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Abstract

Generalizations of the Central Limit Theorem to N dependent random variables

often assume that the dependence falls off as N → ∞. In this paper we present an

example from mathematical finance where convergence is independent of N . Specif-

ically, we consider N � 1 dependent Bernoulli variates that represent N loans and
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probabilistic dependence among loans is based on an underlying economic model for

default. A simple model for correlated default is the Vasicek Asymptotic Single Risk

Factor (ASRF) framework. Our results showcase an example of “fast” convergence of

dependent variates to this limiting non-normal distribution with rate O(N−1).

Keywords: Central Limit Theorem; Dependent Random Variables; Credit Portfolio; Va-

sicek;

AMS Classifications: 60F05, 60E05; 91G10.

1 Introduction

A fundamental result in probability theory is the Central Limit Theorem (CLT) (Gnedenko

et al., 1954; Petrov, 2012; Feller, 1971) which finds numerous applications in statistical

physics, engineering and operations research. DeMoivre put forth the first version of the

CLT, proving it for the case of independent Bernouilli random variables. Laplace generalized

the theorem to binomial distributions in 1812, and then to general distributions; however, a

rigorous proof of a general Central Limit Theorem was not obtained until the 20th century

by Alexander Liapounoff. One form of the theorem can be stated as:

Let X1, X2, · · · , XN be a sequence of independent and identically distributed random

variables, each having mean µ1 <∞ and variance σ2 <∞. Then the distribution of WN ≡
X1+...+XN−Nµ1√

Nσ
tends to a unit normal distribution as N →∞. Specifically, if FWN

(x) is the

CDF of WN , then

lim
N→∞

max
−∞<x<∞

|FWN
(x)− Φ(x)| = 0 (1)

where Φ(x) is the CDF of a standard normal distribution.

Many other mathematicians have also dedicated their energies to studying the conver-
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gence rate of WN : what is the error in approximating WN with a normal random variable?

Berry (1941) and Esseen (1942) independently calculated the bound for the error in the CDF,

thereby quantifying the “rate” at which WN tends to normality. The Berry-Esseen Theorem

states that for −∞ < x <∞,

|FWN
(x)− Φ (x)| ≤ kµ3/µ2

σ
√
N

, (2)

for some constant k, and µ2, µ3 are the absolute second and third moments of Xk, assumed

to be non-zero. The
√
N in the denominator of (2) implies that the convergence of FWN

to

a normal CDF occurs with rate O(N−1/2).

The basic version of the CLT assumes that variates are independent and identically

distributed (iid) with finite second moment. Researchers have also found CLT-type results

when variates are not iid. For example, Lindeberg proved a more general version of the CLT

for non-identically distributed, independent random variables (Le Cam, 1986). However, less

is known about the convergence of variates that are not independent. Here, the main goal is

to find the conditions under which summands converge to the attractor (Tikhomirov, 1981)

and characterizing the dependence structure of the variates becomes crucial. Conditions such

as strong mixing (Rosenblatt, 1956) and m-dependence (Stein et al., 1972) give mathematical

rigor to the notion that summands must become “less dependent” as N gets large.

In this paper we present a simple case of N dependent Bernoulli random variables where

we can easily calculate the limiting (non-normal) distribution. The convergence of such

random variables finds applications in credit portolio theory where Bernoulli models for

correlated default are common. The dependence structure is independent of N and stems

from an underlying economic model. We confirm that the limiting distribution is the one

derived by Vasicek (1987) in the Asymptotic Single Risk Factor (ASRF) framework. The

CDF for the ASRF – and attractor for the dependent Bernoulli variates – is a composition of

an error function with a scaled and shifted inverse error function. Using results from Esseen
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and Laplace’s method, we show that the rate of convergence to the ASRF is O(N−1).

2 A Family of Dependent Bernoulli Variables

2.1 Background on Credit Portfolios

A credit portfolio is a group of loans or lines of credit issued by a bank or financial institution

(Bluhm et al., 2016). Such portfolios can generate interest, but this aspect of the portfolio is

ignored in the following analysis which focuses on the loss incurred due to borrower default. A

default occurs when the assets of a borrowing company in the portfolio fall below a threshold

level and they are unable to pay back the loan.

When a borrower defaults on the loan, the lender incurs a loss. In some cases, the lender

may recuperate a percentage of the loan, so the loss is regarded as a fraction of the amount

lent. For N loans, define Ri as the percentage loss given default (LGD) of the ith borrower,

i = 1, . . . , N . We will assume that the LGD is 100% of the loan amount: the lender loses the

entire amount when the borrower defaults (the extension to other LGDs is straightforward).

Therefore we model the Ri as Bernoulli random variables and define the loss of the portfolio

over a given holding period by

R∗N =
N∑
i=1

wiRi, (3)

where wi are called exposures that represent the amount lent to borrower i, as a fraction of

the total dollar amount invested in the portfolio: the wi are positive weights that sum to

one.

The problem that is of interest to mathematical financiers is to calculate the limiting

distribution of (3) given some probabilistic economic model about how borrowers default.

These limiting distributions facilitate the calculation of financial indicators such as Expected

Shortfall and Value-at-Risk, important metrics for assessing the capital needed to cover losses

during periods of extreme financial stress (Goodhart, 2011; Linsmeier and Pearson, 2000).
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For simplicity, we will assume uniform exposures wi = 1/N so that according to eq. (3), the

total loss is simply the fraction of companies that default and

R∗N =
1

N

N∑
i=1

Ri(zi), (4)

where Ri are identical Bernoulli random variables which describe whether a company has

defaulted or not (Ri = 1⇐⇒ ith borrower defaults), according to their asset returns zi.

The asset returns of borrowing companies are linked to each other and the greater econ-

omy in a complex system of correlations, meaning companies in a portfolio may be more

likely to default in unison. This correlation is described through a structural model in which

companies are exposed to shared risk factors. The structural model can give rise to compli-

cated dependencies among borrowers: see for example (Fok et al., 2014; Schonbucher, 2001;

Pykhtin, 2004). In the simplest model, each company’s assets are represented as the sum of

an idiosyncratic risk factor and a global risk factor. The global risk factor represents stochas-

ticity in the general economy, affecting all borrowers since “a rising tide lifts all boats.” Thus,

the asset returns zi, i = 1, 2, . . . , N , are modeled as (Vasicek, 1987)

zi =
√
ρε̂+

√
1− ρεi, 0 < ρ < 1, (5)

where ε̂ ∼ N (0, 1), εi ∼ N (0, 1), and ρ is the correlation of assets between any two companies

and is assumed to be positive. Eq. (5) can also be thought of an implicit copula model based

on the multivariate Gaussian distribution; such applications of copulas to credit portfolio

modeling are widely used in risk management (De Servigny and Renault, 2004).

2.2 Dependence Structure

We now introduce a threshold θi so that zi < θi ⇐⇒ ith borrower defaults, where zi ∈ R

follows (5). Actual values of θi would depend on the credit rating of the borrower; borrowers
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with better credit scores are less likely to default on their loan and would have more negative

θi. Again for simplicity, we will assume θi = θ so all borrowers are equally credit-worthy.

Then zi
∣∣ε̂ ∼ N (

√
ρε̂, 1− ρ) and

p(ε̂) ≡ P (zi < θ
∣∣ε̂), (6)

=

∫ θ

−∞

1√
2π(1− ρ)

exp

{
−

(t−√ρε̂)2

2(1− ρ)

}
dt, (7)

= Φ

(
θ −√ρε̂
√

1− ρ

)
. (8)

Conditioned on the global risk ε̂, {R1, R2, . . . , RN} are iid Bernoulli(p(ε̂)) random variables:

Ri(zi
∣∣ε̂) =

 0, with probability 1− p(ε̂),

1, with probability p(ε̂).
(9)

Before proceeding further, it is convenient to introduce notations relating to the standard

normal distribution:

φ(x) =
1√
2π
e−x

2/2, Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2dy. (10)

The unconditional default probability of any borrower is
∫∞
−∞ p(x)φ(x)dx = Φ(θ), so

Ri =

 0, with probability 1− Φ(θ),

1, with probability Φ(θ),
(11)

and the covariance of borrowers i and j is

Cov(Ri, Rj) =

∫ ∞
−∞

p2(x)φ(x)dx− Φ(θ)2, (12)

= Φ(θ)(1− Φ(θ))− 2T

(
θ,

√
1− ρ
1 + ρ

)
, (13)
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where T (h, a) = 1
2π

∫ a
0

exp[− 1
2
h2(1+x2)]

1+x2
dx is Owen’s T -function (Owen, 1956). When ρ = 1,

zi = ε̂, the Bernoulli variates are copies of each other and Cov(Ri, Rj) = Φ(θ)(1 − Φ(θ)) as

expected. When ρ = 0, zi = εi, the Bernoulli variates are independent, Owen’s function has

the property T (θ, 1) = 1
2
Φ(θ)(1− Φ(θ)), and Cov(Ri, Rj) = 0.

2.3 Loss Distribution for Large N

From (4), R∗N |ε̂ is an empirical average of N independent Bernoulli variates. By the Strong

Law of Large Numbers,

R∗N |ε̂ = p(ε̂), N →∞, (14)

almost surely, and R∗N |ε̂ is a random variable whose outcome depends on the draw of ε̂. So

P [R∗∞ ≤ x] = P [p(ε̂) ≤ x] , (15)

= P

[
ε̂ ≥ θ −

√
1− ρΦ−1(x)
√
ρ

]
(16)

⇒ FR∗∞(x) = Φ

[√
1− ρΦ−1(x)− θ

√
ρ

]
. (17)

This limiting distribution for the mean of N dependent Bernoulli variates following (11)

with covariance structure (13) is the closed-form solution to the Vasicek Asymptotic Single

Risk Factor (ASRF) model. Eq. (17) provides an analytic approximation of market risks

associated with a credit portfolio of N loans and is the starting point for calculations of

Value-at-Risk, Expected Shortfall and other financial metrics.

3 Convergence to the Limiting Distribution

We now show that the convergence of R∗N to its CDF (17) occurs with rate O(N−1). Our

starting point is the theorem proved by (Esseen, 1945) which gives the explicit form of the

7



correction term when applying the Central Limit Theorem to R∗N |ε̂:

Theorem 3.1. Let X1, X2, · · · , XN be a sequence of independent and identical random

variables with mean zero, variance σ2 6= 0, and third moment µ3. Suppose further that Xi is

a lattice random variable so that its CDF has discontinuities separated by a distance d. Let

FWN
be the CDF of WN ≡

∑N
i=1Xi

σ
√
N

, which has zero mean and unit variance. Then

FWN
(x) = Φ(x) +

µ3(1− x2)e−x
2/2

6σ3
√

2πN
+
d · ψN(x)e−x

2/2

σ
√

2πN
+ o(N−1/2), (18)

where

ψN(x) = Q

(
(x− ξN)σ

√
N

d

)
, Q(x) = [x]− x+

1

2
. (19)

The parameter ξN is the location of the smallest non-negative discontinuity of FWN
(x) and

[·] is the floor function.

We now apply this theorem to find the distribution of R∗N . We first center the Bernoulli

variates so they have zero mean: Xi = Ri − p. Then

WN =

∑N
i=1Xi

σ
√
N

=

√
NR∗N
σ

−
√
Np

σ
, (20)

The variable WN has support on
{
−
√
Np
σ

+ k
σ
√
N

}
, for k ∈ {0, 1, · · · , N}. The location of the

smallest non-negative discontinuity corresponds to k = dκe where κ satisfies

−
√
Np

σ
+

κ

σ
√
N

= 0 =⇒ κ = Np, (21)

and so ξN = −Np+[Np]+1

σ
√
N

. Because R∗N and WN are related through (20) and σ2 = p(1 − p),
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d = 1/(σ
√
N),

FR∗N |ε̂(x) = Φ

(
(x− p)

√
N√

p(1− p)

)
+

(p− 3p2 + 2p3)

6
√
N(p(1− p))3/2

(
1− (x− p)2N

p(1− p)

)
e−

(x−p)2N
2p(1−p)

+
1√

2πNp(1− p)
Q (xN − 1− [Np]) e−

(x−p)2N
2p(1−p) + o(N−1/2).

(22)

To find the unconditioned CDF, we multiply by φ(ε̂) and integrate over all values of ε̂:

∫ ∞
−∞

FR∗N |ε̂(x)φ(ε̂)dε̂ =

∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂+ IN(x)

+ (Higher Order Terms in N) . (23)

where

IN(x) = I
(1)
N (x) + I

(2)
N (x) + I

(3)
N (x), (24)

with

I
(1)
N (x) =

1√
N

∫ ∞
−∞

α1(ε̂)e−Nτ(x,ε̂)dε, α1(ε̂) =
[p(ε̂)− 3p(ε̂)2 + 2p(ε̂)3]φ(ε̂)

6 [p(ε̂)(1− p(ε̂))]3/2
,

I
(2)
N (x) =

√
N

∫ ∞
−∞

α2(x, ε̂)e−Nτ(x,ε̂)dε, α2(x, ε̂) =
[p(ε̂)− 3p(ε̂)2 + 2p(ε̂)3] τ(x, ε̂)φ(ε̂)

3(p(ε̂)(1− p(ε̂)))3/2
,

I
(3)
N (x) =

1√
N

∫ ∞
−∞

α3(x, ε̂)e−Nτ(x,ε̂)dε, α3(x, ε̂) =
Q (Nx− 1− [Np(ε̂)])φ(ε̂)√

2πp(ε̂)(1− p(ε̂))
, (25)

and

τ(x, ε̂) =
(x− p(ε̂))2

2p(ε̂)(1− p(ε̂))
. (26)

3.1 Error incurred by Laplace’s Method

First we consider the
∫∞
−∞Φφdε̂ term in (23). The lemma below shows that it is asymptotically

equivalent to Vasicek’s CDF, eq. (17), with an error that scales as O(N−1). We informally
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call this error the “Laplace error” to distinguish it from the error incurred by applying the

Central Limit Theorem in section 3.2

Lemma 3.2. For N � 1,
∫∞
−∞Φ

(
(x−p)

√
N√

p(1−p)

)
φ(ε̂)dε̂ is asymptotically equal to Vasicek’s CDF

as given by eq. (17):

∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂ = Φ

(√
1− ρΦ−1(x)− θ

√
ρ

)
+ EN(x), (27)

as N →∞, where EN(x) = O(N−1).

Proof. Let VN(x) =
∫∞
−∞Φ

(
(x−p)

√
N√

p(1−p)

)
φ(ε̂)dε̂. Then using Laplace’s method,

V ′N(x) =
√
N

∫ ∞
−∞

e−
N(x−p)2

2p(1−p)
φ(ε̂)√

2πp(1− p)
dε̂. (28)

= α(ε̂∗) exp{−Nτ(ε̂∗)}

√
2π

τ ′′(ε̂∗)
+O(N−1), N →∞ (29)

where

τ(ε̂) =
(x− p(ε̂))2

2p(ε̂)(1− p(ε̂))
, α(ε̂) =

φ(ε̂)√
2πp(ε̂)(1− p(ε̂))

. (30)

Note that for all ε̂, τ(ε̂) ≥ 0 so the minimum of τ(ε̂) occurs when x = p(ε̂); thus the

minimum of τ(ε̂) is zero and ε̂∗ satisfies p(ε̂∗) = x ⇒ ε̂∗ =
√

1−ρΦ−1(x)−θ
−√ρ . With τ(ε̂∗) = 0,

τ ′′(ε̂∗) = p′(ε̂∗)2

p(ε̂∗)(1−p(ε̂∗)) > 0,

V ′N(x) =

√
1− ρ
ρ

exp

{
1

2

[
Φ−1(x)

]2 − [√1− ρΦ−1(x)− θ
]2

2ρ

}
+O(N−1),

⇒ VN(x) = Φ

(√
1− ρΦ−1(x)− θ

√
ρ

)
+ EN(x).
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where

EN(x) =
1

N

∫ x

0

√
2π

τ ′′(ε̂∗)

{
α′′(ε̂∗)

2τ ′′(ε̂∗)
+
α(ε̂∗)τ (4)(ε̂∗)

8[τ ′′(ε̂∗)]2
+
α′(ε̂∗)τ ′′′(ε̂∗)

2[τ ′′(ε̂∗)]2
− 5[τ ′′′(ε̂∗)]2α(ε̂∗)

24[τ ′′(ε̂∗)]3

}
dx′ + o(N−1)

= O(N−1).

The expression for EN comes from higher order corrections to Laplace’s method (Bender and

Orszag, 1999).

3.2 Error incurred by Central Limit Approximation

Now consider the IN(x) term in eq. (23). We will use Laplace’s method to show that the

scalings for I
(k)
N are all O(N−1). As before, let ε̂∗ be the minimizer of τ(ε̂) so that τ(ε̂∗) = 0,

τ ′(ε̂∗) = 0, τ ′′(ε̂∗) > 0. For N →∞, we approximate I
(1)
N and I

(2)
N using Laplace’s method:

I
(1)
N (x) ∼ α1(ε̂∗)

N

√
2π

τ ′′(ε̂∗)
,

I
(2)
N (x) ∼

√
2π

N

[
− α′′2(ε̂∗)

2τ ′′(ε̂∗)3/2
+
α′2(ε̂∗)τ ′′′(ε̂∗)

2τ(ε̂∗)5/2

]
.

Since α2(ε̂∗) = 0, we have used the higher-order terms from (Bender and Orszag, 1999) for the

Laplace approximation of I
(2)
N . The treatment of I

(3)
N differs slightly becauseQ (Nx− 1− [Np(ε̂)])

has discontinuities. Our solution is to first bound I
(3)
N using Cauchy-Schwarz before applying
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Laplace’s method:

∣∣∣I(3)
N (x)

∣∣∣ ≤ ∫ ∞
−∞

∣∣∣∣∣Q (Nx− 1− [Np(ε̂)])√
2πNp(ε̂)(1− p(ε̂))

e−Nτ(ε̂)φ(ε̂)

∣∣∣∣∣ dε̂
≤

∫ ∞
−∞
|Q (Nx− 1− [Np(ε̂)])|

∣∣∣∣∣ φ(ε̂)√
2πNp(ε̂)(1− p(ε̂))

∣∣∣∣∣ e−Nτ(ε̂)dε̂

≤ 1

2

∫ ∞
−∞

φ(ε̂)√
2πNp(ε̂)(1− p(ε̂))

e−Nτ(ε̂)dε̂

∼ 1

2

φ(ε̂∗)√
2πNp(ε̂∗)(1− p(ε̂∗))

√
2π

Nτ ′′(ε̂∗)
exp{−Nτ(ε̂∗)}

=
φ(ε̂∗)

2N |p′(ε̂∗)|
,

asN →∞ and we used τ ′′(ε̂∗) = p′(ε̂∗)2

p(ε̂∗)(1−p(ε̂∗)) . Therefore IN = I
(1)
N +I

(2)
N +I

(3)
N = O(N−1). This

prediction is confirmed by our numerical experiments in Fig. ??, where we plot ||IN(x)||∞

against the true error in the Vasicek CDF (17). While these errors are similar, they are not

identical (even for an infinite number of Monte Carlo trials) because Vasicek’s CDF only

approximates the
∫∞
−∞Φφdε̂ term in (23).

4 Conclusions

Limiting distributions for sums of random variables remain a vital part of probability theory.

They are also important in the area of mathematical finance, a source of interesting examples

where the random variables are dependent and the dependence structure is motivated by an

economic model. In this paper, we found the limiting distribution, eq. (17), of the mean of

N dependent Bernoulli variates as N →∞. We found that the total error of the CDF (17)

is comprised of two terms: the error associated with using Laplace’s method to produce the

Vasicek approximation (section 3.1) and the error associated with approximating the CDF

using the central limit theorem (section 3.2). Both errors scale as O(N−1). Therefore, the
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total error of the Vasicek approximation is O(N−1) and can be summarized as

∫ ∞
−∞

FR∗N |ε̂(x)φ(ε̂)dε̂︸ ︷︷ ︸
Exact CDF

∼
∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂+ IN(x)︸ ︷︷ ︸

Central Limit error

∼ Φ

(√
1− ρΦ−1(x)− θ

√
ρ

)
︸ ︷︷ ︸

Vasicek approximation

+ EN(x)︸ ︷︷ ︸
Laplace error

+ IN(x)︸ ︷︷ ︸
Central Limit error

,

(31)

as N → ∞. Of course, when the Bernoulli variates are independent, the convergence to

normality is O(N−1/2) by the Berry-Esseen inequality (2). In this paper, we presented a

specific example of dependent variates where the convergence is “faster”, at O(N−1). We

verified this scaling both analytically and numerically.
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