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Abstract— The timing of cellular events is inherently random
because of the probabilistic nature of gene expression. Yet
cells manage to have precise timing of important events. Here,
we study how gene expression could possibly be regulated to
precisely schedule timing of an event around a given time. Event
timing is modeled as the first–passage time (FPT) for a protein’s
level to cross a critical threshold. Considering auto–regulation
as a possible regulatory mechanism, we investigate what form
of auto–regulation would lead to minimum stochasticity in FPT
around a fixed time. We formulate a stochastic gene expression
model and show that under certain assumptions, it reduces to
a birth-death process. Our results show that when the death
rate is zero, the objective is best achieved when all of the
birth rates are equal. On the contrary, when the death rate
is non–zero, the optimal birth rates are not equal. In terms of
the gene expression model, these results illustrate that when
protein does not degrade, stochasticity in FPT around a given
time is minimized when there is no auto–regulation of its
expression. However, when the protein degrades, some form
of auto–regulation is required to achieve this. These results
are consistent with experimental findings for the lysis time
stochasticity in λ phage.

I. INTRODUCTION

Gene expression, the process of synthesizing proteins
from a gene via transcription and translation, is inherently
a stochastic process, leading to cell–to–cell variability in
the time evolution of protein levels even in a population of
isogenic cells [1]–[3]. It also gives rise to randomness in
the timing of cellular events which occur at critical protein
thresholds after the onset of gene expression [4]–[8]. For
instance, the time it takes for a bacteriophage λ virus to kill
an infected E. coli cell (called the lysis time) is stochastic
[7]. Its variability can be accounted for by randomness in the
time a certain protein (called holin) takes to reach a critical
level [9].

Despite the randomness in the protein levels and con-
sequently in the event timings, cells typically manage to
function robustly using various regulation mechanisms [10]–
[14]. For example, lysis of a host cell by the bacteriophage λ

virus is a precisely scheduled event even though synthesis of
the lysis protein, holin, is stochastic [7], [15]. Furthermore, it
has been suggested that an optimal lysis time exists that gives
evolutionary advantage to the virus in terms of its fitness
[16]–[20]. This implies that there could be regulation of
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expression of holin so that lysis happens around the optimal
time, with minimum variability. Auto–regulation wherein a
protein regulates its own transcription is one of the regulatory
mechanism widely used by cells [14], [21].

In this work, we study how event timing could be regulated
to minimize its stochasticity around a given time point. Event
timing is modeled as the first–passage time (FPT) for the
protein copy numbers to cross a critical threshold in the
stochastic model of gene expression. Further, we analyze
auto–regulation as a possible regulatory mechanism cells
could employ to have precision in FPT. Ultimately, we seek
the answer to: what form of auto–regulatory feedback would
minimize the stochasticity in FPT around a given time?

Previously, we have dealt with similar a question assuming
that the proteins are stable and produced in geometric bursts
[22]. Here, we extend our analysis to the case where proteins
are allowed to degrade. We start off with a standard two
state model of gene expression. We make an additional
assumption of the mean burst size being small so that the
gene expression model can be analyzed by a birth-death
process. Our analysis shows that when the death (protein
degradation) rate is zero, the birth rates that minimize the
stochasticity around a given time are equal. However, when
the protein degradation (or death) term is introduced, these
optimal birth rates are no longer equal. Connecting these
observations back to the gene expression implies that when
proteins are stable and do not degrade, the optimal auto–
regulation is no feedback. However, when protein is unstable,
auto–regulation is required to minimize the randomness in
the timing around a given time.

This paper is organized as follows. In the section II, we
mathematically prove that when the mean burst size is small,
a gene expression model reduces to a birth-death process.
In the next section, the distribution and first two moments
of FPT for a birth-death process are calculated. Then, in
section IV, we formulate the objective function that we aim
to minimize. Section V discusses the optimal birth rates that
would minimize the objective function. Lastly, we discuss
the results and their implications. Also, the notations used in
this work are summarized in Table I.

II. GENE EXPRESSION AS A BIRTH-DEATH PROCESS

In this section, we establish that under certain conditions a
gene expression model converges to a birth-death process in
terms of statistical properties of protein levels (refer to Fig.
1). Consider a gene expression model with auto–regulation.
The transcription of mRNAs from the DNA is constitutive
and takes places at a protein dependent rate k̂x where the
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Fig. 1. A gene expression model converges to a birth-death process in terms of statistical properties of protein count. On the left, an auto–regulated gene
expression model is shown wherein transcription takes place at a rate k̂x while each mRNA is translated to proteins at a rate λ . mRNAs and proteins
degrade with rates γ̂ and γ respectively. In the limit when γ̂ >> γ , this simplifies to a burst model where each burst produces B (geometrically distributed)
proteins. This has been depicted in the center. In the limit when 〈B〉 � 1, this can be further simplified to a birth-death process as shown on the right.
Here, each birth event, occurring at a rate k̂x(〈B〉/(1+ 〈B〉)), makes a protein while each death event takes place with rate γ .

subscript x is for protein level. Each mRNA is further
translated to proteins at a rate λ . The rates of degradation of
one molecule of mRNA and protein are respectively given
by γ̂ and γ . It has been established that when γ̂� γ , mRNA
dynamics can be ignored. In this case, each transcription
event creates a random burst of protein molecules [23]–[26].
Below we describe this model in detail.

Let x(t) denote the protein level at a time t. The proba-
bilistic birth and death of proteins in the burst model are

P(x(t +dt) = i+B|x(t) = i) = k̂i dt, (1a)
P(x(t +dt) = i−1|x(t) = i) = iγdt, (1b)

where B is a random variable representing the protein burst
size. The distribution of B is geometric with mean 〈B〉 := λ/γ̂

[27], [28]. Assuming µ to be the parameter of the geometric
distribution, we have

P(B≥ n) = (1−µ)n, n ∈ {0,1,2, · · ·}. (2)

where µ is related with 〈B〉 as µ = 1/(〈B〉+1).

TABLE I
SUMMARY OF NOTATIONS

k̂x Transcription rate as a function of protein (x)
λ Translation rate
γ̂ mRNA degradation rate
γ Protein degradation rate
P Probability
B Protein burst size
µ Parameter of burst distribution (geometric)
pi(t) P(x(t) = i) where x(t) is protein count at time t
X Threshold for FPT
k Birth rate for the birth-death process
Si(t) Survival probability of the particle starting at i
wi(t) Density of FPT to reach X for a particle starting at i
S̃i(s) Laplace transform of Si(t)
w̃i(s) Laplace transform of wi(t)
〈.〉 Expectation operator
τi Mean exit time for birth-death process starting with

initial protein count i. Also for birth-death process
ηi Second order moment of FPT for birth-death process

To see under what conditions the statistical properties of
x(t) under this model converge to those of a birth-death
process, we compare their master equation formulations.
Let pi(t) be a shorthand notion for P(x(t) = i). The master

equations for the gene expression model are given by

∂ p0(t)
∂ t

=− (1−µ)k̂0 p0(t)+ γ p1(t), (3a)

∂ pi(t)
∂ t

=−
(
(1−µ)k̂i + iγ

)
pi(t)+(i+1)γ pi+1(t)

+
i−1

∑
n=0

µ (1−µ)i−n k̂n pn(t). (3b)

When 〈B〉� 1, µ would be ≈ 1 and the terms (1−µ) j, j≥ 2
can be ignored. The master equations now simplify to

∂ p0(t)
∂ t

=− (1−µ)k̂0 p0(t)+ γ p1(t), (4a)

∂ pi(t)
∂ t

=−
(
(1−µ)k̂i + iγ

)
pi(t)+(i+1)γ pi+1(t)

+(1−µ) k̂i−1 pi−1(t). (4b)

Next, consider a birth-death process described by

P(x(t +dt) = i+1|x(t) = i) = ki dt, (5a)
P(x(t +dt) = i−1|x(t) = i) = iγdt, (5b)

where ki denotes the birth rate when protein count is i. The
death rate for each protein is denoted by γ . The correspond-
ing master equation is

∂ p0(t)
∂ t

=−k0 p0(t)+ γ p1(t), (6a)

∂ pi(t)
∂ t

=−(ki + iγ) pi(t)+(i+1)γ pi+1(t)+ ki−1 pi−1(t). (6b)

Comparing the master equation formulations in (4a) and
(4b) with those in (6a) and (6b), it can be concluded that
when 〈B〉� 1, a gene expression model converges to a birth-
death process in terms of statistical properties of protein
count. Notice that the birth rates in the birth-death model are
proportional to the transcription rates in the gene expression
model. More specifically, ki = k̂i(1−µ)= k̂i (〈B〉/(1+ 〈B〉)).
Next, we derive the distribution and the moments of first–
passage time (FPT) of a birth-death process.

III. FIRST–PASSAGE TIME FOR A BIRTH-DEATH PROCESS

The first-passage time calculations for a birth-death pro-
cess have been previously dealt with in the literature (see,
for instance, [29]–[31]).Here, we describe the calculations
which are specific to the problem at hand as a convenience
to the reader.



The first–passage time (FPT) for the protein level x(t) to
cross a threshold X is defined as

FPT := inf{t : x(t)≥ X}. (7)

To calculate the distribution of FPT, let us consider the
birth-death process with absorbing boundary at X . The
process can be imagined as a particle hopping on an integer
lattice with forward and backward rates as birth and death
rates respectively. The particle’s position at any given time
represents the protein count at that time. When the particle
reaches the protein count X, the process terminates and the
FPT is recorded. This is shown in Fig. 2.
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Fig. 2. Illustration of FPT calculation for a birth-death process. The
birth-death process is depicted as particle hopping on integer lattice. The
sites {0,1, ..X} denote the protein count. Forward hopping rates are protein
dependent birth rates ki while backward hopping rates are death rates iγ .
The process terminates when the particle reaches X and FPT is recorded.

Let P( j, t|i, t̂) be the probability that the protein count (the
particle’s position) is j at time t given that it was i at time
t̂. The backward equation describing P( j, t|i, t̂) is

∂P( j, t|i, t̂)
∂ t

= kiP( j, t|i+1, t̂)+ iγP( j, t|i−1, t̂)

− (iγ + ki)P( j, t|i, t̂), 1≤ i≤ X−1, (8a)
∂P( j, t|0, t̂)

∂ t
= k0P( j, t|1, t̂)− k0P( j, t|0, t̂), (8b)

P( j, t|X , t̂) = 0. (8c)

The initial conditions are P( j, t̂|i, t̂) = δi j, where δi j is the
Kronecker delta function. Let us define Si(t) as the survival
probability of a particle that starts at protein count i given
that it gets absorbed when it reaches the protein count X .
Then, Si(t) := ∑

X
j=1P( j, t|i, t̂ = 0), and

∂Si

∂ t
= kiSi+1(t)+ iγSi+1(t)− (iγ + ki)Si(t), (9a)

∂S0

∂ t
= k0S1(t)− k0S0(t), (9b)

SX (t) = 0. (9c)

Also, Si(0) = 1 for 0≤ i≤ X . Taking Laplace transforms

−1+ sS̃i(s) = kiS̃i+1(s)+ iγ S̃i−1(s)− (iγ + ki)S̃i(s), (10a)

−1+ sS̃0(s) = k0S̃1(s)− k0S̃0(s), (10b)

S̃X (s) = 0. (10c)

Let wi(t) denote the first–passage time probability distribu-
tion, then wi(t)dt = Si(t)− Si(t + dt) or wi(t) = − ∂Si

∂ t . This
implies w̃i(s) = −sS̃i(s)+ 1. Therefore, we could write the

Laplace transformed survival density function as

sw̃i(s) = kiw̃i+1(s)+ iγw̃i+1(s)− (iγ + ki)w̃i(s), (11a)
sw̃0(s) = k0w̃1(s)− k0w̃0(s), (11b)
w̃X (s) = 1. (11c)

The mean FPT and second moment of FPT can now be
derived. The results are presented in a theorem–proof format.

Theorem 1: The first two moments of the FPT for a birth-
death process with birth rates ki and death rate γ are given
by following expressions

〈FPT 〉=
X−1

∑
l=0

l

∑
j=0

γ
l− j
(

k0k1...k j

k0k1...kl

)
l!
j!

1
k j
. (12)

〈
FPT 2〉= 2

X−1

∑
l=0

l

∑
j=0

γ
l− j
(

k0k1...k j

k0k1...kl

)
l!
j!

τ j

k j
, (13a)

where

τi =
X−1

∑
l=i

l

∑
j=0

γ
l− j
(

k0k1...k j

k0k1...kl

)
l!
j!

1
k j
. (13b)

Proof: The proof is divided in two parts. The first part
deals with derivation of expression for mean FPT while the
second one with that of the second order moment of FPT.
(1) Calculation of mean FPT
Let us denote the mean exit time starting the site i as τi :=∫

∞

0 twi(t)dt = w̃
′
i(s= 0). Note that 〈FPT 〉= τ0. Using (11a)–

(11c), one may write

k0(τ1− τ0) =−1, (14a)
ki (τi+1− τi)− iγ (τi− τi−1) =−1, (14b)
τX = 0. (14c)

Let ai := τi+1− τi. Note that (14a) is just (14b) evaluated at
i = 0. Thus, (14a)–(14c) transform to

a0 =−
1
k0
, (15a)

kiai− iγai−1 =−1, 1≤ i≤ X−1, (15b)
aX−1 = τX − τX−1 =−τX−1. (15c)

Let’s solve (15b). Multiplying both sides by fi (to be
determined)

fiai−
γ

ki
i fiai−1 =−

fi

ki
. (16)

Let ri =
γ

ki
. Choosing fi so that

fi−1 =
γ

ki
i fi = rii fi =⇒ fi =

C
riri−1...r1r0i!

. (17a)



Substituting this expression of fi in (16) yields

fiai− fi−1ai−1 =−
fi

ki
, 1≤ i≤ X−1, (18a)

=⇒ fiai =−
i

∑
j=0

f j

k j
+C

′′
, (18b)

=⇒ ai =−
1
fi

i

∑
j=0

f j

k j
+

C
′′

fi
, (18c)

=−
i

∑
j=0

r0r1...ri

r0r1...r j

i!
j!

1
k j

+
C
′′

C
r0r1...rii!. (18d)

Since a0 =−1/k0 =⇒ C
′′
/C = 0. Therefore

τi+1− τi =−
i

∑
j=0

r0r1...ri

r0r1...r j

i!
j!
, (19a)

=⇒ τi =−
i−1

∑
l=0

l

∑
j=0

r0r1...ri

r0r1...r j

i!
j!

1
k j

+C
′′′
, (19b)

=⇒ τ0 =C
′′′
. (19c)

C
′′′

can be determined by −aX−1 = τX−1 as follows

τX−1 =−
X−2

∑
l=0

l

∑
j=0

r0r1...ri

r0r1...r j

i!
j!

1
k j

+C
′′′

(20a)

=−aX−1 =−
X−2

∑
j=0

r0r1...rX−1

r0r1...r j

(X−1)!
j!

1
k j
. (20b)

Let β (l) :=
l

∑
j=0

r0r1...ri

r0r1...r j

l!
j!

1
k j

. This implies

C
′′′
= β (X−1)+

X−2

∑
l=0

β (l) =
X−1

∑
l=0

β (l), (21a)

=⇒ τ0 =
X−1

∑
l=0

l

∑
j=0

r0r1...rl

r0r1...r j

l!
j!

1
k j

=
X−1

∑
l=0

l

∑
j=0

γ
l− j k0k1...k j

k0k1...kl

l!
j!

1
k j
,

(21b)

and

τi =
X−1

∑
l=0

β (l)−
i−1

∑
l=0

β (l) =
X−1

∑
l=i

β (l) (22a)

=
X−1

∑
l=i

l

∑
j=0

r0r1...rl

r0r1...r j

l!
j!

1
k j

=
X−1

∑
l=i

l

∑
j=0

γ
l− j k0k1...k j

k0k1...kl

l!
j!

1
k j
.

(22b)

(2) Calculation of second order moment of FPT
Let us denote the second order moments of FPT distribution
for a particle starting at site i by ηi :=

∫
∞

0 t2wi(t)dt = w̃
′′
i (s =

0). Note that
〈
FPT 2

〉
= η0. Using (11a)–(11c)

k0(η1−η0) =−2τ0, (23a)
kiηi+1 + iγηi−1− (iγ + ki)ηi =−2τi, (23b)
ηX = 0. (23c)

Defining Ai := ηi+1−ηi, we have

k0A0 =−2τ0, (24a)
kiAi− iγAi−1 =−2τi, (24b)
AX−1 =−ηX−1. (24c)

Multiplying both sides of (24b) by the integrating factor fi
defined in (17a) and then dividing by ki gives

fiAi− fi−1Ai−1 =−
2 fi

ki
τi, (25a)

=⇒ Ai =−
2
fi

i

∑
j=0

f j

k j
τ j +

D
fi
. (25b)

Since A0 =−2τ0/k0, we have D = 0. Expression of Ai now
becomes

Ai = ηi+1−ηi =−2
i

∑
j=0

f j

fi

τ j

k j
, (26a)

=⇒ ηi =
i−1

∑
k=0

Ak +D
′
=⇒ η0 = D

′
. (26b)

Using ηX−1 =−AX−1

X−2

∑
l=0

Al +D
′
=−AX−1 =⇒

X−1

∑
l=0

Al =−D
′
, (27a)

=⇒ η0 =−
X−1

∑
l=0

Al = 2
X−1

∑
l=0

l

∑
j=0

f j

fl

τ j

k j
(27b)

= 2
X−1

∑
l=0

l

∑
j=0

γ
l− j k0k1...k j

k0k1...kl

l!
j!

τ j

k j
. (27c)

This concludes the proof.
So far we have developed the formulas for the moments

of FPT for a birth-death process. In the following section,
we discuss the optimal birth rates such that the variability in
the FPT around a fixed time is minimized.

IV. OPTIMAL BIRTH RATES FOR A BIRTH-DEATH PROCESS

Our aim is to investigate what form of auto–regulation in
gene expression would lead to minimum variability in the
FPT around a given value, say t∗. We hypothesize following
two possible objective functions for that purpose

1) Minimizing variance of FPT subject to 〈FPT 〉= t∗.
2) Minimizing the expected mean squared error of FPT

from the point t∗, i.e.,
〈
(FPT − t∗)2

〉
.

To incorporate both these hypotheses, we consider the fol-
lowing objective function (denoted by φ )

φ := Var(FPT )+
1
ε
(t∗−〈FPT 〉)2 , (28)

where ε > 0 is a tuning parameter. Eq. (28) covers a wide
class of cost functions involving the variance of FPT and
penalizes the distance of mean FPT from the point t∗.
Observe that when ε = 1, (28) is the objective function for
2). However, it is not immediately obvious how the first
hypothesis of minimizing variance of FPT for fixed mean
can be covered by such a choice of φ . We will revisit this
issue while discussing the optimal birth rates when γ = 0.



A. Optimal birth rates when γ = 0

When γ = 0, the process reduces to a pure birth process.
Using Theorem 1, we can write

〈FPT 〉=
X−1

∑
i=0

1
ki
, (29a)

Var(FPT ) =
〈
FPT 2〉−〈FPT 〉2 =

X−1

∑
i=0

1
k2

i
. (29b)

Thus, the objective function φ in (28) can be written as

φ(k0,k1, ...,kX−1) =
X−1

∑
i=0

1
k2

i
+

1
ε

(
t∗−

X−1

∑
i=0

1
ki

)2

. (30)

Note that for 0≤ i≤ X−1

∂φ

∂ki
=− 2

k3
i
+

2
ε

(
t∗−

X−1

∑
j=0

1
k j

)
1
k2

i
. (31)

To find the minimum of the function φ , we solve the system
of following X equations for ki’s

∂φ

∂ki
= 0, 0≤ i≤ X−1. (32a)

We restrict ourselves to ki > 0 since ki’s represent birth rates.
The system of equations to be solved now reduces to

− 1
ki
+

1
ε

(
t∗−

X−1

∑
j=0

1
k j

)
= 0, 0≤ i≤ X−1. (32b)

The solution is given by the following:

ki =
X + ε

t∗
, 0≤ i≤ X−1 (33)

Further, to ascertain that above solution is indeed a minimum,
we have checked that the Hessian matrix consisting of second
order derivatives of the objective function φ is positive
definite. The calculations have been omitted due to space
constraints.

This calculation implies that when the death rate is zero,
the optimal birth rates have to be equal, given by (33). The
parameter ε changes the value of the optimal birth rates.
In particular, for ε → 0, we have ki = X/t∗. This solution
is same as what we get by minimizing the variance of FPT
subject to 〈FPT 〉= t∗ using the Lagrange multiplier method,
which substantiates our choice of the objective function in
(28). Also, when ε = 1, the optimal birth rates are ki = (X +
1)/t∗. Next, we introduce a death rate in the process and
investigate the optimal birth rates that minimize the objective
function under consideration.

Remark: Note that if one wants to minimize the func-
tion (t∗−〈FPT 〉)2, the solution is ill-posed as there are
infinitely many ki that make the objective function equal to
zero. However, the problem can be regularized by minimiz-
ing (t∗−〈FPT 〉)2+εVar(FPT ), ε→ 0 instead. In this case,
we are choosing the unique set of ki’s which also minimize
the variance of FPT. This is another reason behind choosing
the objective function φ described in (28).
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Fig. 3. Optimal birth rates for a birth-death process. The birth rates are
assumed to follow a Hill function mentioned in (34). Part (a) shows optimal
birth rates when degradation rate is allowed to change while keeping the
other parameters constant (X = 50, t∗ = 10,ε = 1). In part (b), optimal birth
rates are plotted when the tuning parameter ε is changed (other parameters:
X = 50, t∗ = 10,γ = 0.1).

B. Optimal birth rates when γ > 0

We have seen that the optimal birth rates for a birth-death
process with zero death rate are equal. However, this is not
true anymore once the death term is introduced. For example,
if we take a simple case of X = 3,γ = 1,ε = 1 and solve
for the optimal birth rates, the answer is k0 = 4.0097,k1 =
8.5745,k2 = 4.6059.

In Fig. 3, we present the results for X = 50. In order to
reduce the number of parameters to be optimized and keep
the results biologically relevant, we confined the optimiza-
tion space to a mixture of negative and positive feedbacks
implemented using the Hill function. Particularly, we used
the following form for birth rate at protein count i

ki =
kmax(1+(ic1)

H1)

a+(ic2)H2
, H1 ≤ H2, (34)

and optimized over the parameters kmax,c1,H1,a,c2,H2.
In 3(a), we have allowed the death rate γ to change while

keeping other parameters as t∗ = 10,ε = 1. We see that when
γ = 0, the optimal birth rates are equal. In fact, they are equal
to X/t∗ = 5, validating the result in (33). Further, when γ =
0.5, the optimal birth rates are no longer equal. Rather, they
first increase and then decrease, indicating auto–regulation
involving both positive and negative feedbacks.

In part Fig. 3(b), we have changed the tuning parameter ε

while other parameters are kept as t∗ = 10,γ = 0.1. It can be
seen that in both cases, the optimal birth rates represent a mix



feedback mechanism involving both positive and negative
feedbacks.

V. DISCUSSION

The inherent stochastic nature of gene expression is a
driving force behind randomness in how a protein’s level
evolves with time. Therefore, timing of cellular events, which
typically depends upon levels of important proteins, is also
stochastic. In this work, our objective is to understand how
cells regulate event timing. More specifically, motivated by
precision in the lysis time of a λ phage, we studied events
whose stochasticity is minimized around a fixed time. We
modeled event timing as a first–passage time problem. Also,
we considered auto–regulation as a possible regulatory mech-
anism and studied what form of auto–regulation would lead
to minimum stochasticity in FPT around a fixed time. Our
results show that when protein does not degrade appreciably
and the mean burst size is very small, the best way to ensure
tight regulation of event timing would be to have no auto–
regulation. However, when protein is unstable, some form of
auto–regulation is required to optimize timing of events.

These results can be connected to phage λ lysis time. The
existence of optimal lysis time suggests that there could be
auto–regulation in expression of holin. While the proteins
responsible for lysis (holin) are stable [32], the effective
mean burst size is also small [9]. Thus, the best strategy
for the phage would be to have no auto–regulation in the
expression of holin. This interpretation is consistent with
experimental observations [33], [34]. It should be noted
that there could be other types of regulation schemes that
can minimize stochasticity in FPT around a fixed time. For
instance, when a gene expression is considered in bursts
with no protein decay, the stochasticity decreases as the
mean burst size is reduced [9], [22]. In fact, analysis in [9]
suggests that the holin-antiholin system of λ phage could be
a mechanism to regulate the effective mean burst size and
subsequently the stochasticity.
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