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We analyze the effect of demand uncertainty, as measured by entropy, on expected costs in a stochastic inven-

tory model. Existing models studying demand variability’s impact use either stochastic ordering techniques

or use variance as a measure of uncertainty. Due to both axiomatic appeal and recent use of entropy in the

operations management literature, this paper develops entropy’s use as a demand uncertainty measure. Our

key contribution is an insightful proof quantifying how costs are non-increasing when entropy is reduced.
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1. Background

Entropy is a measure of uncertainty strongly advocated by Jaynes (2003) and originally popularized

by Shannon (1948). Let D be a discrete random variable with probability mass function p =

(p1, ..., pN), then entropy H(p) is defined as

H (p1, ..., pn) =−
n∑

i=1

pi log(pi). (1)

A good introduction to entropy as a measure of uncertainty can be found in Abbas (2006). Maximiz-

ing Eq. (1) subject to constraints based on existing knowledge (e.g. the mean, support, moments,

etc.) is known as the maximum entropy principle (Jaynes 1957), and is considered a uniquely

correct method for inductive inference (Shore and Johnson 1980, Johnson and Shore 1983).

Our work in this paper solidifies the theoretical connection between entropy as a measure of

demand uncertainty and expected loss. Despite the concept of entropy being around for over 60

years, the operations management literature has been slow to adopt this uncertainty measure. Eren

and Maglaras (2009) comment that “to the best of our knowledge, the operations management and

revenue management literatures have not explored the use of ME (maximum entropy) techniques

to approximate unknown demand or willingness-to-pay distributions.” Recently, however, entropy

is being explored. References to entropy within both operations management (see for example

Shuiabi et al. 2005, Perakis and Roels 2008, Eren and Maglaras 2009, Andersson et al. 2011) and

related contexts are increasing. This includes the contexts of pricing models (Lim and Shanthikumar
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2007), portfolio optimization (Glasserman and Xu 2013), and discrete optimization (Nakagawa

et al. 2013). Of particular interest, Andersson et al. (2011) numerically demonstrate promising

performance characteristics of using entropy-based demand distributions for ordering decisions; our

work complements this insight by theoretically connecting entropy and loss in a similar setting.

2. Entropy Versus Alternative Demand Uncertainty Measures

Existing theoretical connections between uncertainty and supply/demand mismatch costs are often

based on a measure of spread or on stochastic ordering techniques. In this work we use entropy to

connect uncertainty and expected loss in a way that is intuitively satisfying, facilitates numerical

evaluation of uncertainty’s effects on mismatch costs, and is also theoretically justified. In addi-

tion, it enables the exploration of uncertainty reduction without restricting expected demand to

remain constant as uncertainty is increased/decreased. For example, a retailer reducing demand

uncertainty by transitioning from hi-lo pricing to everyday low pricing will most certainly see a

change in expected demand (see discussion in Lee et al. 1997).

Variance is arguably the most preferred measure of demand uncertainty found in the inventory

management literature (see for example Ridder et al. 1998, Taylor and Xiao 2010, Kwak and

Gavirneni 2011). While intuitively, variance provides meaning regarding the spread of a distribution

and hence, uncertainty; problems arise when one tries to operationalize variance as a measure of

uncertainty (Jaynes 2003, p.345). In an often cited example, imagine a six-sided die with a known

bias such that the expected value of a roll is 4.5 instead of 3.5. How can we assign probabilities to

the six outcomes in this clearly under-specified problem? Following Jaynes’ logic, we should pick

the probability assignment implying maximal uncertainty subject to the problem’s constraints. In

other words, if every feasible probability assignment were to be evaluated by a numerical measure of

uncertainty, then one chooses the assignment that has the largest measurement; to choose otherwise

would imply additional information beyond that which is available. Thus, applying variance as an

uncertainty measure to the six-sided die problem, assign probability, pi, by maximizing Var({pi}) =∑6

i=1 pi(i− 9/2)2 subject to
∑6

i=1 pi = 1 and
∑6

i=1 ipi = 9/2. Solving this maximization problem,

all probability is placed on the outcomes of one and six with p1 = 0.3 and p6 = 0.7. Unfortunately,

this extreme placement of probabilities leads to dissatisfaction with the implied results. Shouldn’t

some probability remain on outcomes of 2, 3, 4, and 5? Variance as an uncertainty measure leads to

these counter-intuitive results and thus, maximal uncertainty and maximal variance are not equal.

More intuitive results are found when entropy is used in place of variance. Mathematically, we

maximize −
∑6

i=1 pi log pi subject to
∑6

i=1 pi = 1 and
∑6

i=1 ipi = 9/2. The Lagrange function is

L≡−
6∑

i=1

pi log pi−λ1

(
6∑

i=1

pi− 1

)
−λ2

(
6∑

i=1

ipi− 9/2

)
, (2)
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where λ1 and λ2 are lagrange multipliers and log is always the natural logarithm in this paper.

Maximizing L, we find maximum uncertainty corresponds to p1 ≈ 5.4%, p2 ≈ 7.9%, p3 ≈ 11.4%,

p4 ≈ 16.5%, p5 ≈ 24.0%, and p6 ≈ 34.7%. Outcomes of 2 through 5 are no longer an impossibility

and much more in line with what common sense might dictate.

Besides entropy and variance (see Ebrahimi et al. 1999, for further comparison of entropy and

variance), other alternative uncertainty measures exist. A popular alternative to study the effects

of demand variability is to use stochastic ordering criteria as done in Song (1994), Jemäı and

Karaesmen (2005), Song et al. (2010), and Xu et al. (2010). In all of these works, the authors con-

firm the intuition that uncertainty generally leads to increased costs. Though, specific cases where

larger uncertainty is associated with reduced costs can also be found (Ridder et al. 1998). The

previously mentioned works use of stochastic ordering lead to qualitative insight, but do not facili-

tate numerical connection of uncertainty and mismatch costs. Gerchak and Mossman (1992) enable

more numerically driven computations involving uncertainty through use of the mean preserving

transformation. Unfortunately, the mean preserving transformation, like the previously mentioned

stochastic ordering techniques, assumes uncertainty reduction never leads to changes in expected

demand. Common sense requires expected demand changes may indeed be a possible outcome of

a demand uncertainty reduction effort; otherwise, why do it? Hence, the extant demand variabil-

ity literature is largely void of a method of measuring uncertainty that enables us to numerically

relate uncertainty and expected mismatch costs, is consistent with common sense, and provides

quantifiable evaluation of uncertainty’s effect on expected loss.

Risk measures such as VaR (Value-at-Risk) and ES (Expected Shortfall) are common concepts

in asset management and portfolio theory. The VaRq is calculated so that with probability q

(sometimes called a confidence level), the portfolio’s value will not exceed the VaR. For example,

the q = 95% VaR is only exceeded by a portfolio of assets 5% of the time. The expected shortfall

is an average of the VaRq, restricted to values of q close to 1. To calculate these risk measures,

one starts with a probabilistic model for the assets and computes the likelihood of the portfolio

having a certain value, thereby quantifying the risk. By treating the stochastic inventory problem

with portfolio theory, we can highlight the differences between risk measures and entropy. Given

{pi} that specify the stochasticity in demand, underage/overage costs and an ordering strategy,

the VaR and ES could be computed. However, the demand entropy is simply −
∑

i pi log pi. It is

independent of underage/overage costs and ordering strategy. Rather than giving a dollar-amount

estimate for the inventory’s value (with a certain probability), entropy only quantifies uncertainty

in the demand for stock. It is more similar to the confidence level ‘q’ in VaRq, rather than the VaR

itself: entropy reflects the newsvendor’s uncertainty in the same way that the q in VaRq reflects

the portfolio manager’s confidence level.
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Our use of entropy and its comparison to variance connotes mathematical risk. However, entropy

is more a measure of randomness than risk; its value is independent of preferences among potential

outcomes of demand (Szegö 2005). This independence property proves desirable as a decision maker

achieves less uncertainty through information acquisition efforts (e.g. focus groups, expert opinion,

etc.) and not better demand outcomes. A reduction in a risk measure, on the other hand, would

quantify a reduction in the “likelihood of loss or less than expected returns” (see McNeil et al.

2010, Ch. 1). Our work here connects an uncertainty measure to expected loss and hence, its main

purpose is to formalize the intuitive relationship that uncertainty tends to lead to less desirable

outcomes. Our goal is to facilitate information valuation, whereas a risk-centric focus in this setting

is more geared towards optimizing ordering decisions (see related discussion in Choi et al. 2011,

and refences therein).

3. Entropy and Expected Loss

In this paper, we quantify the relationship between expected supply/demand mismatch costs and

entropy in the context of a general stochastic inventory problem. We commence our analysis defining

maximal uncertainty and subsequently examine the effects of reducing uncertainty. Consider the

loss matrix A ∈ R+N×N
whose elements represent the expected loss associated with N possible

ordering decisions and N possible outcomes (e.g. demand realizations). An ordering decision j ∈

{1,2, . . . ,N} is chosen such that the loss, Lj(p), is minimized

Lmin(p) = min
1≤j≤N

qT
j Ap, (3)

where demand distribution p= (p1, p2, . . . , pN) is unknown, and qj is the jth unit (column) vector

representing an order quantity of j units.

The determination of the optimal order quantity j∗ and associated loss Lj∗(p) requires specifi-

cation of the probability distribution p. Since, we do not know p and any of an infinite number

of N -tuple probabilities (p1, p2, . . . , pN) may be valid representations of p, we find the p consistent

with maximal uncertainty via the principle of maximum entropy: maximize
∑N

i=1 pi log pi, subject

to p1 + p2 + ... + pN = 1, with the unique solution p1 = p2 = ... = pN = 1/N . The corresponding

expected loss is Lmin(e/N) = qT
j∗Ae/N where e is the vector consisting of all 1s.

With maximal uncertainty (i.e. entropy) defined, we can now value expected loss at reduced

levels of entropy. To relate uncertainty to loss, we define

S(h)≡

{
(p1, . . . , pN) :H(p) = h ,

N∑
i=1

pi = 1 , 0< pj < 1, j = 1, . . . ,N

}
, (4)

where H(p) = H(p1, . . . , pN) = −
∑N

i=1 pi log pi. For a given entropy level h, Eq. (4) yields all N -

tuples (p1, p2, . . . , pN) that are consistent with this level of uncertainty.
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Besides axiomatic derivation as a measure of uncertainty, entropy may also be derived via combi-

natorial arguments (Niven 2007). Hence, all N -tuple’s of equal entropy are considered equiprobable.

The expected loss subject to the constant entropy constraint H(p1, p2, . . . , pN) = h is therefore an

average over all possible N -tuples that lie on S:

E [h]≡E[Lmin(p);S(h)] =

∫
S(h)
Lmin(p)ds∫
S(h)

ds
. (5)

Note that (5) is actually an expectation of expected losses.

Some isoentropy surfaces for the N = 3 case are shown in Figure 1. For the general N -decision

case, the constant h isoentropy surfaces are N−2 dimensional hypershells lying in the N−1 dimen-

sional simplex
∑N

i=1 pi = 1, 0< pi < 1. In Figure 1(a) we see that for values of h near the maximal

value log 3, the isoentropy contour is approximately circular, but for smaller values, they become

more triangular. The contours are also geometrically symmetric in p1, p2 and p3, as expected.

In Figure 1(b), we show that for different values of h, the isoentropy contour can pass through

different “loss regions” (separated by the thin red lines) with different optimal order quantities

(OQs). Loss region D2 consists of all 3-tuples (p1, p2, p3) where an OQ of 2 gives the smallest loss.

In loss regions D1 and D3, OQ of 1 and 3 give the smallest loss. When h= log 3 – corresponding to

maximal uncertainty – the optimal decision would be to order 2 units. However, after uncertainty

reduction efforts occur so that h= 1.07 (say), the potential probability distribution consistent with

that given level of uncertainty may be any point on the dotted iso-entropy contour. Since, the

entire iso-entropy curve lies completely in region D2 where ordering 2 units is optimal, then any

money or effort spent on reducing uncertainty from h= log 3 to h= 1.07 is essentially wasted as the

optimal OQ remains unchanged. However, when h is further decreased to h= 1, there are points on

the contour corresponding to a change in decision. As the contour further expands (as h decreases)

and passes through different loss regions, on average, the expected loss decreases. We formalize

this crucial relationship between uncertainty (characterized by h) and expected loss in Theorem 1,

§4. However, before we prove the main theorem, we prove some results concerning the geometry of

isoentropy surfaces and set up some relevant notation pertinent to the theorem. We prove

Lemma 1. Let S(h) be defined in (4). Then S has the following properties:

1. When h= logN , S = {e/N}.
2. For a point p= (p1, . . . , pN)∈ S, the normal vector of S at p is proportional to

r≡ 1

N

(
N∑
i=1

log pi

)
e− (log p1, log p2, . . . , log pN)T . (6)

Proof Proofs for all lemmas are provided in the appendix.

We now define a loss region. The aim is to partition the “belief space” [0,1]N into N loss regions

where the index of the region corresponds to the optimal order quantity.
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Figure 1 (a) Isoentropy contours for h = log 3,1.09,1.05,1.0,0.95 and 0.8, as defined by Eq. (4). (b) Loss regions

(for a symmetric absolute linear loss function) and isoentropy contours for h = log 3 (cross), h = 1.07

(dotted curve) and h = 1 (thick solid curve). OQ = Order Quantity.

Definition 1. For a given loss matrix A∈RN×N , let aT
i be the ith row. Then the loss regions

are defined recursively as

D1 =
{
p | aT

1 p≤ aT
mp, 1<m≤N

}
, (7)

Dj =
{
p /∈D1 ∪ . . .∪Dj−1 and aT

j p≤ aT
mp, 1≤m≤N,m 6= j

}
, j = 2, . . . ,N. (8)

Lemma 2. The “belief space” p = (p1, p2, . . . , pN) ∈ [0,1]N is partioned into N loss regions

D1,D2, . . . ,DN where the Dj are defined in (7) and (8).

Corollary 1. Within region Dj, the decision to order j units gives the smallest loss (though

not necessarily uniquely):

Lmin(p) = min
1≤k≤N

Lk(p) = aT
j p when p∈Dj, (9)

4. N-DECISION CASE: CONNECTING ENTROPY AND
EXPECTED LOSS

The following theorem formalizes how entropy affects expected loss and confirms that expected loss,

over all possible demand distributions representing a given level of uncertainty, is non-increasing

as uncertainty is reduced.

Theorem 1. Consider the N -decision problem where the rows of the loss matrix A∈RN×N are

aT
i , i= 1, . . . ,N . Then the expected loss

E [h]≡E[Lmin(p);S(h)] =

∫
S(h)
Lmin(p)ds∫
S(h)

ds
, Lmin(p) = min

1≤j≤N
aT
j p, (10)

satisfies

E ′[h]≥ 0, when 0<h< logN, (11)

where S(h) is defined in (4).
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Proof of Theorem 1 From lemma 1 part 1, when h→ logN−, S→{e/N}. Let J be the (unique)

loss region containing e/N . For this belief, the optimal decision is to order J units:

aT
J e≤ aT

j e, j = 1, . . . ,N. (12)

Furthermore, for p∈Di, i 6= J , an order quantity of i units gives a loss smaller than or equal to an

order of J units:

p∈Di⇔wT
i p≤ 0, wi ≡ ai−aJ . (13)

Now we divide our analysis into two cases. Either S(h) lies entirely within DJ or it lies in ≥ 2

different loss regions.

In the first case, E [h] =
aTJ

∫
S(h) pds∫
S(h) ds

. Geometrically,
∫
S(h)

pds/
∫
S(h)

ds is the center of mass of an

(N − 2)-dimensional shell of points in S(h). Because the set S(h) is symmetric in the probabilities

p1, . . . , pN and
∑N

i=1 pi = 1, we must have
∫
S(h)

pds/
∫
S(h)

ds = e/N for all h such that S(h) lies

entirely within DJ . Therefore E [h] = aT
J e/N ⇒E′[h] = 0 and the theorem is proved.

In the second case, S(h) is not contained only in DJ . Instead, different parts of S lie in different

loss regions. The indices of these loss regions form a subset of the integers I ⊆ {1,2, . . . ,N}. Defining

Sj(h) = {p : p∈ S ∩Dj}, j ∈ I, we can partition S(h) as S(h) =
⋃

j∈I Sj(h). Therefore, we have

E [h] =

∑
j∈I

∫
Sj
aT
j pds∫

S
ds

,

=

∫
SJ

aT
Jpds∫

S
ds

+

∑
j∈I\{J}

∫
Sj
aT
Jpds∫

S
ds

−

∑
j∈I\{J}

∫
Sj
aT
Jpds∫

S
ds

+

∑
j∈I\{J}

∫
Sj
aT
j pds∫

S
ds

,

=

∫
S
aT
Jpds∫

S
ds

+

∑
j∈I\{J}

∫
Sj

(aj −aJ)Tpds∫
S

ds
,

= aT
J e/N +

∑
j∈I\{J}

∫
Sj(h)

wT
j pds∫

S(h)
ds

, (14)

using the definition of wj in (13). We can see from Eq. (14) that any deviation in E [h] from aT
J e/N

arises from parts of the isosurface lying outside of DJ . Upon taking the derivative,

E ′[h] =

∑
j∈I\{J}

∫
Sj(h)

βn̂ · ∇(wT
j p)ds∫

S(h)
ds

, (15)

where n̂ = r/|r| is the unit normal in the direction of increasing h on S(h) and r is defined in Eq.

(6). In the appendix, we give an explicit derivation of (15) and the definition of β. We also show

that β > 0. Since S(h) only includes points 0< pj < 1, j = 1, . . . ,N , r is always well-defined for all

points on S.

Consider any of the integrands in (15) and note that n̂ ·∇(wT
j p) and r ·∇(wT

j p) have the same

sign. We now show that r · ∇(wT
j p) is positive for any j. Since the denominator in (15) is always

positive and β > 0, this is equivalent to showing that E ′[h]> 0.
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Let wjk be the kth component of wj where wj is defined in (13) and let p∈ Sj. Then

r · ∇(wT
j p) = −

N∑
i=1

log(pi/µ)wji, µ=

(
N∏
j=1

pj

)1/N

,

≥
N∑

k=1

(1− pi/µ)wji,

=
N∑
i=1

wji−
1

µ

N∑
i=1

wjipi,

≥ 0,

using
∑N

i=1wji = (aj − aJ)Te ≥ 0 from (12), −
∑N

i=1wjipi ≥ 0 from (13) and the fact that the

geometric mean of the probabilities µ> 0. Hence E′[h]≥ 0 and the theorem is proved. Q.E.D.

The intuitive notion that uncertainty is the driver of expected loss in this context is now mathe-

matically demonstrated. The proof makes few restrictions on the loss matrix. As such, it validates

the appeal of entropy as a measure of uncertainty beyond the context of the demand uncertainty

reduction studied here. In addition, there is a subtle implication contained within the proof that

is worth pointing out. When starting at maximal uncertainty, the expected loss does not decrease

immediately as one becomes more certain. One must sufficiently reduce uncertainty to a point

where the loss-minimizing decision may potentially change before any benefits of uncertainty reduc-

tion can be expected. In common sense terms, do not pursue uncertainty reduction if it is not going

to change your decision.

Theorem 1 establishes a link between a given level of uncertainty (entropy h) and the expectation

of expected loss over a belief space (the surface S(h)). This is in contrast to linking uncertainty and

expected loss for a particular N -tuple of probabilities. As is the case with variance or coefficient of

variation as uncertainty measurements (see examples in Ridder et al. 1998, Jemäı and Karaesmen

2005), entropy can be reduced and lead to an increased expected loss. For example, assume an

N = 3 problem with the following loss matrix:

Aij =

{
co(i− j), if j < i,
cu(j− i), if j ≥ i, (16)

where co and cu represent the per unit overage and underage costs, respectively, for the standard

newsvendor problem (Porteus 2002). A reduction in entropy occurs if p1 = 0.3, p2 = 0.3, p3 = 0.4 are

new beliefs compared to the maximum entropy belief of p1 = p2 = p3 = 1/3. However, the expected

loss increases from $33.33 to $35.00 Adam: what are the overages and underages for these

dollar amounts?. This underscores the point that Theorem 1 refers to the expectation of loss

over all N -tuples corresponding to a given level of uncertainty.
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5. CONCLUDING REMARKS

This paper explores the use of entropy as a measurement of demand uncertainty and places the

relationship between demand uncertainty and expected loss on more firm theoretical footing. In

developing the main theorem of this paper, intuition about uncertainty is developed and some

advantages of entropy as compared to variance as an uncertainty measure are revealed. The intuitive

notion that supply/demand mismatch costs are driven down by decreasing uncertainty is now

confirmed in this setting. In addition, one notices that at any given level of uncertainty expected

demand is not artificially forced to be constant for comparison purposes and multiple possible

distributions are now consistent with any specified level of uncertainty. Through both theoretical

and intuitive insight, entropy as an uncertainty measure provides results that contrast with those of

(Ridder et al. 1998, Lemma 3) where larger demand variability, under the assumption of constant

mean demand, is sometimes associated with higher costs.

Appendix A: Mathematical Proofs

A.1. Proof of Lemma 1

1. p1 = p2 = . . .= pN = 1/N certainly satisfies −
∑N

i=1 pi log pi = logN and
∑N

i=1 pi = 1 so e/N ∈ S(logN).

Now we show this is the only point in S(logN). Consider maximizing−
∑N

i=1 pi log pi subject to the constraint∑N

i=1 pi = 1. Let

L(p1, . . . , pN) =−
N∑
i=1

pi log pi−λ

(
N∑
i=1

pi− 1

)
. (17)

Taking ∂L
∂pi

= 0, we find that pi = 1/N . Furthermore, ∂2L
∂pi2

=−1/pi < 0 so L is strictly concave for all pi and

p1 = p2 = . . .= pN = 1/N is the unique global maximizer. Therefore e/N is the only point in S(logN).

2. For the unconstrained isoentropy surface H(p1, p2, . . . , pN−1, pN) = −
∑N

i=1 pi log pi the normal ∇H is

given by

(∇H)j =−(log pj + 1), j = 1, . . . ,N. (18)

To find r, ∇H must be projected onto the hyperplane p · e = 1. Recall that projection of a vector v onto

a plane with unit normal m̂ is given by (I − m̂m̂T )v and P ≡ (I − m̂m̂T ) is the projection matrix. For

m̂ = e/
√
N , the projection matrix is given by

Pij =

{
1− 1/N if i= j,
−1/N if i 6= j.

(19)

After some calculation, we find that

r ≡ P∇H =

{
1

N

(
N∑
i=1

log pi

)
e− (log p1, log p2, . . . , log pN)T

}
. Q.E.D. (20)
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A.2. Proof of Lemma 2

To show that [0,1]N is partitioned by D1, . . . ,DN , we must show that every p ∈ [0,1]N belongs to exactly

one loss region. For any point p ∈ [0,1]N in the belief space, the loss corresponding to an order quantity of

k units is given by aTkp. In particular, there will always be an order quantity that gives the smallest loss,

though not necessarily uniquely. Assume first that this order quantity is unique; let this quantity be i. Then

we have

aTi p< aTj p, i 6= j. (21)

If i= 1, then p ∈D1 by (7). If i > 1, then clearly p /∈D1, . . . ,Di−1. So by (8), p ∈Di. Now assume that the

optimal order quantity is not unique and that the M > 1 order quantities i1 < i2 < . . . < iM all yield the

smallest loss. Then

aTi1p= aTi2p= . . .= aTiMp, and aTi p< aTj p, i∈ {i1, i2, . . . , iM}, j /∈ {i1, i2, . . . , iM}. (22)

From (7) and (8), loss regions with smaller indices are defined before regions with larger indices. So p∈Di1

and p is uniquely assigned to the ith1 loss region. Q.E.D.

A.3. Derivation of Eq. (15)

Lemma 3. For a differentiable function f(p) and the contour S(h) defined in (4), we have

1.
d

dh

∫
S(h)

f(p)ds=

∫
S(h)

βn̂ · ∇fds, (23)

where β =−(n̂ ·b)−1 > 0, bj = 1 + log pj and n̂= r/||r|| with r defined in (6).

2.
d

dh

(∫
S(h)

f(p)ds∫
S(h)

ds

)
=

∫
S(h)

βn̂ · ∇fds∫
S(h)

ds
. (24)

Proofs 1. Using the definition of the derivative, we have

d

dh

∫
S(h)

f(p)ds = lim
δh→0

1

δh

[∫
S(h+δh)

f(p)ds−
∫
S(h)

f(p)ds

]
, (25)

= lim
δh→0

1

δh

∫
S(h)

[f(p+ δp)− f(p)]ds. (26)

Since the contour S(h+δh) consists of points p∈ S(h) advected along the normal direction of S(h), p+δp∈
S(h+ δh) for some δp∝ n̂. We now calculate δp explicitly. Without loss of generality, we can take

δp= β(δh)× n̂, (27)

for some scalar β. Since p+ δp∈ S(h+ δh),

−
N∑
i=1

(pi + δpi) ln(pi + δpi) = h+ δh, (28)

⇒−
N∑
i=1

(lnpi + δpi/pi + . . .)(pi + δpi) = h+ δh. (29)

But since p∈ S(h), to leading order, (29) reduces to

−
N∑
i=1

δpi[1 + lnpi] = δh=⇒−δp ·b = δh, (30)
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where bj = 1 + lnpj . Substituting (27) into (30), we deduce that

β =− 1

n̂ ·b
, (31)

and (26) gives
d

dh

∫
S(h)

f(p)ds= lim
δh→0

1

δh

∫
S(h)

δp · ∇fds=

∫
S(h)

βn̂ · ∇fds. (32)

The scalar β > 0 since

β =−(n̂ ·b)−1 =− ||r||
r ·b

, (33)

and with xi ≡ lnpi, one can easily show that

−r ·b=

N∑
i=1

[
xi−

(∑N

j=1 xj

N

)]2
> 0, (34)

using the definition of r in (6).

2. Using the result from part 1. of this lemma,

d

dh

(∫
S(h)

f(p)ds∫
S(h)

ds

)
=

∫
S(h)

βn̂ · ∇fds
∫
S(h)

ds−
∫
S(h)

f(p)ds
∫
S(h)

βn̂ · ∇(1)ds(∫
S(h)

ds
)2 , (35)

=

∫
S(h)

βn̂ · ∇fds∫
S(h)

ds
. (36)

Q.E.D.
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