en-
zyme �see Fig. 6�b��, the adsorption and desorption prob-
abilities have to be modified. If E1 is replaced by an electron-
reflecting lesion, the probability of E permanently adsorbing
without displacing E2 is zero. The probability of E adsorbing
and knocking off E2 is �1 /2��1 / �1+ fd1�� and the probability
of self-desorption is 1 /2+ �1 /2��fd1 / �1+ fd1��. If E1 is re-
placed by an electron-absorbing lesion, the probability of
E permanently adsorbing without displacing E2 is �1 /2�
��1 / �1+ fd1��, the probability of E adsorbing and knocking
off E2 is �1 /2��1 / �1+ fd2��, and the probability of self-
desorption is �1 /2���fd1 / �1+ fd1��+ �fd2 / �1+ fd2���. These
probabilities are summarized in Tables IV and V.

MC simulations were performed on a periodic domain of
size � containing a single lesion, which is equivalent to a
single finite domain with length � and lesions at x=0 and
x=�. We start our simulations with no adsorbed BER en-
zyme �MutY� but with a unit density of guanine radicals
�oxoG� whose gaps follow an exponential distribution �see
Eq. �15��. When a single enzyme is deposited randomly on

E1 E2 E2

1d d2 1d d2

lesion

(a) (b)

FIG. 6. �Color online� �a� Dependence of a new enzyme E �solid hexagon�
in between two adsorbed enzymes E1 and E2 �empty hexagons�. �b� Depo-
sition of a new enzyme E between a lesion and an adsorbed enzyme, E2.
Adsorption and desorption probabilities are given in Tables IV and V.

TABLE IV. Adsorption and desorption probabilities in Fig. 6�a� when the
enzyme E is deposited between enzymes E1 and E2.

Event E self-desorbs
E adsorbs,
E1 desorbs

E adsorbs,
E2 desorbs

Probability
1

2
� fd1

1 + fd1
+

fd2

1 + fd2
� 1

2

1

1 + fd1

1

2

1

1 + fd2
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�0,��, the positions of the two particles �either oxoGs, le-
sions, or already adsorbed enzymes� on either side are re-
corded and d1 and d2 are calculated �see Fig. 6�. Using the
probabilities in Tables IV and V, the outcome of this depo-
sition event is determined: the newly deposited enzyme ei-
ther adsorbs or desorbs due to its electron returning. Note
that if an adsorption occurs, exactly one of three other events
also has to occur: �i� a neighboring enzyme is reduced and
desorbs, �ii� a neighboring oxoG is annihilated, or �iii� an
electron is absorbed by a neighboring lesion.

Figure 7 shows density profiles obtained from our MC
simulations. In Fig. 7�a�, the depletion of guanine radicals is
greater away from lesions: a guanine radical that is close to a
lesion can, essentially, only be annihilated from one side.
Near x=0, the probability of oxoGs being annihilated from
the left by a rightward-moving electron is very small. Simi-
larly, near x=5, the probability that oxoGs are annihilated
from the right by leftward-moving electrons is also very
small.

Figure 7�b� shows that electron-reflecting lesions even-
tually prevent the buildup of enzymes near lesions. The pres-
ence of an electron-reflecting lesion increases the local self-
desorption rate. Note that the enzyme self-desorption
probability is always greater in Fig. 6�b� than it is in Fig.
6�a�—when the lesion is electron reflecting. Therefore, near
a reflecting lesion, the recruitment of enzymes by guanine
radicals has to compete with this increased self-desorption

rate. Although the density near the lesion increases with
time, for a fixed time, its value is always smaller than the
bulk value. Another way to understand the enzyme depletion
is through a particle conservation argument. Since the total
number of guanine radicals and BER enzymes on the DNA is
conserved, an increase in oxoG density near the boundaries
must correspond to a decrease in the enzyme density.

Figures 7�c� and 7�d� show density profiles near
electron-absorbing lesions. The oxoG densities in Fig. 7�c�
remain essentially unchanged from those surrounded by
electron-reflecting lesions �Fig. 7�a��. As shown in Figs. 7�b�
and 7�d�, the BER enzyme density profiles are also similar
for a small number of depositions, away from lesions. On the
other hand, Fig. 7�d� also shows that for larger deposition
numbers, the BER enzyme density near electron-absorbing
lesions increases markedly.

The total number of particles on the DNA strand can be
found by integrating the densities from x=0 to x=�. For
example, in Fig. 7�b�, the solid curve representing the en-
zyme density after one attempted deposition takes the value
of �0.12 over most of the domain and decreases slightly
near the lesions. Therefore the �average� number of enzymes
that remain adsorbed after one attempted deposition is ap-
proximately 0.12�5=0.6. This is in excellent agreement
with the solid curve in Fig. 4 and Eq. �16� for f =1 since

�	̄adsorb=e Ei�1�=0.596¯.
Figure 7 only shows the densities up to 20 deposition

attempts. When the number of depositions is much greater
than 20, all of the enzyme-seeding guanine radicals are an-
nihilated. In the absence of any electron absorbers on the
DNA, there can be no net increase in enzyme number, and
the enzyme density in Fig. 7�b� eventually saturates to unity
everywhere in the domain, identical to the initial oxoG den-
sity. Each guanine radical is eventually replaced by a BER
enzyme, so the long-time BER enzyme density mimics the
initial oxoG density. In contrast, when the lesions are elec-
tron absorbing, there are always two permanent electron ab-
sorbers in the system. In this case, the number of enzymes
can grow without bound, even when all the oxoGs are de-
pleted.

Figure 8�a� shows how enzymes converge to electron-
absorbing lesions located at x=0 and x=�=5. At any given
time, we label the m enzymes on the DNA according to their
position Ei so that 0
E1
E2
 ¯ 
Em
�. Both the num-
ber of enzymes on the DNA, m, and their positions, Ei, are
functions of n, the number of �attempted� depositions that
have occurred. We plot the quantities x1=min�E1 ,�−Em�,

TABLE V. Adsorption and desorption probabilities in Fig. 6�b� when the lesion is an electron absorber and
reflector.

Event E self-desorbs
E adsorbs,

E2 stays adsorbed
E adsorbs,

E2 adsorbed

Probability �reflecting lesion�
1

2
+

1

2
� fd2

1 + fd2
� 0

1

2

1

1 + fd2

Probability �absorbing lesion�
1

2
� fd1

1 + fd1
+

fd2

1 + fd2
� 1

2

1

1 + fd1

1

2

1

1 + fd2
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FIG. 7. �Color online� Implicit-electron MC simulations of the evolution of
��a� and �c�� mean guanine radical and ��b� and �d�� BER enzyme density
profiles after 1 �dotted�, 7 �dotted-dashed�, 14 �dashed�, and 20 �solid� en-
zyme depositions. �a� and �b� correspond to electron-reflecting lesions at
x=0 and x=�=5, and �c� and �d� are for electron-absorbing lesions. Results
were obtained from averaging 107 trials and using a flip rate of f =1.
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x2=min�E2 ,�−Em−1�, and x3=min�E3 ,�−Em−2� as functions
of deposition number n in Fig. 8�a�. When fewer than three
enzymes are adsorbed on the DNA, we define xi=�,
i=1,2 ,3. From our simulations, we find the scaling

xi � n−2/3 for i = 1,2,3 �22�

in the large n limit. For a BER enzyme to successfully
excise a lesion, we assume that it has to be within a few base
pairs of it. We set the physical enzyme-lesion distance
X1
x1 /�=5a, where a is the width of a base pair which we
take to be 0.34 nm, and estimate n. Approximately 1
in 40 000 guanine bases is a guanine radical,35 so
�= �160 000a�−1, and the number of attempted depositions
required for the closest sticking enzyme to be within five
base pairs of the lesion is n�6�106. If each deposition
takes at least 0.0005 s,39 this amounts to a total �minimum�
search time of about 50 min. Although this is a significant
reduction compared to the original 1D sliding search time
discussed in Sec. I, it is likely that MutY locates lesions even
more quickly through a combination of the CT mechanism
and facilitated diffusion along the DNA strand.

The solid curve in Fig. 8�b� shows the total number of
enzymes on the DNA as a function of the deposition number
when the lesions at x=0 and x=5 are electron absorbing.
Upon depletion of the guanine radicals �shown by the dotted
curve dropping to 
10−2�, the enzyme number increases as
O�n1/3�. The dashed curve in Fig. 8�b� shows the number of
electrons absorbed by the lesion. Initially, this is less than the
enzyme number since enzymes adsorb mainly by oxoG an-
nihilation. However, as all the radicals are used up, the
dashed curve asymptotes to the curve for the enzyme total,
indicating that the net increase in enzymes on the DNA is
due primarily to lesion-induced colocalization.

Given that the enzyme-lesion distance scales as O�n−2/3�
for electron-absorbing lesions, one can directly show that the
number of enzymes on the DNA scales as O�n1/3� through a
simple argument. If the enzyme-lesion distance is O�n−2/3� it
takes O�n2/3� attempts before an added enzyme lands closest

to the lesion. When n is large, the enzyme-lesion distance is
small and the electron released by the newly deposited en-
zyme will be absorbed. For every O�n2/3� depositions, on
average, one permanent adsorption occurs. Hence, for every
O�n� depositions, O�n1/3� adsorptions occur.

While the convergence of CT enzymes toward lesions
scales as xi�n−2/3, the convergence of passive enzymes
�those that simply adsorb onto DNA without emitting elec-
trons� scales as xi�n−1. The faster convergence of passive
enzymes40 is a consequence of linearly increasing the passive
enzyme density on the DNA. The CT mechanism, on the
other hand, prevents the recruitment of large numbers of
BER enzyme on the DNA at any given time with the total
number scaling as O�n1/3��O�n� for large n. Hence, BER
enzymes colocalize near lesions �note the maxima in the en-
zyme density occur at the lesions in Fig. 7�d��, and the CT
mechanism suppresses the wasteful buildup of enzymes in
undamaged parts of the DNA.

IV. SUMMARY AND CONCLUSIONS

We developed a mathematical model for a proposed
CT-mediated mechanism of BER enzyme colocalization to
DNA lesions. Enzymes adsorb and desorb through a CT
mechanism4,5 which we model using a stochastic Broadwell
process. Our main finding is that the CT mechanism concen-
trates repair enzymes at lesions provided the lesions are elec-
tron absorbing.

We first calculated enzyme sticking probabilities and
self-desorption rates in the absence of lesions. Our results for
an infinite, lesion-free DNA, populated with guanine radi-
cals, are summarized in Fig. 4 �which predicts the enzyme
sticking probability� and Fig. 5 �which predicts the electron’s
mean conditional return time �MCRT��. For the deposition of
a single enzyme onto an infinite DNA, the results are exact;
for a given deposition rate per unit length, we expect the
results to hold approximately provided the fraction of gua-
nine radicals �oxoGs� annihilated is small. We also explored
how enzymes colocalize to lesions using MC simulations.
Enzymes were adiabatically deposited onto a circular DNA
with a single lesion. We found that electron-absorbing le-
sions colocalize CT enzymes, while electron-reflecting le-
sions do not �Fig. 7�.

Simple facilitated diffusion is often proposed to account
for the fast search times observed in certain DNA-protein
reactions.7,8 However, Cherstvy et al.18 stated that under re-
alistic conditions, facilitated diffusion cannot occur and sug-
gested that acceleration is achieved through the collective
behavior of proteins. The CT-mediated mechanism is one
such example of collective behavior. Instead of basing the
enzyme search problem on the time for a single protein to
find its target, the CT mechanism relies on a collective
buildup of enzyme density at the lesion. Hence, issues im-
portant in facilitated diffusion theories, such as the starting
point of the enzyme relative to the lesion and the length of
the DNA, become irrelevant in the CT mechanism.

In the case where targets �lesions� are electron absorb-
ing, we find that the maximum enzyme density always oc-
curs at the permanent lesions and furthermore that the CT

FIG. 8. �Color online� �a� Convergence of repair enzymes to an electron-
absorbing lesion. The distance between the lesion and the closest, second
closest, and third closest enzymes �denoted by xj, j=1,2 ,3, respectively�
scales as O�n−2/3� for n�1 where n is the deposition number. Results were
obtained using f =1 and by averaging over 5000 trials. �b� The total number
of enzymes and guanine radicals on the DNA and the number of electrons
absorbed by the lesion as a function of deposition number after averaging
over 100 trials. The enzyme number scales as O�n1/3� for n�1. The dimen-
sionless flip rate was f =1, and the domain size was �=5. There were ini-
tially five guanine radicals present.
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mechanism maintains a low density of enzymes far from
lesions to suppress oxoGs, which are another form �albeit
less permanent� of DNA damage. In fact, after an initial tran-
sient where all oxoGs are annihilated, the density of enzymes
for most of the DNA will be of the order of the oxoG density,
which is very low �about 1 in 160 000 base pairs�. Subse-
quent enzyme depositions will colocalize only near the le-
sion. Our results show that although n�106 �attempted�
depositions are required for the concentration to build up to a
sufficient level at the lesions in order for them to be excised,
the number of enzymes actually adsorbed on the DNA is
much less, at O�n1/3��100. Although this is a significant
reduction, it is still greater than the copy number of MutY
��20�, so it is likely that the effects of 1D diffusion of MutY
are important.6

When considering the collective behavior of enzymes,
one important constraint is that the number of BER enzymes
available to participate in the search mechanism is fixed. The
copy number for MutY, in particular, is about 20,36 placing a
bound on the total number of enzymes that can be success-
fully adsorbed on the DNA strand. Thus, the CT search
mechanism is effective only if the number of oxoGs is not
significantly greater than �20. Although guanine radicals ab-
sorb electrons, thereby seeding the adsorption of BER en-
zymes, too many radicals can deplete the reservoir of BER
enzyme before they significantly concentrate to the lesions.

Although in our model there are two modes of enzyme
recruitment—oxoG mediated and lesion mediated �when the
lesion is electron absorbing�—it is the latter that colocalizes
enzymes to lesions. We re-emphasize that the initial recruit-
ment by guanine radicals can only increase the enzyme den-
sity to a level that is of the order of the initial radical density.
This density is far too low to ensure reliable excision of the
lesion. However, upon subsequent depositions, enzymes rap-
idly colocalize and the accumulation is more focused.

Although our simple model successfully predicts colo-
calization of CT BER enzymes to electron-absorbing DNA
lesions, it neglects many potentially important aspects. For
example, BER enzymes are not point particles but have a
finite size of about 10–15 base pairs. Random adsorption of
finite sized particles has been studied37 and could be used to
enhance our current model. We also neglected the sliding of
BER enzymes on DNA. Inclusion of finite size effects and
enzyme sliding into our model is likely to decrease the
search time to a lesion. The effect of other proteins on the
DNA, besides BER enzymes, is also important. These pro-
teins could physically prevent the adsorption of BER en-
zymes, absorb electrons emitted by BER enzymes, or shield
the lesion from electrons �or possibly all three�. We currently
do not know the effect of molecular crowding on the CT
model, but this topic is discussed by Li et al.38 One possible
approach to studying these more subtle attributes is to de-
velop and analyze them within coarse-grained, mass-action-
type models in conjunction with MC simulations.
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APPENDIX A: SOLUTION OF THE ONE-SIDED
BROADWELL PROBLEM

Taking the Laplace transform of Eq. �6�, we obtain

�Q̃�x,s�
�x

= MQ̃�x,s� + ���x − x0�
0

� , �A1�

where Q̃�x ,s�= �Q̃+�x ,s� , Q̃−�x ,s��T, Q̃��x ,s�
�0
Q��x , t�

�e−stdt, and

M 
 �− �s + � + f� f

− f s + � + f
� . �A2�

The solution to Eq. �A1� can be found in two separate re-
gions x�x0 and x
x0 and matches the solutions with the
appropriate jump conditions derived from integrating Eq.
�A1� over an infinitessimal segment centered about x0:

Q̃+�x0
+,s� − Q̃+�x0

−,s� = 1,

�A3�
Q̃−�x0

+,s� − Q̃−�x0
−,s� = 0.

The general solution of Eq. �A1�, Q̃�x ,s ;x0 ,��, can be ex-
pressed in the form

Q̃�x,s� = �A
� 1

c1
�e�1x + B
� 1

c2
�e�2x, x 
 x0

A�� 1

c1
�e�1x + B�� 1

c2
�e�2x, x � x0,� �A4�

where �1,2�s� and c1,2�s� are given by

�1,2�s� = � ��s + ���s + � + 2f� ,

�A5�

c1,2�s� =
f

s + � + f − �1,2�s�
.

The constants A�, B�, A
, and B
 are obtained by imposing

the Laplace-transformed boundary conditions Q̃+�0,s�
= Q̃−�� ,s�=0, which come from Eq. �9�, and the jump con-
ditions �A3�:

A
 =
c1c2e−��1+�2�x0�e�1�+�2x0 − e�1x0+�2��

�c1 − c2��c1e�1� − c2e�2��
,

B
 =
c1c2e−��1+�2�x0�e�1x0+�2� − e�1�+�2x0�

�c1 − c2��c1e�1� − c2e�2��
,

�A6�

A� =
c2e�2��c2e−�1x0 − c1e−�2x0�
�c1 − c2��c1e�1� − c2e�2��

,

B� =
c1e�1��c1e−�2x0 − c2e−�1x0�
�c1 − c2��c1e�1� − c2e�2��

.
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APPENDIX B: LIMITING CASES OF THE BROADWELL
MODEL

Upon eliminating P− from Eq. �1�, P+ satisfies

�2P+

�T2 = − 2�F + M�
�P+

�T
+ V2�2P+

�X2 − M2P+. �B1�

Similarly, eliminating P+ from Eq. �1� gives Eq. �B1� but
with P+ replaced with P−. Upon neglecting electron decay,
M =0, and Eq. �B1� simplifies to

�2P+

�t2 + 2f
�P+

�t
=

�2P+

�x2 , �B2�

where we have used the nondimensionalization �5� and the
nondimensional flip rate f =F / ��V�. When f �1, we neglect
the first term in Eq. �B2� to obtain a diffusion equation with
diffusivity 1 / �2f�. When f �1, we neglect the second term to
obtain a wave equation with unit wave speed. These limits
correspond to a diffusive and a ballistic electron motion,
respectively.

APPENDIX C: ADIABATIC APPROXIMATION

Since our stochastic analysis does not account for
electron-electron interactions, we assume adiabatic deposi-
tion of BER enzymes. An adiabatic deposition of enzymes
occurs when each enzyme is deposited sufficiently slowly so
that the emitted electron completes its motion before the
deposition of the next enzyme. At any given time, there is at
most one traveling electron on the DNA.

Consider Fig. 9. Two enzymes are deposited on either
side of a guanine radical with the left enzyme further away.
For this example, assume that the electrons are always emit-
ted toward the radical. In an adiabatic deposition, the depo-
sition of the right enzyme occurs after the oxoG is annihi-
lated. The final configuration consists of an adsorbed right
enzyme and a desorbed left enzyme. In a nonadiabatic depo-
sition, the right enzyme can be deposited before the annihi-
lation of the oxoG. The final enzyme configuration depends
critically on the time between the first and second deposi-
tions. If this time is long �a “late” second deposition�, the

oxoG is annihilated by the rightward electron and the final
configuration is identical to the adiabatic case. If the inter-
deposition time is short �an “early” second deposition�, the
leftward electron can annihilate the oxoG first and the final
configuration corresponds to an adsorbed left enzyme and a
desorbed right enzyme.

For a deposition to be adiabatic, the electron dynamics
must be much faster than that of enzyme depositions:

�V,F �
kon

�
, �C1�

where � is the density of guanine radicals and kon is an in-
trinsic enzyme deposition rate per unit length of DNA. Thus,
the adiabatic limit arises when �2V /kon→ and �F /kon

→, with f =F / ��V� fixed �to keep the overall probabilities
	adsorb ,	desorb unchanged in Eq. �11��. Note that f can still
be small in an adiabatic deposition, as is the case in Fig. 9.

APPENDIX D: GUANINE GAP DISTRIBUTION

Consider a lattice made up of n sites on which guanine
radicals can randomly appear at a rate of � radicals per unit
time T per lattice site. Each lattice site can hold at most one
guanine radical. The size of the gap between two guanine
radicals is the number of empty sites between them. Let
N�m ,T� denote the total number of gaps of size m �measured
in lattice sites� at time T. Then N�m ,T� obeys37

1

�

�N�m,T�
�T

= 2 �
m�=m+1

n

N�m�,T� − mN�m,T� . �D1�

We will take the continuum limit of Eq. �D1� when the num-
ber of sites becomes infinite, the guanine radicals become
points on a line, and the gap length becomes a continuous
random variable, taking any value between 0 and . We aim
to calculate the PDF of the gap length given a fixed average
density of guanine radicals �.

Let L0 be the total length of the lattice and a be the width
of a single lattice site so that L0=na. Furthermore, the time
taken for G guanines to appear on the lattice is T0, where
n�T0=G and �=G /L0.

Now we define dimensionless variables y, t, and
p= p�y , t� where

y = �am , �D2�

t = T/T0, �D3�

p = N/�n�T� = N/�Gt� . �D4�

Note that 0
y
 and that for large G, Gt is approximately
the total number of gaps at time t; hence p in Eq. �D4� is the
fraction of gaps that have size N at time t.

The desired continuum limit is now obtained by taking
n→ and a�→0 so that y in Eq. �D2� becomes a continuous
variable ranging from 0 to  and G ,L0→: the number of
radicals that appear and the DNA length become infinite in
such a way that �
G /L0 stays a constant. When these limits
are taken, p�y , t� becomes the probability of finding a gap of
length y at time t and �0

p�y , t�dy=1. Upon setting q�y , t�
= tp�y , t�, we obtain the integrodifferential equation

FIG. 9. �Color online� Possible outcomes from an adiabatic and a nonadia-
batic deposition of a pair of repair enzymes. The left enzyme is always
deposited first but is further away from the guanine radical than the right
one. The flip rate F satisfies F��V so that the electron motion is ballistic.
The final configuration of a nonadiabatic deposition depends critically on
the time between the first and second depositions.

235101-12 Fok, Guo, and Chou J. Chem. Phys. 129, 235101 �2008�

Downloaded 16 Jan 2009 to 131.215.225.9. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�q

�t
= 2�

y



q�y�,t�dy� − yq�y,t� . �D5�

The Laplace transform in t of Eq. �D5� is

sq̃�y,s� = 2�
y



q̃�y�,s�dy� − yq̃�y,s� , �D6�

where q̃�y ,s�=�0
e−stq�y , t�dt and we have used the initial

condition p�y ,0�=0. Differentiating Eq. �D6� with respect to
y gives

dq̃�y,s�
dy

+
3q̃�y,s�
�y + s�

= 0, �D7�

which is solved by q̃�y ,s�=A�s� / �y+s�3. To determine the
integration constant A�s�, we take the y→0 limit of Eq. �D5�
to obtain

� �q

�t
�

y=0
= 2�

0



q�y�,t�dy� = 2t , �D8�

where the last equality arises from the normalization of
p�y , t�. The Laplace transform of Eq. �D8� gives q̃�0,s�
=2 /s3. Hence, q̃�y ,s�=2 / �y+s�3, resulting in q�y , t�= t2e−yt

and p�y , t�= te−yt. Therefore, if Y is the nondimensionalized
gap length at t=1, we find

Prob�y � Y � y + dy� = e−ydy . �D9�
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