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Abstract— In this paper we investigate the effect of tightly-
coupled estimation on the performance of visual-inertial lo-
calization and dynamic object pose tracking. In particular,
we show that while a joint estimation system outperforms its
decoupled counterpart when given a “proper” model for the tar-
get’s motion, inconsistent modeling, such as choosing improper
levels for the target’s propagation noises, can actually lead to
a degradation in ego-motion accuracy. To address the realistic
scenario where a good prior knowledge of the target’s motion
model is not available, we design a new system based on the
Schmidt-Kalman Filter (SKF), in which target measurements
do not update the navigation states, however all correlations are
still properly tracked. This allows for both consistent modeling
of the target errors and the ability to update target estimates
whenever the tracking sensor receives non-target data such
as bearing measurements to static, 3D environmental features.
We show in extensive simulation that this system, along with
a robot-centric representation of the target, leads to robust
estimation performance even in the presence of an inconsistent
target motion model. Finally, the system is validated in a real-
world experiment, and is shown to offer accurate localization
and object pose tracking performance.

I. INTRODUCTION

The ability for a sensor-platform to track its ego-motion
and perceive its environment is a critical component in
many autonomous systems. Cameras and inertial measure-
ment units (IMUs) have become the standard sensor de-
ployment for many of these applications such as unmanned
autonomous vehicles (UAVs) and mobile devices [1] due to
the affordability and light-weight nature of these sensors.
As such, visual-inertial odometry (VIO), which fuses visual-
inertial data to estimate the ego-motion of the platform, has
seen a recent explosion in research efforts [2]–[6].

In many robotics applications, not only is the user inter-
ested in estimating their own motion, but also the tracking
of external bodies (targets) whose states are only indirectly
observed through exteroceptive sensors mounted on the
tracking robot. External object tracking may be necessary
for safe navigation in dynamic environments, as in au-
tonomous driving [7], or may even be the overall goal of
the sensor deployment, as in military surveillance. For these
reasons, the problem of simultaneous localization, mapping,
and moving object tracking (SLAMMOT) is important but
challenging [8]. However, estimating the poses and motion
of external bodies using visual-inertial sensing has received
less attention, with a few notable exceptions [9], [10].

When performing SLAMMOT, a question remains open
till date whether to use a tightly-coupled or loosely-coupled
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approach [8]. In the former, the ego-motion and object track-
ing are formulated as a single joint estimation problem [10],
while in the latter the processes are performed separately,
often conditioning the target tracking on the output of the
localization module [11]. In this paper, building off our prior
work on tightly-coupled visual-inertial localization and rigid
body target tracking [10], we further investigate the effect
that target motion modeling has on overall estimation per-
formance. In particular, we show that while tightly-coupling
the systems leads to improved accuracy of both processes
(that is, the localization performance is improved when co-
estimating the target rather than simply discarding these
measurements), this benefit is only seen if the target motion
noise values are “properly” chosen. If they are overconfident,
this will actually lead to a degrading of the VIO performance.
This can be particularly catastrophic in cases where an
autonomous vehicle performs the tracking and relies on the
accuracy of its VIO to maintain operation.

Therefore, we propose to leverage Schmidt-Kalman Fil-
tering (SKF) [12], an extension to the standard Extended
Kalman Filter (EKF), and employ a local (robot-centric)
representation of the target, in particular, when there is low
confidence in the chosen target model. This allows for the
VIO estimates to be provably the same as if target measure-
ments were discarded, however all correlations between the
target and IMU are still properly modeled. A summary of
this work’s contributions are the following:
• We investigate the choice of dynamic object motion

noises in a joint visual-inertial localization and target
tracking filter, and show through simulation that the
selection of these values can lead to either improved
or degraded accuracy of the VIO.

• We offer a new Schmidt-EKF formulation that does not
allow target measurements to update navigation states
while still consistently tracking all correlations, and
show that this system can lead to robust estimation
accuracy even with inconsistent model selection.

• We advocate a robot-centric representation of the tar-
get’s pose that is shown to offer improved performance
for both the EKF and SKF formulations.

• The proposed system is validated in a real-world exper-
iment where it is shown to offer accurate localization
and dynamic object pose tracking estimation.

II. RELATED WORK

While SLAMMOT has seen study in other works [8],
[13], few leverage visual-inertial sensors coupled with a
pose representation of the target. In particular, many target
tracking systems treat the target as a single 3D point [14].
With this, only measurements of this representative feature
can be used to update the target, thereby ignoring the addi-
tional information provided by other features that typically



exist on the object’s body. Another limitation of a point
particle model is that it requires continuous observation
of this single point in order to update. However, in many
scenarios the tracking robot may view the target from varied
viewing angles thereby occluding this feature despite the
object remaining in view of the sensor. Treating the target
as a pose with a rigidly connected point cloud relaxes this
assumption as we can gain information of the target state
when any of its features are viewed.

Works that do perform full target pose estimation often
leverage more advanced sensors such as LIDAR [15] or
RGB-D cameras [16], limiting application for lightweight
Micro-Aerial Vehicles (MAVs) due to weight and cost con-
straints. Other target pose-based estimation methods require
additional prior knowledge to handle ambiguity of the es-
timation problem, such as the target’s scale in monocular
vision. For example, Li et. al [11] used a dimensional prior
of the target and conditioned on the output of the ego-motion
estimation (a decoupled approach), and thus did not account
for the uncertainty in these estimates.

The work closest to ours, introduced by Qiu et al. [9],
utilized a robust monocular visual-inertial batch-based esti-
mator [3] which was first used to track the motion of the
sensor platform. The target object was detected using the
learning-based object recognition system YOLO [17], and a
vision-only structure-from-motion problem was then used to
estimate (up-to-scale) the point cloud of the target as well
as the relative pose between the camera and target, while
metric scale was estimated using trace correlation. While this
system was shown to offer robust monocular pose-tracking
performance, due to the lack of explicitly estimating the
target motion parameters, it is unclear whether this method
can be used for active tracking purposes as future target states
are not predicted. By contrast, our system fuses observations
of the target in a tightly-coupled probabilistic formulation,
and is able to improve overall trajectory accuracy through
target observation information, its assumed motion model,
and proper modeling of its uncertainty. As we additionally
estimate motion parameters, we are also able to both predict
the target’s pose at future timesteps and provide an associated
uncertainty of this prediction that can be useful for active
tracking scenarios [18].

In our previous work [10], which was built on the
light-weight Multi-State Constraint Kalman Filter (MSCKF)
framework [19], we advocated the tight-coupling of the
tracker’s visual-inertial navigation and the target rigid-body
pose estimation to improve the accuracy of both processes.
We represented the tracking robot and target in the same
global frame and analyzed the impact of different assumed
target motion models. By contrast, in this paper, we advocate
the “local” representation of the target pose that is expressed
in the tracking robot’s frame of reference. We additionally
investigate how in certain scenarios the original tightly-
coupled system may lead to a decreased trajectory accuracy
in the presence of poor target motion model assumptions.
While previous methods handle model uncertainty by using
multiple estimators, each using a different model, these lead
to a large computational increase [20]. To address this issue,
we present an alternative solution that can handle incorrect

motion assumptions by leveraging the Schmidt-Kalman Filter
[12] formulation, allowing for consistent estimation of the
target while preventing corruption of the tracking robot’s
VIO.

The SKF formulation updates estimates for only a cer-
tain subset of variables, keeping the estimates of a set of
“nuisance” parameters fixed, while still consistently tracking
all correlations. While this leads to computational gains, as
has been investigated within the VIO community to reduce
complexity [21]–[23], here we leverage the SKF to prevent
inconsistent target models from corrupting the trajectory
estimates of the tracking robot. We note the SKF has been
previously investigated in the context of target tracking to
address this issue or to avoid estimating navigation errors,
however these works do not consider the visual-inertial
domain or object pose-tracking as in this work [24]–[26].

III. VISUAL-INERTIAL ESTIMATION

The proposed visual-inertial target tracking system serves
as an extension of the standard MSCKF framework [19]. We
define the IMU state to be estimated as:

xI =
[
I
Gq̄
> Gp>I

Gv>I b>ω b>a
]>

(1)

where I
Gq̄ is the JPL-convention quaternion [27] parametriz-

ing the rotation matrix I
GR that rotates vectors from the

gravity-aligned world frame into the local IMU frame. GpI

and GvI are the position and velocity of the IMU as
expressed in the global frame, and bω and ba are respectively
the gyroscope and accelerometer biases that corrupt the
corresponding sensors. The vector error state x̃ is defined by
the mapping x = x̂� x̃ where x̂ is the current best estimate,
and the � operation maps manifold estimates and correction
vectors to an updated manifold element [28]. For vectors
this operation is standard addition, while for quaternions we
utilize the left multiplicative quaternion error [27].

In addition to this evolving inertial state, following the
standard MSCKF formulation, we also keep a estimate of
the past IMU poses at the last m imaging times. We denote
this set of clone states as:

xIC =
[
Ik−1

G q̄> Gp>Ik−1
· · · Ik−m

G q̄> Gp>Ik−m

]>
The goal of the system is to track the motion of an external

object’s pose and its local point cloud of rigidly attached
features that can be seen and tracked by the sensor’s camera.
While here we only consider the local velocity model, as in
our prior work [10], one could model the target’s motion
in many different ways. In the chosen model, the estimated
target state is expressed as a pose in some reference frame
{R} and a local linear and angular velocity.

xT =
[
T
Rq̄
> Rp>T

Tv>T
Tω>T

]>
Note that the angular velocity, TωT is that of the target, and
is distinct from the angular velocity of the IMU platform.
We distinguish between two target pose representations in
this work: global and local. In the global representation, the
target pose is represented in the same global frame as the
IMU (R = G), while in the local representation, the target
pose is expressed relative to the IMU (R = I).

Lastly, assuming the target object moves as a rigid body,
we estimate its local point cloud that is made up by a set of



3D features, Tpfi that remain static in the target frame. In
order to better add these points into our state using delayed
initialization [29], we will also maintain a set of target pose
clones:

xTC =
[
Tk−1

Rk−1
q̄> Rk−1p>Tk−1

· · · Tk−m

Rk−m
q̄> Rk−mp>Tk−m

]>
Note that the target clones in the local formulation are
expressed with respect to the corresponding IMU clone,
rather than the evolving IMU state. The full state estimated
for a single target feature is then given by:

x =
[
x>I x>T x>IC x>TC

Tp>f
]>

(2)

A. System Dynamic Models
The visual-inertial system under consideration contains

both the IMU (i.e., sensor platform) and the target dynamics.
The inertial dynamics is standard and can be found in [27].
Unlike the sensor platform, we are not privy to any direct
proprioceptive information for the target, and must perform
prediction only using its estimated motion parameters. The
dynamics of the global target model are given by:

T
GṘ = −bTωT×cTGR, GṗT = G

T RTvT (3)
In the local representation the evolution of the target is
coupled with that of the IMU:

T
I Ṙ = T

GṘG
I R + T

GRG
I Ṙ

= −bTωT×cTGRG
I R + T

GRG
I RbIωI×c

= −bTωT×cTI R + T
I RbIωI×c (4)

IpT = I
GR

(
GpT − GpI

)
⇒

I ṗT = −bIωI×cIGR
(
GpT − GpI

)
+ I

GR
(
GvT − GvI

)
= −bIωI×cIpT + I

TRTvT − I
GRGvI (5)

In both representations, we model the local linear and angular
velocities as random walks:

T v̇T = nvt ,
T ω̇T = nωt (6)

Thus the amount that the target conforms to the assumed
motion model is captured by controlling the values of its
propagation noise (6).

1) Covariance Propagation: Based on the above tracking
robot and target motion models, we can define the propaga-
tion of the error state of the stacked system. Let xS denote
the set of zero-dynamics static variables (whose true values
do not evolve in time, such as static environmental or target
features, as well as possible fixed calibration parameters).
The overall linearized error state evolution is then given by: ˙̃xI

˙̃xT
˙̃xS

 ≈
Fx 0 0

Ax AT 0
0 0 0

x̃I

x̃T

x̃S

+

Gx 0
Γx ΓT

0 0

[nI

nT

]
where Fx is the Jacobian of the IMU’s error state evolution
with respect to the IMU errors, Ax and AT are the Jacobians
of the target’s error state evolution with respect to the IMU
and target errors. Lastly Gx,Γx, and ΓT are the Jacobians
with respect to the IMU and target propagation noises (nI

and nT ). In the case of the global target pose representation,
the IMU and target evolution will be decoupled, and thus
both Ax and Γx will be zero matrices. From these continuous
error-state dynamics, the standard EKF propagation can be
performed [27].

B. General Target Update
During the motion of the tracking sensor platform and

target, camera bearing measurements to features on the target
will be collected. The measurement function is given by:

zif = Π
(
Cipf

)
+ nif (7)

Here Cipf denotes the position of the 3D feature in the
measuring camera frame, Π is the projection function
Π([x y z]>) = [x/z y/z]> mapping a feature position ex-
pressed in the camera frame into the corresponding normal-
ized pixel coordinate measurement, and nif ∼ N (0,Rif ) is
the Gaussian white-noise corrupting the measurement. The
position of the feature in the camera frame using the global
and local representations is given respectively by:

Cipf = C
I RI

GR
(
G
T RTpf + GpT − GpI

)
+ CpI (8)

= C
I R

(
I
TRTpf + IpT

)
+ CpI (9)

where {CI R,Cpf} represents the relative pose between the
IMU and camera. After linearizing our target feature mea-
surement (7) about the current state estimate we perform an
EKF update of the state estimate, x̂, and covariance P:

K = P	H>S−1 := LS−1 (10)

x̂⊕ = x̂	 � K(zif −Π(Ci p̂f )) (11)

P⊕ = P	 −KH>P	 (12)

where H is the measurement Jacobian, S = HP	H>+Rif ,
and Ci p̂f is the result of evaluating evaluating (8) or (9)
using the current best state estimates. In addition we use
	 and ⊕ to distinguish between the state/covariance before
and after update, respectively. Besides these described target
measurements, the system additionally performs updates
using bearing measurements to static environmental features
in the standard MSCKF manner [19].

IV. NUMERICAL ANALYSIS OF MODELING ERRORS

While it has been shown that the co-estimation of target
tracking and localization within a tightly-coupled filter can
improve performance [30], we have found through simula-
tions that this conclusion is more nuanced. At the root of
the proposed framework is an assumption that the observed
target will follow the selected motion model which we have
in order to perform prediction of the target’s future trajectory.
In the case that the target model is not accurate, e.g., too
small of noises are used in (6), inconsistencies will be
introduced as we are overconfident in how the target evolves
and, in the worst case, negatively affect the accuracy of the
tracking robot’s trajectory. Conversely, if we pick too large of
noise values, then the motion parameter estimation becomes
unstable, and we do not gain much information to improve
the tracking robot’s estimate.

To demonstrate this, a numerical simulation scenario was
created, where a UAV equipped with an IMU and a stereo
camera follows a planar target robot which travels in a semi-
circular pattern. A B-spline was fitted to the tracking robot’s
trajectory to allow for calculation of the groundtruth angular
velocities and linear accelerations. From these, the noisy
IMU measurements (and corresponding random-walk biases)
were simulated at a rate of 200 Hz. A map of 3D points
were simulated along the floor and borders of the workspace.



Synthetic stereo images were generated at a frequency of
10 Hz by projecting the map points into the groundtruth
camera poses and corrupted with one pixel noise. The target’s
point cloud was simulated by rigidly attaching a set of points
lying on the surface of a one meter cube to the pose of the
groundtruth target at each timestep. Both occlusions due to
the target and randomly losing track of a given feature were
simulated to model problems faced by real-world front-ends.
As the target object operated on a plane, we modeled the
linear velocity as a random walk only in the local x and
y directions, while the angular velocity was a random walk
along local z-axis. We note that this type of target is very
common in real-world scenarios, such as when tracking a
terrestrial vehicle.

To evaluate the effect of different noise parameters on
estimation, we chose a single noise standard deviation σt =
σwz = σvx = σvy to drive the assumed random walks,
see Eq. (6), and performed a parameter sweep over a
series of values. Note that for all trials we utilized the same
groundtruth IMU and target trajectories, and only varied the
noise levels utilized by the filter during target propagation.
While a more sophisticated sweep may be performed that
varies the noise in all directions, we found that a single
parameter was sufficient to demonstrate the discussed issues.
For each assumed noise strength, 30 Monte Carlo runs
were simulated using the same groundtruth trajectory while
each run had a different realization for the IMU and pixel
measurement noises. The average Root Mean Squared Error
(RMSE) values shown in Table I clearly illustrate the issues
caused by inconsistencies when assuming incorrect model
noises. The standard VIO without estimating the external
target is able to achieve an average RMSE of 0.231 meters
and 1.397 degrees for a trajectory of 165 meters. While lo-
calization performance improves when using “proper” noise
values, the overconfidence introduced by choosing target
propagation noises that are too small corrupts the overall
system. In addition, we found that having too large of noises
may also harm VIO accuracy. This is most likely because at
these levels the motion parameter estimation become very
unstable leading to poor target predictions that may cause
large linearization errors.

Looking at a typical single run and its error bounds, as
shown in Figure 1, tightly-coupling of the target tracking
reduces the uncertainty compared to stand-alone VIO while
remaining consistent (that is, the errors remain in the bounds
provided by the covariance) in the case of “good” noise
parameters. When the chosen noise is too small, the re-
sulting trajectory error is inconsistent, thereby showing the
corruption caused by incorrect modeling of the target motion.
Thus, the effectiveness of tightly-coupling the estimation
heavily depends on the choice of motion noise parameters.
This has profound impact on the application of tightly-
coupled target estimation algorithms in the real-world as the
choice of correct noise values is difficult and can leave the
system vulnerable to inaccuracies and in the worse case may
even cause filter divergence. This motivates the proposed
Schmidt-EKF formulation that can allow for modeling of
the uncertainties between the tracking robot’s states and the
target’s without the inconsistencies of the target estimates

Fig. 1: Estimation errors of IMU global pose when using VIO by
itself, tightly-coupled tracking with a “good” target σt = 0.1, as well
as an overconfident σt = 0.005. In the tightly-coupled system with
“proper” noises, the error bounds are decreased and the estimate
remains consistent, showing that the fusion of target information
has improved localization performance. For an overconfident noise,
the estimator becomes inconsistent.

affecting the tracking robot’s trajectory.

V. SCHMIDT EKF UPDATE

In the case that we want to prevent corruption of the track-
ing robot’s estimates, we leverage the SKF [12] to update
the target states; that is, when processing measurements to
the target, we “schmidt” the inertial state (and corresponding
clones) and thus only update the target estimates and their
correlation with the tracking robot’s states. More explicitly,
we partition the state into two, the tracking robot’s states xR

and target parameters, xT , such that x = [x>R x>T ]>, and

decompose the covariance as: P =

[
PRR PRT

PTR PTT

]
. Now,

let us consider a measurement residual r that is being used
to update the state. The SKF does not update the tracking
robot’s states by setting their Kalman gain to zero (i.e.
K = [K>R K>T ]> → [0> K>T ]>). The update equations
become the following:

x̂⊕ = x̂	 �

[
0

KT

]
r = x̂	 �

[
0

LT

]
S−1r (13)

P⊕ = P	 −
[

0 LRS−1L>T
LTS−1L>R LTS−1L>T

]
(14)

where
[
L>R L>T

]>
= L from (10). Clearly, the tracking

robot states xR and marginal covariance PRR do not change
in this update, preventing the corruption of these estimates
in the case that the target estimate is inconsistent. Therefore



TABLE I: Tracking robot and target average RMSE in meters / degrees of the global (G) and local (L) tightly-coupled estimator for
different values of σt. We evaluate the target pose in the tracking robot’s IMU frame T

I T, the target pose in the global frame, T
GT, and

the IMU pose in the global frame I
GT.

σt
T
I T (G) T

GT (G) I
GT (G) T

I T (L) T
GT (L) I

GT (L)

0.001 0.01172 / 1.069 2.149 / 12.843 2.030 / 12.948 0.01177 / 0.948 1.883 / 8.944 1.839 / 8.687
0.005 0.00720 / 0.545 0.277 / 1.519 0.271 / 1.678 0.00746 / 0.543 0.259 / 1.547 0.254 / 1.566
0.010 0.00697 / 0.499 0.241 / 1.525 0.236 / 1.690 0.00724 / 0.497 0.220 / 1.322 0.217 / 1.388
0.050 0.00646 / 0.319 0.211 / 1.478 0.207 / 1.504 0.00664 / 0.315 0.203 / 1.313 0.199 / 1.341
0.100 0.00657 / 0.339 0.211 / 1.500 0.207 / 1.502 0.00661 / 0.340 0.197 / 1.291 0.194 / 1.293
0.500 0.00835 / 0.687 0.284 / 1.719 0.279 / 1.779 0.00848 / 0.627 0.235 / 1.370 0.232 / 1.378

TABLE II: Tracking robot and target average RMSE for the proposed SKF formulation. For very overconfident noise values, the global
representation causes target estimate divergence.

σt
T
I T (G) T

GT (G) I
GT (G) T

I T (L) T
GT (L) I

GT (L)

0.001 × × 0.231 / 1.397 0.01092 / 0.879 0.234 / 1.720 0.231 / 1.397
0.005 × × 0.231 / 1.397 0.00763 / 0.528 0.234 / 1.524 0.231 / 1.397
0.010 0.0408 / 0.555 0.231 / 1.472 0.231 / 1.397 0.00732 / 0.488 0.234 / 1.511 0.231 / 1.397
0.050 0.0410 / 0.411 0.229 / 1.393 0.231 / 1.397 0.00665 / 0.334 0.234 / 1.399 0.231 / 1.397
0.100 0.0432 / 0.430 0.229 / 1.390 0.231 / 1.397 0.00664 / 0.364 0.234 / 1.413 0.231 / 1.397
0.500 0.0623 / 0.744 0.233 / 1.633 0.231 / 1.397 0.00853 / 0.639 0.234 / 1.617 0.231 / 1.397

the resulting VIO estimates are equivalent to if the target
measurements had been discarded. It is important to note
that the SKF still tracks correlations in the covariance that
can be shown to be a conservative approximation of the EKF
update [21]. We also highlight that the SKF is only used
when updating using target measurements. During processing
of the visual data corresponding to the static scene, the full
state is updated normally. This allows corrections to the IMU
to correct the target estimates, which is only possible because
of the consistently tracked correlations.

Due to the fact that the SKF does not update a portion
of the state, the representation of the estimated variables
becomes crucial to the performance [24]. In the global model,
the filter is free to fully update the global pose of the target,
while in the local model, it fully updates the relative pose be-
tween the IMU and target. Intuitively, as target measurements
are relative to the sensing platform, it makes more sense
to fully update the relative relationship between the two.
To investigate the effect of this robot-centric representation,
we reran the noise sweep of the previous section using
the local formulation, as shown in Table I. These results
illustrate that for the tightly-coupled system the robot-centric
filter outperforms its global counterpart in terms of both
target and VIO accuracy. This is most likely due to the
fact that linearization errors tend to be much smaller in the
local frame. However, this system still displayed the same
problems when using a poor motion model.

We tested the proposed SKF formulation with both the
global and local representations (Table II). As expected, the
systems cannot benefit from the tightly-coupled estimation
for the “proper” noise values, while the VIO cannot be
corrupted even when the target model is inconsistent. In
addition, we experimentally found that the global target
pose filter was more prone to target estimate divergence
at the lower noise levels (typically following large target
updates), while the robot-centric method was always able
to provide accurate tracking performance, even when using
an inconsistent motion model. This motivates our choice of a
local representation for both the EKF and SKF formulations,

and shows that our local SKF filter offers robustness to poor
target models.

VI. EXTENSION TO REAL-WORLD TRACKING

We next evaluated the proposed local SKF-based local-
ization and object tracking in a real-world scenario using
a stereo visual-inertial rig. In what follows we first discuss
the visual feature front-end needed to both segment the target
and then track features on that target over its trajectory. From
a high level, we performed segmentation on incoming images
using a variation of UNet [31] that generates a mask of the
target for each image. Using this mask, we then performed
separate visual tracking for environmental and target features
which can then be fused in the proposed estimator.

A. Deep Learning-based Target Detection
Due to the absence of an annotated visual-inertial target

tracking dataset with groundtruth trajectories for the robot
and target, we opted to collect and annotate our own dataset
tracking a large remote controlled car. We collected a train-
ing, validation and testing dataset from the left camera at
1Hz, resulting in 279 images for training and validation
(with 10 percent randomly chosen for validation), and 85
for testing. These images were labeled by hand to create the
groundtruth masks. The camera used to collect the images
had a fisheye lense, but the masks were generated without
undistoring the images to avoid having to redistort later on.
However, due to this, we only used random left-right flipping
to augment the data and not rotations and random cropping.

A variant of the popular UNet architecture was used to
segment the target. In our test, we used sub-pixel convolu-
tion [32] in place of the original upsample layer proposed
for efficiency. Additionally, we replaced the ReLU activation
with ELU [33] to avoid the need for batch normalization –
again, for efficiency. We also used zero padding to avoid the
need for cropping the features used in skip connections. The
network can predict on average in less than 20 milliseconds
on a GTX 1080Ti graphics card using a 320×240 resolution.
To test the network, we used the mean intersection over
union (mIOU) and pixel-wise accuracy metrics. Pixel-wise



Fig. 2: Visual results of the network on the testing dataset. True
positive pixels have been marked green, false positives blue, and
false negatives pink.

accuracy in our case is defined by TP+TN
TP+TN+FP+FN , where

TP , TN , FP , and FN are the true positive, true negative,
false positive, and false negative predictions, respectively.
The network achieved an mIOU of 0.628 and a pixel-wise
accuracy of 99.1% on the testing dataset (see Fig. 2).

Since the target typically occupies a small portion of the
overall pixels, we opted to extract target features from the
bounding box of the segmentation mask instead of the entire
image, while environmental features were extracted from the
full image. To do this, we first removed the majority of
false positives from the mask through a series of erosion and
dilation operations. The bounding box was then taken as the
rectangle about the blob with the largest area. A separate KF
was used to track the bounding box, thereby smoothing the
noisy masks.

B. Visual Feature Tracking

We utilized FAST detection [34] across multiple grids of
the image to ensure that we achieved a uniform distribution
of features. Only features that fell within the mask were
labeled as target features. We performed KLT tracking [35]
through the implementation available in OpenCV [36] for
environmental features, and ORB descriptor tracking [37]
for target features. This tracking was done both from the
left-to-right images at the same timestamp as well as left-
to-left and right-to-right tracking from the previous images.
Outliers were rejected using 8-point RANSAC which was
performed independently for the static and target features.

Target features that were tracked in this way for a certain
number of frames were initialized as permanent object fea-
tures. In addition, we performed ORB descriptor matching
to the currently estimated target point cloud in order to
determine whether new tracks corresponded to previously
seen features. We have found that these target loop closing
events are vital to the performance of the estimator as they
greatly limit the target’s drift relative to the IMU (and
therefore globally). As mismatched features are common
in real-world experiments, we utilized Mahalanobis distance
tests to reject inconsistent measurements.

C. Experimental Results

In this experiment, a hand-held visual-inertial rig tracked a
remote-controlled car. The network was trained to detect the
vehicle using a separately collected dataset in the manner
described previously. Note that different from the state of
art [9], we do not require a high-resolution camera (which
could certainly lead to higher accuracy). We allowed for
a maximum of 150 features to be tracked from the point
cloud. To limit visual-inertial drift, we added up to 10
SLAM features which were generated from visual tracks
that reached the length of the window size (10 images in
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Fig. 3: True trajectory and estimation errors of IMU and target
global poses for the proposed SKF system. The total IMU and
target trajectories were 62 meters and 52 meters, respectively.

this test) [29], and were marginalized whenever they were
lost. We also performed online estimation of the IMU-camera
extrinsincs to handle the possibly poor prior calibration. As
this was a (mostly) planar scenario, we chose the noises
driving the local z-axis linear velocity and the pitch/roll
angular velocities to be zero, as in the simulated example.
For this experiment, images were collected at 10 Hz and the
entire system ran in real time on a commercial laptop.

In order to evaluate the accuracy, the tracking scenario
was performed in a large Vicon room, thus providing highly
accurate pose estimates of both the sensor platform and the
target. A purposefully overconfident target motion model was
selected to illustrate the proposed method’s robustness. Over
30 Monte Carlo runs, the SKF based target tracking had
a VIO RMSE of 0.153 m / 1.091 degrees, while the global
target errors were 0.183 m / 3.443 degrees. The error-vs-time
plots for an example run are shown in Fig 3. By contrast,
the tightly-coupled system achieved 0.409 m / 1.640 degrees
for the IMU and 0.492 m / 3.037 degrees for the target, thus
showing the degradation of the VIO due to the poor motion
model. These results indicate that the proposed system is
able to accurately estimate both the target and navigation
states even when using an overconfident target model. In
addition, the mask provided by the network failed for several
sequential frames multiple times throughout the test, which
our system was able to handle due to the estimation of the
target motion parameters.

VII. CONCLUSIONS

In this work we have addressed the issue of inconsistent
target motion modeling in a tightly-coupled visual-inertial
localization and 3D rigid-body target tracking framework.
We have shown that when the model accurately describes the
target motion, tightly-coupled estimation leads to improved
accuracy of both the localization and tracking tasks. We
have also illustrated the dangers inherent to overconfident
model selection, and have shown that using an SKF approach
prevents inconsistent motion noises from corrupting the VIO
task while still properly tracking all correlations between the
target and navigation states. In addition, we have advocated
a local representation of the target for improved estimation
performance in both the EKF and SKF formulations. The
proposed approach was validated in a real-world tracking
scenario and shown to offer accurate estimation of both
the ego and target motions even without utilizing a high-
resolution camera or continuous successful visual tracking.
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