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Abstract	
	
Analyses	of	individual	atherosclerotic	plaques	are	mostly	descriptive,	relying	-	for	
example	–	on	histological	classification	by	spectral	analysis	of	ultrasound	waves	or	
staining	and	observing	particular	cellular	components.	Such	passive	methods	have	
proved	useful	for	characterizing	the	structure	and	vulnerability	of	plaques	but	have	
little	quantitative	predictive	power.	Our	aim	is	to	introduce	and	discuss	a	
computational	framework	to	provide	insight	to	clinicians	and	help	them	visualize	
internal	plaque	dynamics.		
	
We	use	Partial	Differential	Equations	(PDEs)	with	macrophages,	necrotic	cells,	
oxidized	lipids,	oxygen	concentration	and	PDGF	(Platelet	Derived	Growth	Factor)	as	
primary	variables	coupled	to	a	biomechanical	model	to	describe	vessel	growth.	The	
model	is	deterministic,	providing	mechanical,	morphological,	and	histological	
characteristics	of	an	atherosclerotic	vessel	at	any	desired	future	time	point.	We	use	
our	model	to	create	computer-generated	animations	of	a	plaque	evolution	that	are	
in	qualitative	agreement	with	published	serial	ultrasound	images	and	hypothesize	
possible	atherogenic	mechanisms.		
	
A	systems-biology	model	consisting	of	5	differential	equations	is	able	to	capture	the	
morphology	of	necrotic	cores	residing	within	vulnerable	atherosclerotic	plaque.	In	
the	context	of	the	model,	the	distribution	of	Ox-LDL	particles,	endothelial	
inflammation,	plaque	oxygenation	(via	the	presence	of	vasa	vasora)	and	intimal	
oxygenation	are	four	important	factors	that	drive	changes	in	core	morphology.	
	
	
New	and	Noteworthy	
	
In	this	article,	we	propose	a	quantitative	framework	to	describe	the	evolution	of	
atherosclerotic	plaque.	We	use	Partial	Differential	Equations	(PDEs)	with	
macrophages,	necrotic	cells,	oxidized	lipids,	oxygen	concentration	and	PDGF	as	
primary	variables	coupled	to	a	biomechanical	model	to	describe	vessel	growth.	A	
feature	of	our	method	is	that	it	outputs	color-coded	vessel	sections	corresponding	to	
regions	of	the	plaque	that	are	necrotic	and	fibrous,	qualitatively	similar	to	images	
generated	by	enhanced	intravascular	ultrasound.		
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1. Introduction	
Cardiovascular	disease	affected	more	than	121	million	people	in	2016	in	the	United	
States	and	about	48%	of	adults	(4).	It		is	often	due	to	atherosclerosis,	which	
manifests	itself	as	a	buildup	of	fatty	deposits	mainly	in	the	intima	of	medium-sized	
and	large	arteries.	Plaques	exhibit	considerable	variability	in	their	internal	structure	
and	histology.	When	they	develop	a	thin	cap	and	a	large	necrotic	core,	they	are	
prone	to	mechanical	rupture	(49),	which	often	results	in	thrombosis	and	acute	
events	such	as	myocardial	infarction	(MI).	The	prediction	of	plaque	progression	and	
rupture	remains	one	of	the	most	important	open	problems	in	cardiovascular	disease	
today.	
	
Figure	1	shows	the	main	actors	involved	in	atherogenesis.	Healthy	endothelial	cells	
produce	a	certain	amount	of	nitric	oxide	(NO)	which	is	a	vasodilator.	A	decrease	in	
laminar	shear	stress	reduces	the	production	of	this	chemical	which	could	lead	to	
endothelial	dysfunction,	increased	uptake	of	low	density	lipoproteins	(LDL)	and	
upregulation	of	Vascular	Cell	Adhesion	Molecule-1	(VCAM-1).	This	adhesion	
molecule	starts	an	inflammatory	process	by	binding	with	Intracellular	Adhesion	
Molecule-1	(ICAM-1)	on	the	surface	of	leukocytes	present	in	the	blood	stream.	
Attached	to	the	endothelium,	monocytes	penetrate	the	vessel	wall	in	response	to	
chemoattractants	such	as	MCP-1	and	transform	into	macrophages	in	the	presence	of	
macrophage	colony	stimulating	factor	(M-CSF).	LDLs	in	the	intima	go	through	
oxidization,	turning	into	oxidized	LDLs	(Ox-LDL).	Macrophages	may	release	more	
chemoattractant,	thereby	starting	a	cascade	of	inflammation.	While	they	
preferentially	consume	oxidized	LDLs	and	turn	into	foam	cells,	Smooth	Muscle	Cells	
(SMCs)	can	also	migrate	into	the	plaque	from	the	underlying	media	and	consume	
Ox-LDLs,	albeit	at	a	slower	rate.	The	death	of	SMCs,	foam	cells	and	macrophages	all	
contribute	to	a	necrotic	core,	one	of	the	defining	characteristics	of	a	vulnerable	
(rupture-prone)	plaque	(50,32).	
	
Atherosclerosis	has	been	studied	from	cellular	(3),	genetic	(15)	and	clinical	(6)	
perspectives.	Murine	models	have	also	proved	valuable	in	elucidating	the	main	
aspects	of	early-stage	atherosclerosis	(44).	However,	one	set	of	tools	that	remains	
under-utilized	is	the	application	of	deterministic	mathematical	models.	Historically,	
the	analysis	of	plaque	has	been	descriptive	or	statistical.	Scientists	may	observe	an	
individual	plaque	at	a	single	time	point	or	gather	statistics	from	large	cross-
sectional	studies.	In	either	case,	it	is	difficult	to	make	predictions	from	observations	
at	a	single	time	point.	In	cross-sectional	studies,	individual	risk-factors	are	assessed	
using	statistical	methods,	but	this	approach	may	not	be	able	to	establish	causal	
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relationships.	In	this	article,	we	advocate	a	paradigm	shift	to	study	the	natural	
history	of	individual	plaques	using	mathematical	models.	Combined	with	advances	
in	imaging	technology,	we	believe	that	such	quantitative	approaches	will	be	pivotal	
in	enhancing	our	understanding	of	the	mechanisms	of	atherogenesis	and	plaque	
rupture.	We	believe	that	the	best	way	to	characterize	the	data	being	generated	by	
imaging	modalities	such	as	ultrasound,	optical	coherence	tomography	(OCT)	and	
palpography	is	by	connecting	them	to,	and	concurrently	developing,	mathematical	
models.	
	
In	this	article	we	will	first	review	some	paradigmatic	models	of	atherosclerotic	
plaque	that	are	popular	in	the	engineering	and	mathematical	communities.	We	then	
show	how	elements	of	these	models	can	be	combined	into	a	biologically	motivated,	
computer-generated	animation	that	illustrates	plaque	progression	in	terms	of	
thickening	of	arterial	layers,	deformation	of	the	vessel	wall	and	changes	in	plaque	
histology.			
	
	

2. Methods	
Plaque	histology.	Plaque	internal	structure	has	been	gradually	elucidated	since	
around	the	1960s	(22).	Researchers	now	believe	that	the	internal	structure	of	a	
plaque	primarily	determines	its	stability.	Early	plaques	start	life	as	“intimal	
cushions,”	“intimal	thickenings”	or	“intimal	xanthomas”	(48).	These	are	relatively	
innocuous	lesions.		Over	time,	however,	they	can	progress	into	“fatty	streaks”	which	
have	a	higher	lipid	content.	Atheromas	have	regions	of	interior	necrosis	and	are	
considered	more	dangerous	since	they	are	associated	with	cardiovascular	events,	
e.g.	stroke	or	myocardial	infarction.	
	
Enhanced	ultrasound	(virtual	histology)	protocols	use	machine	learning	to	analyze	
the	frequency	content	in	ultrasound	waves	and	classify	atherosclerotic	tissue	into	
four	different	types:	fibrous,	fatty,	necrotic	and	calcific	(39).	The	resulting	patterns	
are	fascinating	and	thought-provoking.	For	example,	Kubo	et	al	(2010)	tried	to	gain	
insight	into	the	dynamic	evolution	of	plaque	histology	and	morphology	(30).	Figure	
2	shows	serial	IVUS	images	of	plaque	at	baseline	and	after	a	12	month	follow-up.	
Data	specific	to	individual	plaques	at	these	two	time	points	were	also	collected.	For	
example,	morphological	characteristics	such	as	the	area	occupied	by	the	lumen	and	
fraction	of	the	plaque	occupied	by	the	necrotic	core	were	observed.	This	data	set	
raises	several	important	quantitative	questions.	How	long	does	it	take	for	a	plaque	
to	become	vulnerable	to	rupture?	How	quickly	do	plaques	grow	in	size?	How	
quickly	do	regions	of	necrosis	grow?	How	does	necrosis	affect	the	likelihood	of	
rupture?	All	these	questions	can,	in	principle,	be	answered	by	a	mathematical	model	
of	plaque	development,	properly	calibrated	against	suitable	data	sets.	
	
A	popular	method	in	the	mathematical	modeling	community	is	the	application	of	
differential	equations.	This	approach	describes	how	concentrations	of	certain	cell	
types	and	metabolites	change	in	time.		One	well-known	example	is	Hao	and	
Friedman’s	model	(24).	They	described	the	movement	of	macrophages,	T-cells	and	



	 5	

smooth	muscle	cells	into	the	intima,	which	promote	intimal	thickening.	Their	model	
however,	did	not	consider	the	mechanical	properties	of	the	intima	and	neglected	the	
other	two	layers	of	the	vessel	wall.	Chalmers	et	al.	used	differential	equations	to	
explore	the	dynamics	of	early	atherosclerosis	(10).	Their	model	considered	the	
concentration	of	LDLs,	chemoattractants,	Endothelium-Stimulating	(ES)	cytokines,	
macrophages	and	foam	cells.	All	of	their	simulations	were	done	in	one	dimension	
and	their	result	provided	qualitative	and	quantitative	insight	into	the	effect	of	LDL	
in	the	inflammatory	response.	In	another	paper,	Chalmers	et	al.	further	investigated	
the	effect	of	High	Density	Lipoproteins	(HDL)	in	plaque	regression	(9).	They	
observed	that	increasing	HDL	influx	regresses	plaques	with	a	low	density	of	foam	
cells	and	slows	the	growth	of	plaques	with	a	high	density	of	foam	cells.	El	Khatib	et	
al.	suggested	that	inflammation	propagates	in	the	intima	as	a	reaction	diffusion	
wave	(18).	They	concluded	that	in	the	case	of	intermediate	LDL	concentrations	
there	are	two	stable	equilibria:	one	corresponding	to	the	disease-free	state	and	
another	for	the	inflammatory	state,	while	a	traveling	wave	connects	these	two	
states.	Fok	investigated	the	effect	of	the	spatial	distribution	of	Ox-LDL	on	the	
location	and	size	of	the	necrotic	core	(19).	He	predicted	the	location	and	size	of	the	
necrotic	core	due	to	the	chemotaxis	of	macrophages	towards	sources	of	Ox-LDLs	
and	their	death	due	to	lack	of	oxygen.	Finally,	Cobbold	et	al.	investigated	the	
multiple	stages	of	LDL	oxidation	using	a	system	of	ordinary	differential	equations	
(14).	In	their	model,	they	considered	the	concentration	of	antioxidants	(specifically	
vitamin	E	and	vitamin	C),	HDL,	LDL	and	free	radicals.	They	modeled	how	HDL	and	
vitamin	C	were	crucial	for	for	slowing	down	the	oxidation	of	LDL	particles.		
	
Cardiovascular	research	is	not	limited	to	processes	occurring	in	the	arterial	wall.	
Blood	flow	also	plays	an	important	role	in	atherogenesis.	Changes	in	the	laminar	
shear	stress	or	the	concentration	of	different	chemicals	within	the	bloodstream	are	
some	of	the	crucial	factors	that	can	affect	the	composition	of	arteries.	Therefore,	
investigating	the	early	stages	of	atherosclerosis	as	a	fluid-solid	interaction	(FSI)	
problem	has	attracted	many	researchers	(12,	16,	8).	As	well	as	coronary	arteries,	
there	are	studies	that	utilize	FSI	in	other	types	of	arteries.	For	example,	Pozzi	and	
Vergara	investigate	the	carotids	(40)	while	Thon	et	al.	study	aortic	arteries	(46).	
Their	approaches	can	be	adapted	for	coronary	arteries	with	minor	modifications.		
	
In	this	paper	we	consider	a	simple	system	of	Partial	Differential	Equations	(PDEs)	
that	could	describe	the	formation	of	hypoxia-induced	plaque	cores:	
	

𝜕𝑁
𝜕𝑡

Rate of increase
of NCs

= 𝐷!𝛥𝑁
Diffusion of 

NCs

+ 𝛾 𝐶 𝑀
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from dead 
macrophages

− 𝛽!𝑁
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1 	

	
𝜕𝑀
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Chemotaxis to Ox-LDL

!"# !"#

= 𝐷!𝛥𝑀
Diffusion 
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− 𝛾 𝐶 𝑀
Hypoxic Death

2 	
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𝜕𝑄
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of CKs
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3 	

	
𝜕𝐶
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Diffusion of
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   4 	

	
𝜕𝑃
𝜕𝑡

Rate of increase
of PDGF

= 𝐷!𝛥𝑃
Diffusion of
PDGF

− 𝛽!𝑃
Natural decay

of PDGF
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These	equations	are	supplemented	with	boundary	conditions	(BCs):	
	
	

𝜕𝑁
𝜕𝒏!

=  0      on  𝜕𝜔!        6                               
𝜕𝑁
𝜕𝒏!

= 0     on  𝜕𝜔!       (7)	

	

𝑀 = 𝑀! 𝑡      on  𝜕𝜔!       8                           
𝜕𝑀
𝜕𝒏!

=  𝜅𝑀   on  𝜕𝜔!       (9)	

	
𝜕𝑄
𝜕𝒏!

=  0      on  𝜕𝜔!        10                               
𝜕𝑄
𝜕𝒏!

= 0     on  𝜕𝜔!       (11)	

	

𝐶 =  𝐶! 𝑡      on  𝜕𝜔!       12                            
𝜕𝐶
𝜕𝒏!

= 0   on  𝜕𝜔!            (13)	

	
𝑃 =  𝑃!   on  𝛤 ⊂ 𝜕𝜔!,   𝑃 = 0    on   𝜕𝜔!\ 𝛤,     (14)	

	

 
𝜕𝑃
𝜕𝒏!

= 0   on  𝜕𝜔!   (15)	

	
The	boundaries	𝜕𝜔!,	𝜕𝜔!	and	𝛤	and	the	vectors	𝒏!and	𝒏!	are	indicated	in	Figure	3.	
Variables	N,	M,	Q,	C	and	P	represent	concentrations	of	necrotic	cells	(NCs),	
macrophage	cells	(MCs),	a	chemokine	(CK)	such	as	Monocyte	Chemoattracting	
Protein	1	(MCP1),	molecular	oxygen	and	Platelet	Derived	Growth	Factor	(PDGF);	𝐷!	
−	𝐷!	are	their	diffusivities;	𝜇	is	a	chemotactic	coefficient	for	macrophages;	𝛽! − 𝛽!	
are	decay	coefficients;	𝜆!	is	a	production	rate	of	MCP1;	𝜆!	is	the	consumption	rate	of	
oxygen	by	macrophages	and	𝜅	is	the	outflux	rate	of	macrophages	from	the	intima	to	
media	(see	Table	1	for	a	summary).	Furthermore,	we	take	the	concentration	of	Ox-
LDL	(L)	to	be	a	known	function	in	space	and	time.	In	our	problem,	most	of	the	
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histological	dynamics	occur	much	more	quickly	than	the	growth	of	the	plaque.	
Therefore,	equations	(1)-(5)	are	all	solved	at	steady	state.	On	the	other	hand,	we	
assume	that	the	time	scales	associated	with	endothelial	inflammation,	arterial	
oxygenation	and	changes	in	Ox-LDL	density	are	on	par	with	that	of	the	plaque	
growth	and	the	time	dependence	of	𝑀! 𝑡 ,	𝐶! 𝑡 	and	𝑓 𝑥,𝑦, 𝑡 	is	explicitly	accounted	
for.	
	
In	eq.	(1),	the	term	on	the	left	hand	side	represents	the	time	rate	of	change	of	
necrotic	cells	at	a	given	point	x	=	(x,y,z)	in	the	plaque.	This	equation	specifies	that	
the	rate	of	change	of	NCs	at	x	has	three	contributions.	First,	NCs	from	nearby	points	
x+δx	can	be	moved	to	x.	This	diffusion	could	arise	from	immune	cells	in	the	plaque	
exerting	random	forces	on	dead	cells	through	their	own	random	motion.	Second,	
macrophage	cells	at	x	can	die	and	become	necrotic,	essentially	converting	from	vital	
cells	to	necrotic	ones.	The	death	rate	γ	depends	on	the	oxygen	concentration	at	that	
point,	C(x,y,z)	via	the	equation	(19)	
	
																									𝛾 𝐶 = 𝛾!"# + (𝛾!"# − 𝛾!"#)

!!"#$
!

!!"#$
! !!!

.   16 	

	
The	normoxic	death	rate	𝛾!"#	is	the	death	rate	for	macrophages	in	an	oxygen-
sufficient	environment	and	𝛾!"#	is	the	hypoxic	death	rate	in	an	oxygen-limited	
environment.	The	last	term	in	parentheses	is	called	a	Hill	function	and	the	number	
m	is	called	the	Hill	coefficient	(we	take	m=4).	Eq.	(16)	states	that	macrophages	die	
quickly	when	oxygen	levels	are	low	(C<C!"#$),	but	slowly	when	levels	are	high	
(C>C!"#$).	We	see	that	C!"#$	acts	as	a	hypoxic	threshold	for	macrophage	cells	and	the	
larger	the	value	of	m,	the	more	abrupt	the	switch.	Finally,	NCs	at	x	can	be	cleared	by	
leukocytes	and	the	clearance	rate	is	proportional	to	the	number	of	NCs.	The	minus	
sign	signifies	that	the	clearance	term	reduces	the	rate	of	generation	of	NCs.	
	
In	eq.	(2),	the	first	term	on	the	left	hand	side	represents	the	time	rate	of	change	of	
MCs.	 The	 second	 term	 represents	 chemotaxis,	 the	 directed	 movement	 of	 cells	
towards	 chemoattractants	 such	 as	 Ox-LDL	 (L)	 and	 MCP1	 (Q).	 Macrophages	
chemotax	 along	 the	 vector	∇(𝐿 + 𝑄) 	with	 associated	 “flux”	𝜇𝑀∇(𝐿 + 𝑄) 	and	 the	
coefficient	µ	capturing	the	speed	of	taxis.	Note	that	∇(𝐿 + 𝑄)	is	a	vector	that	points	
from	small	values	of	L+Q	 to	 large	values	so	MCs	are	modeled	to	move	from	low	to	
high	 concentrations	 of	 total	 chemoattractant.	 There	 are	 two	 contributions	 on	 the	
right	hand	side.	Similar	to	eq.	(1),	the	first	term	represents	the	diffusion	of	the	cells.	
The	final	term	represents	the	death	of	macrophages	with	a	death	rate	dependent	on	
the	 local	 oxygen	 concentration	C	 as	 given	 by	 eq.	 (16).	 The	+𝛾(𝐶)𝑀	in	 eq.	 (1)	 and	
−𝛾(𝐶)𝑀	in	 eq.	 (2)	 couple	 the	 equations	 together:	when	 a	macrophage	 cell	 dies,	 it	
converts	to	a	necrotic	cell.	
	
In	eq.	(3),	the	term	on	the	left	hand	side	represents	the	time	rate	of	change	of	CKs.		
Similarly,	we	have	three	terms	on	the	right	hand	side.	The	first	term	corresponds	to	
the	diffusion	of	the	CKs.	The	next	term	represents	the	natural	decay	of	CKs	at	a	rate	
𝛽!.	The	last	term	represents	the	production	of	CKs	by	MCs	after	consumption	of	Ox-
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LDL	at	a	rate	𝜆!.	Motivated	by	the	principle	of	mass	action,	the	production	rate	is	
proportional	to	the	product	of	macrophage	and	Ox-LDL	concentrations,	LM.	The	net	
production	is	greater	if	there	are	more	MCs	or	Ox-LDL	particles.	
	
In	 eq.	 (4),	 the	 term	 on	 the	 left	 represents	 the	 time	 rate	 of	 change	 of	 the	 oxygen	
concentration.	The	first	term	on	the	right	hand	side	corresponds	to	the	diffusion	of	
oxygen	 in	 tissue.	 The	 second	 term	 represents	 the	 background	 consumption	 of	
oxygen	 by	 all	 cells	 (excluding	 MCs)	 with	 rate	𝛽!.	 The	 third	 term	 represents	 the	
consumption	 of	 the	 oxygen	 concentration	 by	 macrophages	 at	 a	 rate	𝜆! .	 Again,	
motivated	by	mass	action	principles,	the	net	consumption	rate	is	proportional	to	the	
product	 of	 oxygen	 concentration	 and	 macrophage	 density,	 CM.	 The	 final	 term	
represents	 contributions	 from	 oxygen	 sources	 such	 as	microvessels	 that	 could	 be	
present	in	advanced	plaques.		
	
In	 eq.	 (5),	 the	 term	 on	 the	 left	 represents	 the	 time	 rate	 of	 change	 of	 the	 PDGF	
concentration.	The	first	 term	on	the	right	represents	the	diffusive	spread	of	PDGF.	
The	second	term	corresponds	to	the	natural	(thermal)	degradation	of	PDGF	at	a	rate	
𝛽!.	
	
Boundary	conditions	(8),	(12)	and	(14)	prescribe	the	concentration	of	macrophages,	
oxygen	and	PDGF	at	the	endothelium	while	BCs	(6)	and	(10)	account	for	the	flux	of	
necrotic	 cells	 and	MCP1	 across	 the	 endothelium	𝜕𝜔!.	 Eqs.	 (7),	 (9),	 (11),	 (13)	 and	
(15)	prescribe	the	flux	of	necrotic	cells,	macrophages,	MCP1,	oxygen	and	PDGF	from	
the	intima	into	the	media	through	the	boundary	𝜕𝜔!.	
	
So	far,	we	have	explained	the	physical	and	biological	origins	of	each	of	the	terms	in	
equations	 (1)-(5).	 The	 validity	 of	 these	 equations	 relies	 on	 the	 continuum	
assumption:	 rather	 than	 describing	 the	 behavior	 of	 individual	 cells,	 we	 are	
calculating	their	aggregate	or	average	behavior	using	smooth	functions.	While	 this	
can	be	a	 limitation,	 there	are	more	advanced	methods	that	can	be	used	to	capture	
individual	 cell	 behavior	 (17).	 Furthermore,	 the	 transport	 properties	 of	 the	 vessel	
wall	 have	 to	 be	 homogeneous	 for	 the	 equations	 to	 hold.	 At	 a	molecular	 level,	 the	
random	motion	of	cells	and	chemicals	must	follow	a	Brownian	motion	which	results	
in	 diffusive	 PDEs.	 Finally,	 we	 have	 only	 focused	 on	 a	 small	 set	 of	 cell-cell,	 cell-
cytokine	 and	 cell-substrate	 interactions,	 ignoring	 for	 example	 M-CSF	 induced	
monocyte-macrophage	transformations	and	durotactic	effects.	
	
In	principle,	the	solution	of	equations	(1)-(5)	produces	N,	M,	Q,	C	and	P	as	smooth	
functions	of	space	and	time,	representing	densities	of	NCs,	MCs,	CKs,	O2	and	PDGF.	
When	the	governing	equations	are	solved	in	practice,	these	quantities	all	find	their	
equilibrium	levels	very	quickly	compared	to	the	observed	rate	of	plaque	
progression	so	the	steady-state,	time	independent	versions	of	(1)-(5)	are	actually	
computed	by	setting	all	time	derivatives	to	zero.	An	example	of	the	function	N	is	
shown	in	Figure	4,	along	with	a	thresholding	method	to	formally	distinguish	
between	necrotic	and	fibrous	tissue.	To	solve	the	equations,	one	needs	the	values	of	
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all	the	constants	𝐷! −  𝐷!;		𝛽! − 𝛽!;	𝜇, 𝜆!, 𝜆! ,  𝛾!"#, 𝛾!"#,	𝐶!"#$	and	the	Hill	coefficient	
m.	These	constants	can	be	found	from	experiments	or	estimated	independently.		
	
Plaque	Morphology	and	Mechanics.	In	addition	to	describing	the	plaque’s	histology	
through	PDEs,	it	is	also	important	to	describe	the	stresses	within	a	plaque.	Virmani	
et	al.	(49)	have	shown	that	plaques	are	more	likely	to	rupture	if	their	caps	are	thin	
(<65	um).	This	observation	becomes	intuitive	after	we	understand	that	caps	in	
fibroatheromas	rupture	when	they	are	stressed	beyond	a	threshold	yield	stress	
(33).	As	cap	morphology	evolves	over	time,	so	do	the	associated	stress	fields	and	the	
propensity	for	rupture.	Therefore	an	integrated	model	of	vulnerable	plaque	should	
also	explain	how	stress	and	strain	fields	evolve	and	couple	these	fields	to	tissue	
growth	and	atrophy.	
	
Mechanics	and	Deformation.	Leonhard	Euler	(1707-1783)	was	possibly	the	first	
person	to	use	mathematics	to	formulate	models	for	arterial	mechanics.	His	
calculations	described	how	the	pulsatility	of	blood	flow	affected	the	expansion	of	
arterial	cross	sections.	By	the	1970s	arterial	hemodynamics	was	a	mature	field	and	
in	the	1990s	the	mechanical	properties	of	tissues	became	a	core	focus.	Aided	by	
developments	in	numerical	methods	for	fluid	mechanics	and	solid-fluid	interactions,	
simulation	of	the	cardiovascular	system	became	a	highly	evolved	enterprise	(45,	21,	
41).	The	ubiquity	and	power	of	computers	allowed	researchers	to	predict	the	
deformations	of	the	arterial	wall	and	the	hemodynamics	contained	within	to	an	
unprecedented	level	of	detail.	For	example,	Simon	et	al.	developed	a	computational	
method	based	on	the	poroelasticity	of	arterial	tissues	(43).	Their	model	coupled	the	
wall	deformation,	fluid	mechanics	and	associated	transport	phenomena	in	the	
arterial	wall.	Auricchio	et	al.	investigated	the	biomechanical	reaction	of	a	stenotic	
artery	wall	to	an	expandable	stent	(2).	Their	aim	was	to	understand	the	mechanisms	
underlying	stent-related	restenosis.	Finally,	Akyildiz	et	al.	studied	the	effect	of	
intima	stiffness	and	plaque	morphology	on	maximum	plaque	stress	(1).	They	found	
that	reducing	cap	thickness	and	increasing	the	size	of	the	necrotic	core	increased	
the	peak	stress.		
	
The	finite	element	method	is	a	very	versatile	method	which	can	be	used	for	solving	
both	dynamic	and	static	problems.	Most	of	the	approaches	outlined	above	utilize	
this	method	for	computing	the	equilibrium	configuration	of	an	elastic	artery	under	a	
given	load.	This	framework	can	be	adapted	to	accommodate	a	model	of	tissue	
growth	called	morphoelasticity.	The	underlying	assumption	is	that	growth	occurs	so	
slowly	that	mechanical	equilibrium	is	maintained	at	all	times.	Below,	we	describe	
the	elastostatics	problem,	and	then	explain	how	morphoelasticity	can	be	used	to	
evolve	the	plaque	dynamically.	
	
Elastostatics.	The	deformation	vector	tracks	the	position	of	every	material	point	in	
the	artery	under	a	given	load	and	maps	a	reference	configuration	to	a	deformed	
configuration.	The	starting	point	for	our	method	is	an	energy	integral	that	accounts	
for	all	the	ways	that	deformations	affect	the	total	energy.	This	usually	consists	of	
three	parts.	First,	there	is	the	stored	potential	energy	associated	with	deformations	
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from	an	unstressed,	reference	state.	Second,	there	is	the	energy	associated	with	the	
deformations	doing	work	against	body	forces	(such	as	gravity).	Finally	the	
deformations	also	do	work	against	surface	forces	(such	as	a	lumen	pressure).	While	
deformations	of	the	elastic	body	increase	the	energy,	any	work	done	against	body	
and	surface	forces	require	energy	and	is	subtracted	from	the	total	budget.	In	the	
absence	of	growth	we	have:	
	

Π Φ = 𝑊(∇Φ)
!

𝑑𝑉 − 𝑓 Φ
!

𝑑𝑉 − 𝑔 Φ,∇Φ 𝑑𝑆
!!

,         (17)	

	
where	Π	is	the	total	energy,	Φ is the deformation vector,	f	and	g	are	body	and	
surface	force	densities, Ω is the “reference domain” (points in space occupied by the 
unloaded artery), and 𝜕Ω	is	the	mathematical	boundary	between	the	lumen	and	the	
undeformed	vessel	wall.	The	strain	energy	density	of	the	elastic	artery	is	W	and	
depends	on	the	deformation	gradient	∇Φ.	A	quick	way	to	understand	this	is	that	the	
energy	should	depend	on	the	change	in	the	dimensions	of	an	infinitesimal	cuboid	
relative	to	its	dimensions	in	the	reference	configuration.	In	other	words,	the	energy	
does	not	depend	on	the	deformation	vector	Φ	but	rather	on	how	Φ	changes	when	
applied	to	neighboring	points	in	the	reference	configuration.	To	find	the	arterial	
deformation,	one	first	defines	the	mechanical	properties	of	the	vessel	wall	by	
specifying	W.	For	example,	it	may	be	mechanically	anisotropic	(collagen	fibers	in	the	
vessel	make	it	harder	to	stretch	radially,	than	axially);	or	it	may	be	layer-dependent	
(mechanical	properties	of	the	intima	are	different	than	the	media	or	adventitia).	We	
employ	a	layer-specific	strain	energy	following	(27)	which	comes	from	ex-vivo	stress	
tests	of	arterial	tissue.	For	more	details	on	the	strain	energy	see	(36).	
	
For	most	arterial	problems,	body	forces	such	as	gravity	are	negligible	so	f	=	0.	For	a	
lumen	pressure	p,	one	can	show	that	the	surface	force	density	is	in	fact	
	

𝑔 Φ,∇Φ = − !
!
𝐽 ∇Φ !!𝑁 ∙Φ	 (18)	

	
where	J	=	det	∇Φ	and	N	is	the	unit	outward	normal	vector	to	𝜕Ω.	The	ultimate	
objective	is	to	find	the	deformation	Φ	that	minimizes	Π	in	(17).	This	high-
dimensional	optimization	problem	is	solved	computationally.	Once	Φ	is	known,	the	
displacement	of	every	point	in	the	reference	configuration	determines	the	deformed	
configuration:	see	Figure	5	for	how	the	finite	element	mesh	deforms	under	the	effect	
of	Φ.	More	details	can	be	found	in	textbooks	such	as	(26).	In	this	paper	we	take	p		to	
be	the	average	of	systolic	and	diastolic	blood	pressure.	Since	atherosclerosis	is	
always	associated	with	high	blood	pressure	we	take	p=120	mmHg,	which	according	
to	the	American	Heart	Association	corresponds	to	stage	II	hypertension.	
	
Tissue	Growth	and	Morphoelasticity.	The	way	we	account	for	tissue	growth	in	our	
model	is	by	employing	the	theory	of	morphoelasticity	(23,	51).	Eq.	(17)	above	
depends	on	the	deformation	gradient	𝐅 = ∇Φ	which	captures	how	an	infinitesimal	
cuboid	of	tissue	changes	dimensions	under	a	deformation	Φ.	Since	biological	tissue	
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mostly	consists	of	water,	the	volume	of	the	cuboid	is	approximately	conserved	as	it	
is	strained.	The	consequence	is	that	the	total	volume	of	the	reference	and	deformed	
arteries	are	almost	identical.	However,	in	morphoelasticity	we	assume	that	tissue	
first	undergoes	a	stress-free	volumetric	growth	(characterized	by	a	growth	tensor)	
before	being	strained.	Specifically,	an	element	first	responds	to	a	pure	growth	
meaning	that	it	increases	its	volume	by	a	specified	amount.	This	will	cause	an	
“overlap”	with	neighboring	elements	resulting	in	an	incompatible	configuration.	
Therefore	by	itself,	the	growth	tensor		does	not	give	a	physical	configuration	and	
needs	to	be	followed	by	a	corrective	strain,	characterized	by	an	elastic	tensor.	The	
resulting	compound	process	guarantees	that	the	outcome	is	a	continuous	grown	
domain	with	no	overlaps.	Mathematically	the	process	assumes	that	the	deformation	
gradient	can	be	written	as	a	product	of	the	growth	tensor	(Fg)	and	the	elastic	tensor	
(Fe):	
	

𝐅 = 𝐅𝐞𝐅𝐠,         (19)	
	
see	Figure	6.	The	energy	in	(17)	also	needs	to	be	modified	under	this	assumption	of	
growth:	for	details,	see	(20).	
	
How	does	morphoelasticity	help	with	plaque	modeling?	The	growth	tensor	𝐅𝐠	can	be	
informed	by	the	biology	of	atherosclerosis.	From	murine	models	the	initial	stages	of	
plaque	growth	are	characterized	by	an	increase	in	intima	mass,	resulting	from	a	
migration	of	smooth	muscle	cells	from	the	media	(13).	One	possible	trigger	for	this	
migration	is	PDGF	(29).	In	our	model,	we	simplify	this	process	by	assuming	that	

PDGF	is	directly	responsible	for	growth	and	take	Fg	=	
𝑔! 0 0
0 𝑔! 0
0 0 1

:	increments	of	

arterial	tissue	increase	their	radial	and	circumferential	dimensions	by	g1	and	g2	
respectively	and	we	let	g1	and	g2	depend	on	PDGF	concentration	(as	predicted	by	
equation	(5))	through	a	Hill	function	so	that	

𝑔! = exp 𝛼!
𝑃!

𝑃! + 𝑃!!
𝑑𝑡′

!

!

,                 (20)	

	
where	α1	=	1,	α2	=	0.25,	m	=	4	and	P0	=	1.12*10-5	mol/L	(these	constants	were	
chosen	for	convenience).	The	growth	tensor	is	a	crucial	element	of	the	model	
because	it	allows	the	histological	and	morphoelastic	models	to	communicate	with	
each	other.	However,	one	has	to	be	careful	about	constructing	the	growth	tensor	
from	the	PDGF	distribution.		The	growth	tensor	is	always	applied	to	the	reference	
domain:	recall	eq.	(19).	However,	the	PDGF	equation	(5)	-	like	the	other	PDEs	-	is	
solved	in	the	deformed	domain.	Because	there	is	a	one-to-one	correspondence	
between	mesh	elements	in	the	reference	and	deformed	configurations	(see	Fig.	5),	
the	PDGF	concentration	in	a	reference	element	is	simply	taken	as	the	value	that	was	
computed	for	the	corresponding	deformed	element.	Using	this	method,	we	define	a	
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spatially	varying	PDGF	distribution	in	the	reference	domain	that	can	be	used	to	
update	eq.	(20)	at	each	time	step.	
	
The	resulting	integrated	model	of	atherosclerosis	allows	us	to	understand	how	
morphological	features	of	plaque	(e.g.	lumen	size,	stenosis,	necrotic	fraction)	could	
be	affected	by	microbiology	(e.g.	Ox-LDL	density,	glucose	concentrations,	PDGF	
density)	and	can	be	summarized	by	the	following	processes:	
	

• Oxidized	LDLs	infiltrate	the	intima	and	diffuse.		
• Macrophages	chemotax	towards	oxidized	LDLs,	consume	them	and	release	

MCP1,	attracting	more	macrophages.		
• Macrophages	die	if	oxygen	levels	are	low,	producing	necrotic	cells.	
• PDGF	released	from	platelets	induces	growth	of	neo-intima.	

	
Together,	these	four	processes	are	able	to	produce	a	vast	range	of	morphological	
and	histological	changes	in	the	vessel.	Our	simulations	are	done	in	two	dimensions	
since	plaque	structure	is	often	presented	in	two-dimensional	arterial	cross	sections.	
Our	computations	are	carried	out	in	the	FEniCS	finite	element	computational	
environment	using	the	University	of	Delaware’s	Caviness	cluster.	The	coupling	of	
PDEs	(1)-(4)	is	done	by	introducing	a	“mixed”	finite	element	space	(31),	consisting	
of	the	Cartesian	product	of	individual	(first	order)	finite	element	spaces.	Specifically,	
Newton’s	iteration	finds	a	vector	(N,M,Q,C)	that	makes	the	weak	form	of	(1)-(4)	and	
(6)-(13)	stationary	for	all	test	functions	drawn	from	the	mixed	space:	see	Figure	7	
for	a	flowchart	of	the	algorithm.	The	time	step	used	for	our	simulations	is	∆𝑡 =
0.004	months.	With	this	value	of	∆𝑡,	the	growth	functions	gk(t)	(eq.	(20))	are	
approximated	using	Simpson’s	integration	rule	at	𝑡 = 𝑡! = 𝑗∆𝑡,	j	=	0,	1,	2,…	and	the	
time-dependent	functions	C0(t),	M0(t),	f(x,y,t)	and	L(x,y,t)	in	eqs.	(8),	(12),	(4)	and	
(2,3)	are	directly	evaluated	at	𝑡 = 𝑡! .	One	possible	realization	of	the	model	at	a	single	
time	point	is	shown	in	Figure	8.	We	see	that	oxygen	and	macrophages	are	localized	
near	the	arterial	lumen;	a	single	localized	injury	to	the	endothelium	has	released	
PDGF,	leading	to	elevated	levels	of	the	growth	factor	near	the	lower	part	of	the	
lumen;	and	a	large	necrotic	core	has	resulted	from	the	death	of	many	MCs	deep	in	
the	intima.	
	
	

3. Results.		
Now	we	illustrate	the	results	of	our	model.	Although	there	are	many	ways	to	
produce	different	plaque	outcomes,	we	focus	on	changing	4	parameters	over	time,	
reflecting	4	main	mechanisms	that	are	thought	to	be	associated	with	inflamed	
plaques:	
	

1- Changes	in	Ox-LDL	distribution,	L(x,y,t).	It	has	long	been	hypothesized	that	
modified	LDLs	are	atherogenic	since	they	are	mainly	responsible	for	the	
appearance	of	the	foam	cell	phenotype	(7).	The	Ox-LDL	density	inside	a	
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plaque	is	governed	by	the	function	L	whose	time	evolution	we	control	
directly	in	the	model.	

	
2- Changes	in	inflammation,	𝑀!(𝑡)	.	We	define	inflammation	in	the	

endothelium	as	the	density	of	macrophages	adsorbed	on	the	layer.	
Mathematically	we	control	this	density	through	the	boundary	condition	(8).	
Biologically,	an	increasing	𝑀!(𝑡)	corresponds	to	an	endothelium	that	
becomes	more	inflamed	over	time.	

	
3- Development	of	vasa	vasora,	f(x,y,t).	Vasa	vasora	are	a	network	of	small	

vessels	that	supply	the	arterial	walls	with	resources	such	as	oxygen	and	
glucose.	Sources	of	oxygen	are	controlled	in	our	model	through	the	function	
f(x,y,t)	in	equation	(4).		

	
4- Increase	in	oxygenation,	𝐶!(𝑡).	Arterial	oxygenation	can	depend	on	

intercirculatory	mixing,	hemoglobin	concentration	and	other	systemic	
factors	(34).	For	example,	exercise	can	increase	hemoglobin	levels	and	
blood	flow	to	tissues	(5)	and	has	also	been	shown	to	increase	arterial	
oxygenation	in	patients	with	chronic	heart	failure	(25,	42).	We	control	𝐶!(𝑡)	
using	the	Dirichlet	boundary	condition	(12).	

	
A	summary	of	these	functions	is	provided	in	Table	2.	In	addition	to	these	four	
mechanisms,	intimal	growth	depends	on	PDGF	(P)	through	eq.	(20).	Mathematically,	
we	impose	P	=	P0	for	𝒙 ∈ 𝜕𝜔!	with	𝑃! > 0	on	n	=	0,	1	or	2	small	segments	of	𝜕𝜔!,	
representing	discrete	injury	points	on	the	endothelium,	and	𝑃! = 0	otherwise.	The	
number	of	injury	points	n	is	fixed	in	each	case	and	how	quickly	the	plaque	grows	can	
be	controlled	through	n.	
	
Now	we	make	connections	to	the	enhanced	IVUS	images	from	Kubo’s	paper	(30).	In	
this	study,	the	authors	imaged	the	same	plaques	12	months	apart	to	gain	insight	into	
their	natural	history	(see	Figure	2).	There	are	5	cases:	A-E.	To	recreate	these	
evolutions,	the	following	protocols	were	used.	Our	parameters	are	separated	into	
two	types:	those	that	can	potentially	change	in	time	and	reflect	the	4	mechanisms	
described	above,	and	those	that	remain	static	in	time	(but	can	differ	from	case	to	
case).	The	quantities	L,	M0,	C0	and	f	are	in	the	first	category	(see	Table	2)	and	all	
other	parameters	are	in	the	second	(see	Table	1).	The	virtual	plaques	are	evolved	
over	a	period	of	12	months	(up	to	t	=	3	in	simulation	time)	and	tissue	was	defined	as	
necrotic	when	N	exceeded	a	threshold	of	1.4 ×10!	cells/cm3;	otherwise	the	tissue	
was	classified	as	fibrotic	(see	Figure	4).	Other	components	(calcific,	lipidic)	were	not	
directly	accounted	for	by	the	model.	Our	simulation	results	are	shown	in	Figure	9,	
which	should	be	compared	to	Figure	2.	Parameter	values	for	each	of	cases	A-E	are	
given	in	Tables	1	and	2.	Computer-generated	animations	of	all	five	plaque	
evolutions	can	be	found	in	the	Figshare	repository	(37);	see	
	
https://doi.org/10.6084/m9.figshare.11968722.v3.	
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Case	A	results	from	a	combination	of	mechanisms	2	and	4.	Endothelial	inflammation	
increases	slightly	and	macrophages	chemotax	towards	sources	of	Ox-LDL	and	
chemokine.	Regions	of	the	intima	close	to	the	lumen	are	more	oxygenated	and	more	
oxygen	in	the	intima	reduces	macrophage	death	from	hypoxia.	The	result	is	plaque	
growth	along	with	a	necrotic	core	that	“drifts”	deeper	into	the	plaque,	in	rough	
qualitative	agreement	with	the	IVUS	results	in	Figure	2A.		
	
	
Case	B	is	achieved	through	mechanisms	1	and	2.	For	our	simulations	we	assumed	
that	endothelial	injury	is	quickly	healed	(so	there	are	no	sources	of	PDGF)	and	that	
both	the	Ox-LDL	concentration	in	the	intima	and	macrophage	density	at	the	
endothelium	reduce	over	time.	These	effects	lead	to	a	vanishing	necrotic	core.		
	
Case	C	results	from	mechanism	1.	By	changing	the	location	of	Ox-LDLs,	we	were	able	
to	alter	the	direction	of	macrophage	chemotaxis.	Because	NCs	are	continuously	
produced	by	MC	death,	the	necrotic	core	follows	the	macrophage	density	and	moves	
to	the	right	when	the	Ox-LDLs	move	to	the	right.	
	
Case	D	results	from	a	combination	of	mechanisms	1	and	2.	The	Ox-LDL	
concentration	follows	a	combination	of	Gaussian	functions	with	peak	densities	that	
increase	in	time	(36).	The	location	of	Gaussians	was	chosen	in	order	to	produce	the	
crescent-shaped	necrotic	core	in	Figure	2(D).	Endothelial	inflammation	also	
increases	in	time.	There	are	low	levels	of	oxygen	throughout	the	intima	and	PDGF	
concentrations	are	maximal	at	1	and	7	o'clock.	The	NC	appears	in	a	crescent	shape	
adjacent	to	the	lumen	from	3	to	5	o'clock.	
	
Finally,	Case	E	results	from	mechanism	4.	Changes	in	the	spatial	distribution	of	
microvessels		are	key	to	producing	the	pair	of	images	in	Case	E	of	Figure	2	(36).	
There	are	several	regions	of	necrosis	in	the	baseline	state	but	they	are	dynamic	and	
increase	in	number	and	size	in	the	follow-up	case.	The	seemingly	random	spatial	
distribution	of	necrosis	in	the	follow-up	could	result	from	changes	in	the	number	
and	density	of	vasa	vasora	in	the	intima,	reflected	by	taking	f	to	be	a	function	that	
changes	both	temporally	and	spatially.	
	
For	more	details	on	dynamics	of	other	concentrations	such	as	macrophages,	Ox-
LDLs,	MCP-1,	oxygen	and	PDGF	for	cases	A-E	see	(36).	
	

4. Discussion	
Plaques	present	considerable	inter-patient	variability,	depending	on	location	and	
age	of	the	plaque,	local	and	global	cell	biology,	personal	genetics,	and	environmental	
and	lifestyle	factors.	It	is	not	surprising	that	the	associated	evolutions	seem	
hopelessly	complicated.	We	advocate	that	integrated	mathematical	models	may	help	
with	understanding	how	plaque	complexity	results	from	microbiology.	
	
In	this	paper	we	assumed	that	equations	(1)-(17)	are	universal,	applying	to	all	
plaques	(this	assumption	will	be	further	discussed	below)	and	different	plaque	



	 15	

states	and	evolutions	are	characterized	by	different	parameters.	Studying	plaques	
through	these	equations	is	still	daunting	because	there	are	21	different	parameters	
and	functions	in	Tables	1	and	2.	While	we	estimated	them	for	the	purposes	of	
matching	the	IVUS	images	in	Figure	2,	in	principle	each	one	should	be	measured	in-
vivo	for	a	particular	patient.	Although	this	may	not	be	practical	or	even	possible,	
there	are	two	reasons	why	the	model	could	still	be	valuable.	First,	even	though	the	
parameters	and	driving	functions	are	unknown,	they	could	be	estimated	from	in-
vitro	experiments	or	from	animal	models.	Knowledge	of	more	parameters	gives	the	
model	more	predictive	power	and	puts	the	study	of	plaque	on	a	more	rigorous	
scientific	footing.	Second	–	and	more	importantly	–	the	integrated	model	can	be	
systematically	tested	and	recalibrated	to	accommodate	new	data.	Rather	than	
passively	describing	plaques	and	accumulating	observations,	the	integrated	model	
puts	clinicians	in	the	driving	seat,	enabling	them	to	formulate	and	test	new	
hypotheses.		
	
There	is	the	remaining	issue	that	equations	(1)-(17)	are	probably	not	universal.	
However,	this	does	not	pose	any	added	conceptual	difficulty	providing	
experimentalists,	clinicians	and	theorists	closely	collaborate.	Instead	of	updating	
parameter	values,	individual	terms	in	the	equations	can	be	modified	to	reflect	the	
latest	data.	New	equations	can	even	be	included	(or	removed)	if	required.	The	
power	of	a	mathematical	model	is	that	it	can	be	continuously	refined	and	updated	in	
light	of	new	scientific	developments.	
	
Caveats	and	Limitations	
The	model	presented	in	this	paper	focused	on	six	main	quantities:	necrotic	cells,	
macrophage	cells,	Monocyte	Chemotactic	Protein,	Platelet-Derived	Growth	Factor,	
oxygen	and	oxidized	LDLs.	This	is	a	minimal	model:	for	example	we	have	not	
distinguished	between	M1	and	M2	macrophages	(M1s	are	thought	to	be	pro-
inflammatory	while	M2s	are	atheroprotective);	neither	have	we	accounted	for	
hemodynamics,	the	effect	of	glucose,	or	the	intricate	biology	of	cell	death.	However,	
the	extension	to	these	more	complex	cases	is	not	conceptually	more	difficult	in	
terms	of	PDE	modeling.	In	principle	one	can	write	down	as	many	equations	as	the	
biology	demands.	Physical	laws	realized	through	a	mathematical	framework	
provide	systematic	ways	to	do	this	that	are	consistent	with	principles	of	mass	
conservation	and	continuum	mechanics.	The	main	technical	hurdle	is	not	in	the	
mathematical	modeling	but	in	finding	parameter	values	and	making	comparisons	
with	data.	To	do	this	requires	careful	calibration	of	the	model	output	with	serial	
images	such	as	Figure	2.	It	also	requires	close	collaboration	between	
mathematicians/engineers	and	clinicians/imaging	specialists.	
	
Our	model	was	mostly	focused	on	a	structural	model	of	plaque	that	can	be	affected	
by	local	intimal	growth.	Therefore,	we	focused	on	a	2D	domain,	following	IVUS	
images.		We	are	aware	that	an	arterial	model	is	not	complete	without	blood	flow	
dynamics.	In	reality,	endothelial	permeability	is	impacted	by	laminar	wall	shear	
stress	which	changes	Ox-LDL	deposition	rates	and	triggers	the	intimal	inflammatory	
cascade:	all	other	atherosclerotic	biomechanical	and	chemical	responses	follow,	
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including	platelet	production	of	PDGF.	However,	in	this	paper	the	locations	of	
endothelial	dysfunction,		(𝛤	in	Fig.	3)	as	well	as	the	Ox-LDL	distribution	were	
imposed	without	considering	any	hemodynamics.	If	we	considered	a	3D	arterial	
geometry	and	included	hemodynamics	into	our	model,	the	tissue	mechanics	
simulation	would	be	more	computationally	intensive	and	𝛤	would	be	a	2D	surface	
rather	than	a	curve	segment,	and	determined	as	a	result	of	blood	flow	rather	than	
decided	a	priori.	Solution	of	the	blood	flow	equations	in	a	3D	lumen	and	coupling	
them	to	the	tissue	mechanics	would	certainly	increase	the	complexity	of	the	model.	
	
When	lumen	pressure	is	removed	from	arterial	segments	ex-vivo,	a	stress	called	a	
residual	stress	still	remains:	this	can	be	seen	when	a	radial	cut	is	made,	usually	
causing	the	segment	to	spring	open.	Another	limitation	of	the	current	model	is	that	
we	have	not	accounted	for	residual	stresses	(11)	in	the	arterial	segments	at	
baseline.	The	residual	stress	can	alter	the	total	Cauchy	stress	after	pressurization	
and	growth,	so	predictions	of	stress	must	be	made	very	carefully	with	this	model.	
Incorporating	the	effects	of	residual	stress	can	be	done	by	modifying	the	reference	
configuration	(47).	
	
Other	chemical	messengers	can	be	incorporated	into	the	model	depending	on	what	
is	suggested	by	imaging	data.	Currently,	enhanced	IVUS	provides	spatially	resolved	
maps	of	necrosis,	cholesterol	and	calcium	phosphate	in-vivo.	While	other	cytokines	
such	as	interleukins	(35,	28)	also	play	an	important	role	in	the	development	of	
plaques,	including	them	into	our	model	does	not	provide	additional	insight	if	there	
are	no	data	to	indicate	their	spatial	distribution	and	temporal	evolution;	in	fact	
including	their	effect	would	only	increase	the	number	of	unknown	parameters	in	
our	model	and	therefore	the	uncertainty	of	the	predictions.	Histological	stains	such	
as	Movat	and	Haematoxylin	&	Eosin	(H&E)	constitute	the	“gold	standard”	in	terms	
of	determining	spatial	data	within	the	plaque.	If	these	stains	can	be	used	in	an	
animal	study	in	which	animals	are	periodically	sacrificed	and	particular	arteries	
analyzed	in	terms	of	cell	positions	and	cell	types,	this	experimental	protocol	could	
provide	more	information	about	the	dynamics	within	a	plaque	and	further	inform	
our	integrated	model.	
	
	
Future	Challenges	
We	believe	that	the	future	for	quantitative	models	of	atherosclerosis	is	promising.	
Imaging	technologies	such	as	OCT	and	infrared	spectroscopy	are	giving	us	the	
ability	to	visualize	the	evolution	of	plaque	morphology	and	composition.	The	great	
challenge	at	the	moment	is	the	way	the	data	are	being	collected.	Scientific	prediction	
is	concerned	with	quantifying	future	states	from	past	states.	The	more	informed	we	
are	of	past	states,	the	better	our	prediction	of	future	states.	The	few	existing	“natural	
history”	studies	of	human	atherosclerosis	have	an	extremely	low	time	resolution.	
For	example,	the	plaques	in	(30)	are	scanned	at	just	two	time	instances	(a	baseline	
and	a	follow-up)	within	a	year	from	each	other.	Serial	studies	in	single	patients	need	
to	be	performed	more	frequently,	and	at	greater	time	resolution.	The	hurdle	here	is	
clinical	indication	for	the	procedure.	Nevertheless,	we	believe	that	high	time-
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resolution	serial	studies	hold	the	key	to	a	better	understanding	of	atherosclerosis.	
Providing	modelers	and	quantitative	scientists	with	more	snapshots,	or	even	a	
movie	of	disease	progression	will	greatly	enhance	the	modeling	and	possibly	
prediction	of	atherosclerotic	development.	
	
Another	advance	that	will	greatly	help	in	aiding	prediction	is	an	improvement	in	
virtual	histology	technology	and	integration	with	other	imaging	methods.	Currently	
the	master	algorithm	classifies	tissues	into	four	categories:	fibrous,	fatty,	necrotic	
and	calcific.	In	reality,	a	given	region	can	share	characteristics	from	each	category.	
For	example,	necrotic	cells	could	be	interspersed	with	flecks	of	calcium.	What	is	
really	needed	is	a	continuous	version	of	the	4	categories.	What	could	such	a	scale	
look	like?	One	possibility	is	to	use	a	vector	that	represents	weights	of	each	category:	
p	=	(p1,	p2,	p3,	p4)	where	 𝑝!!

!!! = 1.	For	example,	(0,0,0,1)	corresponds	to	a	region	
that	is	completely	calcified	and	(0,0,1,0)	corresponds	to	a	region	that	is	completely	
necrotic.	However,	an	area	where	calcium	and	necrosis	are	present	in	equal	
amounts	can	be	represented	as	(0,	0,	0.5,	0.5).	Constructing	the	algorithms	to	
provide	this	level	of	detail	will	prove	challenging,	since	even	the	current	4-color	
method	is	not	universally	accepted	and	does	not	always	match	the	histological	gold-
standard.		
	
Overall,	the	mathematical	community	is	well-positioned	to	make	inroads	to	
understanding	the	patterns	seen	in	enhanced	IVUS	images	or	other	imaging	
modalities	of	atherosclerotic	plaque.	While	the	underlying	biology	in	plaque	
development	is	intricate	and	complex,	we	believe	that	mathematics	provides	the	
conceptual	bridge	that	connects	plaque	environment	to	the	spatial	patterns	that	
ultimately	result.		
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Figure	1:	A	summary	of	atherosclerosis	microbiology.	LDLs	that	enter	the	intima	become	Ox-LDLs	and	
are	consumed	by	macrophages	leading	to	accumulation	of	foam	cells.	Foam	cells	later	undergo	necrosis	
and	form	a	necrotic	core.		
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Figure	2:	Serial	images	from	(30).	Baseline	and	follow-up	were	12	months	apart.	
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Figure	3:	PDGF	produced	by	platelets	promote	cell	proliferation	at	the	site	of	an	injury.	
	
 
 

 
 
	
Figure	4:	Solving	the	PDEs	(1)-(5)	produces	smooth	functions	for	biological	quantities	such	as	the	
necrotic	cell	density,	N(x,y,t).	By	introducing	a	threshold	value	(here	N	=	1.4*106),	the	function	can	be	
used	to	explain	regions	of	necrosis	in	advanced	fibroatheromas:	N<1.4*106	indicates	the	presence	of	
fibrotic	tissue	(green)	while	N>1.4*106indicates	the	presence	of	necrotic	tissue	(red).	The	3D	surface	
N(x,y,t)	can	be	projected	onto	the	xy	plane	to	recreate	the	2D	IVUS	cross	sections	in	Figure	2.	
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Figure	5:	Minizing	the	energy	(17)	produces	a	displacement	field (indicated	by	arrows)	that	deforms	the	
arterial	cross	section. 
	
	
	
	

	
	

Figure	6:	Decomposition	of	the	deformation	gradient	F	into	a	pure	growth	and	an	elastic	response.	This	
is	the	fundamental	assumption	in	morphoelasticity	theory:	see	Eq.	(19).		
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																																																																Figure	7:	Flowchart	of	atherosclerosis	simulation	algorithm.	
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Figure	8:	Typical	plaque	model	results.	Concentrations	of	NC,	Chemoattractant,	Ox-LDL,	MC	and	and	oxygen	are	

outputted	as	spatially	dependent	fields	distributed	within	the	intima.	For	PDGF	concentration,	the	media	and	adventitia	

are	also	indicated	along	with	the	finite	element	mesh.	
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																						Figure	9:	Simulations	of	necrotic	core	development	in	a	coronary	artery	(compare	with	Fig.	2)	
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Table	1:	Parameter	values	for	Eqs	(1)-(5)	used	to	generate	Figure	9.	Abbreviations:	MC	=	Macrophage	
Cells,	NC	=	Necrotic	Cells,	CKs	=	Chemokines,	O2	=	Oxygen,	PDGF	=	Platelet	Derived	Growth	Factor.	

Symbol	 Meaning	 Case	A	 Case	B	 Case	C	 Case	D	 Case	E	 Units	

μ	 Chemotactic	
coefficient	of	MCs	 2.26	 7.77	 4.41	 9.17	 6.02	 (mm!/day).(cm!/mg)	

D1	 Diffusivity	of	NCs	 3.2×10!!	 3.3×10!!	 3.6×10!!	 3.9×10!!	 4.3×10!!	 cm!/day	

D2	 Diffusivity	of	MCs	 1.72	 1.74	 1.92	 2.06	 2.30	 cm!/day	

D3	 Diffusivity	of	CKs	 80.8	 81.6	 89.7	 96.3	 107.6	 cm!/day	

D4	 Diffusivity	of	O2	 172.5	 174.3	 191.6	 205.8	 229.9	 cm!/day	

D5	 Diffusivity	of	PDGF	 19.4	 0	 32.3	 15.4	 21.5	 cm!/day	

β1	 Clearance	rate	of	
NCs	 0.1	 0.1	 0.1	 0.1	 0.1	 day!!	

β2	 Clearance	rate	of	
CKs	 10	 10	 10	 10	 10	 day!!	

β3	 Background	O2	 1.2×10!	 1.2×10!	 1.2×10!	 1.2×10!	 1.2×10!	 day!!	
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Table	2:	Time-dependent	parameters	for	Mechanisms	1-4.	

	 Meaning	 Case	A	 Case	B	 Case	C	 Case	D	 Case	E	 Units	

L(x,y,t)	 Ox-LDL	
concentration	 Static	 Decreasing	in	

time		
Location	
changes	in	
time	

Increasing	
in	time	 Static	 mg/cm!	

M0(t)	
Macrophage	
density	in	
endothelium	

Increases	from	
4.6×10! to	
4.64×10!	

Decreases	from	
5.2×10! to	
1.2×10!	

4×10!	
Increases	
from	0 to	
1.7×10!	

4.2×10!	 cells/cm!	

C0(t)	 O2	density	in		
endothelium		

Increases	from	
5.6×10!! to	
11.2×10!!	

5.6×10!!	 5.6×10!!	 N/A	 N/A	 mol/L	

consumption	rate		

β4	 Decay	rate	of	PDGF	 2	 0	 2	 2	 2	 day!!	

�1	 Production	rate	of	
CKs	 2.5×10!!	 2.5×10!!	 2.5×10!!	 2.5×10!!	 2.5×10!!	 cm!/day	

�2	 Consumption	rate	
of	O2	by	MCs	 2.5×10!!	 2.5×10!!	 2.5×10!!	 2.5×10!!	 2.5×10!!	 cm!/day	

γmin	 Normoxic	MC	
death	rate	 3×10!!	 3×10!!	 3×10!!	 3×10!!	 3×10!!	 1/day	

γmax	 Hypoxic	MC	death	
rate	 1.2	 1.2	 1.2	 1.2	 1.2	 1/day	

𝑃!	 PDGF	BC	 1.4×10!!	 0	 10!!	 0.28×10!!	 0.45×10!!	 mg/cm3	

n	 #	Injury	Points	 1	 0	 1	 2	 1	 none	

p	 Lumen	Pressure	 120	 120	 120	 120	 120	 mmHg	
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f(x,y,t)	 O2	sources	within	
intima	 0	 0	 0	 6.7	

Sum	of	
Gaussian	
functions1	

mol/L/day	

	

																																																								
1	Specifically,	𝑓 𝑥, 𝑦, 𝑡 = 𝑓!(𝑡)exp [−𝑎! 𝑥 − 𝑥! ! − 𝑏! 𝑦 − 𝑦! !]!

!!! 	for	some	constants	ak,	bk,	N,	xk,	

yk	and	time-dependent	functions	fk(t).		


