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Abstract

This paper summarizes a survey of the published research in real-time systems. Material is
presented which provides an overview of the topic focusing on communications protocols and
scheduling techniques. It is noted that real-time systems deserve special attention separate from
other areas because of their unique properties. In computer science and operations research this
has not been the case until quite recently resulting in the absence of formal tools for design and
analysis of real-time systems. Summaries are given beginning with early work on applications
as well as notable theoretical advances. This is followed by descriptions of more recent work in
the field from the mid-1980’s to the present.
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1 Introduction

Computer systems are assigned ever more demanding jobs requiring networks of cooperating pro-
cessors to complete tasks. In most cases, the goal is to finish as quickly as possible with no explicit
deadline, and it is with this implicit model that computer systems have traditionally been designed.
When it is necessary for a system to be responsive to external events, the problem is typically
mapped to some already solved non-time-constrained problem. Because of the relative success of
this method, for a long while little research had been undertaken to determine the requirements of
a real-time computer system.

As a result, real-time system design is often not effectively undertaken to guarantee that the sys-
tem can meet the application’s demands. A multidimensional problem, e.g., data with deadlines,
precedence constraints, and resource requirements, in addition to priority levels, has its system
requirements mapped into a single number, its overall priority in the system. The mapping nec-
essarily loses important information about the data. The resulting system then has to be tuned
by hand using large simulations and based on human experience from other system designs. It
is common for unforeseen race conditions to exist which rarely occur but wreak havoc when they
do. Additionally, formal methods to design or analyze real-time systems are in their infancy. More
research in the many subareas of real-time systems is needed so that formalisms and techniques
can be developed.

The main differentiating factor between a real-time system and others is that the system re-
sponds to the changing state of its surrounding environment. Responding to real events means that
data must processed in a timely manner. Furthermore, no single processor can support the system
functionality requirements, so processors must communicate in order to effectively transport tasks
and data among themselves.

1.1 Real-Time Computer Systems

Real-time systems are the foundations of many applications: military command and control, auto-
mated manufacturing, process control, avionics, and numerous others. One can think of a real-time
system as being made up of two major components: a controlled system and a controlling system
[SR88]. The controlling system bases its decisions on data it receives from its subsystems, e.g.,
sensor banks, and because the decisions have physical impact, timely response is critical. The
sensor/processing/actuator interconnection forms a feedback loop which sounds very much like one
from traditional control theory. However, in general real-time systems cannot be thought of as
simply computerized control theory problems. Complex real-time systems will not have a simple
PID (Proportional Integral Differential) control, but require control decisions based on complex
rules and heuristics as are found in many modern process control plants. The computer closes the
feedback control loop. As a result, when distributed nodes must coordinate their actions to make
a decision, or when a data base is updated, or other similar tasks, these actions are not handled by
feedback control theory which usually assumes a linear system. Because of the complexity of to-
day’s real-time systems, guaranteed optimal solutions are unavailable. Therefore optimal, eventual
satisfaction of a request is less important than suboptimal, timely response.

Because deadlines cannot always be met and because faults occur occasionally, the system must



be able to make compromises to avoid a catastrophic situation. This is clear considering examples
of controlling systems for airplanes or nuclear plants. But even with this major factor in common,
types of real-time systems vary widely. Tasks can be periodic or aperiodic. Some tasks in a real-time
system will have no deadlines but must be able to coexist with those that do. Furthermore, time
is not the only constraint under which a task is executed. A task might need access to hardware
subsystems such as I/O, or access to data structures and even data bases. If a task is broken
into a set of subtasks, precedence constraints will likely exist. Another property of the physical
impact of real-time system decisions is that some tasks are more critical than others. In those
cases, redundancy may be needed, or at the least, some deadlines must be given higher priority
than other tasks’.

The design of real-time systems today is usually done in an ad hoc manner. Based on system
requirements, tasks are given different priorities which incorporate deadline and criticality. This is
a carryover from scheduling methods used in timesharing systems. The system is run or simulated
and then tuned until an acceptable priority assignment is found. This is both error prone and time
consuming. An ideal environment for the analysis and design of real-time systems is multi-faceted.
Compilers are needed which support the concept of tasks and can give worst case computation times
of a task. Small real-time kernels are needed with, among other things, fast context switches, fast
interrupt response, ability to lock code or data into memory, real-time clock, and special alarms and
timeouts. Since nearly all systems rely on a communications network, protocols which support real-
time requirements are a necessity. And for the applications programmer, languages and compilers
are needed. Finally, for the system designer, formal tools and techniques must be derived. The last
underlies many of the other requirements and will be accompanied only with breakthroughs in the
theory of modeling real-time systems.

Real-time systems have not attracted academic attention, Stankovic points out in [Sta88], due
to some common misconceptions which are quoted here.

1. There is no science in real-time design.
Advances in supercomputer hardware will take care of real-time requirements.

Real-time computing is equivalent to fast computing.

- W N

Real-time programming is assembly coding, priority interrupt programming, and writing
device drivers.

(@3]

Real-time systems research is performance engineering.

6. The problems in real-time system design have all been solved in other areas of computer
science or operations research.

7. It is not meaningful to talk about guaranteeing real-time performance because we cannot
guarantee that the hardware will not fail and the software is bug-free or that the actual
operating conditions will not violate the specified design limits.

8. Real-time systems function in a static environment.

While Stankovic addresses and refutes each point above, it is hoped that the work summarized
in subsequent sections will be equally convincing in showing that each of the above points is
unjustifiable and that research dedicated to real-time systems is needed.
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Figure 1: Typical real-time protocol stack.
1.2 Real Time LAN Architecture

This paper is organized roughly following the well known OSI seven layer protocol stack model.
Rather than strictly following the definition for the data link layer, this layer is modeled by the
splitting it into the popular IEEE LAN sublayers: media access (MAC) and logical link control
(LLC). All others follow the definitions of the OSI model.

Until real-time systems were given special consideration, real-time properties have often been
built in to a system at the application layer which would have knowledge of the inner workings
of lower layers. This is exactly what layered design was developed to avoid and also explains the
difficulty and high cost associated with the design of a real-time system—every one is unique and
designed from scratch. With recent design principles applied to real-time protocols, ultimately
protocols should exist which will simply offer standardized real-time services so that a real-time
system design can be restricted to the application layer providing cheaper, easier, and simpler
system development. To provide these services, at the very least each layer of the protocol stack
must support the concept of deadlines. Since this support starts at the bottom, the MAC layer,
this paper appropriately starts there as well and works up to higher layers.

Complex real-time systems will require communication incorporating new services and proto-
cols. Existing protocols which offer little or no support for transactions with deadlines do not
allow higher level, application driven real-time processing. To have a predictable, dynamic system
which honors deadlines, at least two additional services are needed which are analogous to tradi-
tional connection-oriented and connectionless services. Critical messages which are vital to proper
functioning of the system must receive worst case service guarantees, and less important messages
with soft timing constraints should receive the system’s best effort to transport it. Arvind et al.
[ARS91] introduce a LAN architecture, illustrated in Figure 1, which supports such services.

Their model, RTLAN, is targeted for local control systems, and so internetworking is not con-
sidered. As a result, the RTLAN architecture layers jumps directly from the LLC to the application
layer. This paper, however, will, review the small amount of published work focusing on the network
layer.

The RTLAN physical layer is identical to that of current LANSs since the change needed most is
better system control rather than new supporting hardware. However, multiple physical channels
may exist for redundancy and meeting performance or other functional requirements. Built on



the physical layer, the MAC layer protocol will allow the LLC layer to offer real-time connection-
oriented and connectionless services. Some of these MAC protocols are described later in the
corresponding section. The LLC in RTLAN has the difficult job of determining how or if to
guarantee that tasks will meet their deadlines. It is at this layer that scheduling algorithms like those
described in section 3.2 are implemented. And ultimately, it is at the application layer where time
constraints are initiated. The requirements range from no time constraints, to soft constraints, up to
hard real-time constraints. The levels of specialized services and protocols of RTLAN together strive
to support the changing communication requirements of dynamic, distributed real-time systems.

2 MAC Layer

An integral part of a distributed real-time system is the communication network itself. Because
of the time constrained nature of real-time data, protocols are required which offer worst case
guarantees for channel access for hard real-time systems and at least statistically bounded blocking
for soft real-time systems. Without these, higher level real-time algorithms—even if they provide
theoretically optimal results—cannot be supported. The most common type of network used in
distributed computer systems is the multiaccess channel. In his PhD thesis, Gong [Gon92] provides
an excellent overview of the most common (not real-time oriented) medium access protocols for the
random access channel. The easiest MAC protocols to adapt to real-time use are controlled access
protocols. Because access is explicitly under control of the protocol, making worst case guarantees
is straightforward.

2.1 Token Ring

After random access LANs (ethernet), token rings are the most popular type of LANs. However,
the high level hand tuned TDM approach used currently—round robin scheduling with each sta-
tion getting a predetermined amount of bandwidth—creates fragile and inflexible systems. The
tuning process itself where messages of differing levels of priorities and deadlines must be assigned
queue positions is expensive as well. Strosnider and Marchok [SM89] investigate a more flexible ap-
proach. Tt is necessary that messages can be directly assigned priorities by a scheduling algorithm.
Also, enough levels of priority are needed to avoid degradation of scheduling, and ideally, resource
preemption is necessary.

Because IEEE 802.5 (Token Ring) offers 8 priority levels of which only 4 are available to the
application, dynamic scheduling is difficult. Four levels do not offer enough resolution to make
the fine distinctions between packets that real-time algorithms require. So for synchronous tasks,
a version of the rate-monotonic algorithm discussed later in Section 3.2.3 is used. The original
algorithm offers sluggish response time to asynchronous tasks. For his PhD thesis in 1988 Stros-
nider extended the rate-monotonic algorithm to one which guarantees that synchronous and alarm
traffic will meet their deadlines but also provides good response time for asynchronous traffic. The
extended algorithm is called a deferrable server. Its performance is achieved by taking note that
finishing a periodic task early in no way enhances system operation. Therefore, incoming aperiodic
tasks are assigned higher priority than the periodic ones until a point is reached where the periodic
tasks would begin missing their deadlines. At this point, any aperiodic tasks are given “background
priority” until the start of the next period of the deferrable server when its available priority levels
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will be replenished. The results of a token ring simulation study are presented as validation of
their performance improvement claim. The resulting ring can be mathematically analyzed, i.e., is
predictable, and thus suitable for real-time systems.

2.2 CSMA-CD

By far the most common LAN is the randomly accessed channel, usually an ethernet. Because of
its widespread use, it is especially desirable to have protocols support real-time systems on this
medium. Zhao and Ramamritham [RZ87] consider four transmission policies for use in real-time
systems distributed over a CSMA-CD network. The underlying protocol is inference avoiding,
meaning that each transmission attempt is made without reference to past history of the channel
or of that particular station, similar to Aloha and related protocols. However, the basic multiaccess
scheme is augmented by using two clocks at each node. One gives real and the other virtual time.
When the channel is busy the virtual clock stops running and starts again when the channel is
idle. When it does run, the virtual clock runs faster than the real clock. The actual amount faster
is a value to be determined based on expected traffic patterns. Depending on the variation used,
earliest packet transmission (virtual) times are set to either arrival time, transmission time, latest
time to send message so that it can reach its destination, and deadline. A message is sent only if
its transmission time is less than or equal to the time on the virtual clock.

Laxity is defined, as in many real-time algorithms, as laxity = deadline — current time —
processing time. Setting the virtual time to start transmission as listed above effectively imple-
ments these schemes in the same respective order: First Come First Serve, Minimum Length First,
Minimum Laxity First, Minimum Deadline First. The results of simulating each protocol variation
show that Minimum Laxity First and Minimum Deadline First perform better than the other two
regarding delay and fraction of packets lost. It is interesting to note that in the static case where
all information on tasks is available from the outset, Mok and Dertouzos [MW78] showed that if
some scheduling policy can successfully schedule a set of tasks, so can Minimum Laxity First and
Minimum Deadline First. (A packet which is not successfully scheduled is blocked, or dropped.)

2.3 Splitting Techniques

Zhao, Stankovic, and Ramamritham [ZSR90] extend the work cited above to a multiaccess protocol
splitting protocol, i.e., one which makes transmission inferences based on collision history. Splitting
protocols utilize either binary channel feedback, collision versus no collision, or ternary feedback,
collision/success/idle. Most protocols of this type are recursive in nature but require feedback only
from the most recent slot. The protocol proposed by Zhao et al. uses the channel feedback history
from the most recent two slots so that better predictions of upcoming channel usage can be made.
Briefly summarizing the protocol, the actions taken based on history are:

e Collision: all transmissions aborted.
e Idle after Collision: window split.

e Busy: waiting nodes continue waiting.



e Idle after Transmission: window expanded.

e Continuing Idle: window expanded, packet sent.

Simulations show that this closely approximates Minimum Laxity First and, importantly for
real-time systems, performs well even under overloaded conditions. Its performance is often better
than the virtual time CSMA described above and never worse. However, as with the virtual time
protocol, laxity abnormalities still exist; when the laxity is relaxed, system performance may be
degraded. This is not surprising, though, because with longer deadlines, more competing traffic is
able to enter the system.

Arvind [Arv91] simplifies the techniques from above and simulates splitting techniques for both
hard and soft real-time systems. The classical Gallager [Gal78] ternary feedback splitting algorithm
is used except that servicing is not first-come-first-serve. Rather, it is based on a packet priority p
which is some unspecified function of its deadline and relative system priority which will have been
assigned at some higher layer. The initial window encompasses the range of p. That is, following a
collision, involved packets are ordered based on their priorities. Once ordered, that window is split
so that highest priority packets are recursively transmitted. In this way, the order of successful
packet transmissions is from highest to lowest.

In the hard real-time version, there are only a given number of virtual circuits. Nodes, at a
higher protocol layer, contend for a virtual circuit assignment. Nodes with assigned virtual circuits
can then contend for the channel in a typical random access scheme except that collisions are
resolved by assigning the integer virtual circuit number to p. The soft version is simpler in that it
has no contention for virtual circuit assignments. The worst case MAC time is generally greater
than the hard real-time case because there will generally be many more nodes in the net than there
are virtual circuits available.

An even simpler splitting technique appropriate for soft real-time systems is presented by Pa-
terakis et al. in [PGPK89]. Rather than recursively splitting each window half, Paterakis instead
only retains 2 cells of either collided or uncollided stations. Eventually all traffic will be either
transmitted or dropped when some predetermined bound has expired.

2.4 Combining Real-Time with Non-Real-Time Traffic

Rather than find a specific transmission scheduling technique, some approaches use system re-
quirements to determine a class of scheduling policies can meet the functional requirements of the
system. A simple one processor queuing model is studied by Delic and Papantoni-Kazakos [DPK93]
to find a class of nonpreemptive scheduling policies, i.e., policies in which packets being serviced
cannot be suspended when higher priority packets arrive. There are two independent traffic streams
modeled as two renewal processes, {X;};>1 and {Y;};>1. Y is a higher priority traffic stream with
a strict upper bound D;'®* on its total delay from queue arrival to system exit. Arrivals are stored
in a single infinite capacity queue.

The low priority traffic has a constant service time of ¢; and the higher priority traffic a constant
service time of cp, where ¢, > ¢;. It is further assumed that since Y cannot be delayed more

than Dp'*, then ¢, < Dp'®; and also for the system to be stable, for Y’ def Yi+1—Y;, the distribution



of Y is such that P(Y < ¢p,) = 0.

The class of scheduling policies to be determined is nonpreemptive and use only Dy***, ¢, ¢,
and the oldest waiting times of high and low priority traffic, W/* and W/ . The latter two variables
take on negative values if no customers of that type are waiting.

Because of nonpreemption, minimum and maximum laxities are defined as

TH; &

TH,

DMax ¢,

def
= TH]_—Cl

The general actions of any policy of the class are, at some £,

1. if THy < VV{:z < TH;, then a high priority customer is processed with probability 1.

2.if0 < Wt’; < THoy, a high priority customer is processed with probability p. If thn >0, a
low priority customer is processed with probability (1 — p).

3. if thn > 0 and Wt’; < 0, a low priority packet is processed with probability q.

Finding a stable system reduces to finding optimal values for p and q. Delic and Papantoni-Kazakos
analyze a two dimensional, discrete time, discrete space Markov chain and discover that

g=1, VYW <0, YW} >0

Any value of p can be used and affects customer delays. (Delic and Papantoni-Kazakos further
investigate system delays, but those results are not presented here.)

2.5 Soft Real-Time System with Performance Threshold

Since minimizing average response time, that is, the time between a task being ready and the
time it leaves the system, is an NP-complete problem, an optimal solution cannot be generated
in real-time. (Section 3.2.1 gives a formal definition of the NP-complete nature of the problem.)
If a soft real-time system takes the approach that under light load, a task can receive full service
and under heavy load, only reduced service, then queueing analysis shows under what conditions
stability can be maintained.

Liuet al. [LLST91] analyze a simple model of a distributed, imprecise system with v processors.
In their model, “imprecise” means tasks can receive either full or reduced service. Results of
occasional reduced service will be less than optimal, or imprecise. The model is an open v-server
Markov queue where tasks arrive according to a Poisson process with rate A and join the common
queue. Service rates are exponentially distributed, and tasks are served in a first come first served
manner. A threshold H is chosen so that when less than H customers are in the system, system load
is considered light. In this instance, the mean of the service distribution is 1/u corresponding to the
average service time of the combined mandatory and optional subtasks. When system occupancy
is H or more, this heavily loaded system offers a reduced-level mean service time which is a fraction
v of the light load service time. If all tasks are serviced at the light load level, the offered load is



p = A/vp. The system is stable as long as p < 1/v, otherwise even at the reduced level of service,
p > 1, and yields an unstable system.

While servicing all tasks at the reduced rate minimizes queue waiting time W, it maximizes
system error. Studying the average fraction G of tasks serviced at the light load rate shows that
G = (U — vp)/(1 — ~v)p, where U is average processor utilization. With a good choice of H and
when the offered load per processor is near unity, the system performs most effectively. In the
corresponding precisely scheduled system, waiting time approaches infinity, whereas the two-level
system keeps average waiting time small with a relatively small system error due to using imprecise
results.

3 LLC Layer

While the MAC layer provides media access, in random access protocols it is usually in an unreliable
manner. An LLC layer immediately above this would convert the unreliable service into reliable
links between service access points. A typical LLC, e.g., the IEEE 802.2, provides three types of
services: acknowledged connectionless, connectionless, and connection-oriented. These services, as
will be described, can be thought of in real-time systems as being non-real-time, soft, or hard.
Whether a system is hard or soft, providing reliable service now has the additional requirement of
meeting deadlines.

3.1 End-to-End Guarantees within a LAN

It is difficult to guarantee meeting a task’s deadline due to the dynamically changing performance of
the underlying network. That is, in order for the system to function, process cooperation requires
synchronization which in turn relies on the communication network. Almost paradoxically, the
component allowing the existence of a distributed system—the network—becomes itself a resource
to be managed. The enqueuing of a message for transmission does not in and of itself mean that
it will arrive at its destination by the deadline. Di Natale [DNS94] addresses this problem with a
technique offering end to end guarantees in a distributed, dynamic real-time system.

After off-line processing has determined communication time and precedence constraints of a
system’s tasks, local schedulers at each node are initiated. An activation manager interacts with
the processor scheduler and the network scheduler so that tasks and intertask messages can be
scheduled. In this scheme there is no task migration between processors only messages are passed.
The processor scheduling is based on the Bidding and Focused Addressing scheme described in
section 3.2.3. The underlying network management which supports scheduling is divided into two
layers. The MAC layer reserves a specified portion of the link’s bandwidth for each node, and
the LLC, when possible, generates a feasible network schedule for the messages at that node. To
do so, network status is checked so that the message can be guaranteed timely delivery. Network
scheduling has the added problem of determining that when an outgoing message is queued, the
time awaiting service and transmission still allow the deadline to be met. Using these times in
conjunction the message’s deadline, the network scheduler negotiates with the process scheduler to
determine a message’s transmission time. Since the network scheduler knows the outgoing message
queue length at all times, the resultant message laxity is then used to determine the message’s



schedulability interval. Of the candidate intervals, the one maximizing the message’s minimum
laxity is chosen.

3.2 Scheduling

Tasks in a real-time system are constrained by several factors, chiefly time, resources, and prece-
dences. The result is that finding an ideal order in which to execute the tasks becomes quite
difficult. The goal of finding a feasible scheduling of tasks becomes even more challenging when the
tasks are to be distributed over a network of processors. In addition to executing the tasks, inter-
processor communication must be taken into account as well as the added delays of sending tasks
from one processor to another. While some form of scheduling also takes place at higher layers,
especially the transport layer, this section addresses only the problems encountered in scheduling
tasks within the LLC layer.

Scheduling problems in general have been studied mainly from three directions: integer pro-
gramming, heuristics, or queuing theory analysis. Integer programming offers potentially optimal
solutions but the problem complexity grows as an exponential function of the problem order. These
methods are therefore almost never applicable to scheduling within dynamic real-time systems.
Heuristic methods are the more promising approach in a real-time framework because though they
offer suboptimal solutions, the solutions are generated quickly and are thus able to meet strict
functional timing requirements. When a specific scheduling policy is not needed during the design
phase, it is often useful to find a class of scheduling policies which meet system requirements. Here,
queuing theory is a more fruitful approach than direct deterministic formulation. During imple-
mentation of a system, not surprisingly, heuristic methods are usually the most suitable to meet
real-time constraints.

Scheduling is tailored for use in either hard or soft real-time systems. With a soft workload,
results are wanted as quickly as possible, but there are fewer, if any, deadlines. An example of
this might be a video application where degradation of a frame or even total loss of a frame on
occasion is not detrimental. As in many other areas of computer science, scheduling algorithms
can be classified as either static or dynamic. Static scheduling, or off-line scheduling, such as
integer programming and other exhaustive techniques, is advantageous when applicable because
the computationally intensive job of finding a schedule can be done ahead of time. Once the
system is up and running, there is a low run time cost for the scheduling algorithm. However,
the inflexibility of a static schedule is often its downfall. Due to failures, upgrades, refits, etc., a
static schedule must be regenerated, and this is often not acceptable. While dynamic scheduling
has higher run time cost, it is more flexible and can adapt to a changing system.

Before detailing scheduling theory work, some elaboration on the nature of a task may be
helpful. In most, though not all, scheduling problems, a task is considered an atomic entity. It is
executed by a single processor. In addition to resource constraints, a task has associated timing
constraints: arrival time, earliest time to begin execution, worst case computation time, relative
importance, and deadline. Tasks which are periodic generally are considered to have deadlines
which are the times of their next invocations, while deadlines for aperiodic tasks are usually the
times at which they must complete execution. Precedence constraints force ordered task execution.
If task T; < T}, T; must complete execution before T; begins. If a task must run to completion
once begun, it is nonpreemptable. Otherwise, it is preemptable. It is easier to generate a feasible



schedule to meet deadlines when preemption is allowed. This is because small “holes” left in a
partial schedule can be filled by portions of as yet unscheduled tasks even though an entire task
cannot fit. This makes meeting deadlines much easier. However, preemptable schedules are not
always an accurate model of reality; a distributed data base write, for instance, should not be
preemptable. A consequence of this is that more research has been devoted to the preemptive case.
And finally, tasks can be given a class designation, or priority, based on their relative importance
in the system. Applications may have their own additional, unique constraints, but these listed are
nearly universal in real-time systems.

3.2.1 NP-Complete Problem

Realizing that a problem appears to be difficult does not mean an optimal solution does not exist
but only that we are perhaps not clever enough to find it. NP-complete problems, formally defined
shortly, are considered to be among the most difficult. This class has the property that if any
one problem is shown to be tractable (solvable in polynomial time), then every problem in the
class is tractable. However, though no proof has been found, NP-complete problems are considered
intractable.

Formally, the complexity class NP is that class of decision problem languages which can be
verified by a polynomial time algorithm. That is, for the polynomial time algorithm A and constant
¢, NP is defined as:

L = {z € {0,1}*: 3 a verifying binary string, y with |y| = O(|z|¢) such
that A(z,y) = 1}.

From this definition of NP, we can further define the most difficult set of problems in NP, those
that are NP-complete. We say a language L C {0, 1}* is NP-complete if

1. L € NP.

2. L' < L (in polynomial time) VL' € NP.

Garey and Johnson [GJ75] prove that scheduling under resource constraints is an NP-complete
problem and thus computationally intractable. Their augmented multiprocessor model is composed
of processors, resources, and tasks. The set of resources, R = {R1, Ra,..., R, }, is finite and for
each resource R; there exists a bound B; of how much of the resource is available. Finally, there
is the finite set of tasks, 7 = {T1,T5,..., T}, where each T; is executed by a single processor.

Tasks are executed by a processor under three constraints. First, each task 7; has associated it
with some value 7; representing the amount of processing time the task requires. During execution,
no other task can be served. Second, execution is based on a partial ordering of 7: if T; < T}
then task 7; must complete before task T can begin service. Finally, for all tasks and resources,
R;(T;) < Bj. That is, each task has some nonnegative requirement of each resource. Furthermore,
no subset of tasks simultaneously in service can require more than the total amount of a given
resource.
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The problem, based on these inputs, is to generate a schedule satisfying the constraints. We
can further impose an overall system deadline D. An algorithm, f, generates a wvalid schedule if:

1. Each task completes by the deadline D, i.e., f(T;) + 7; < D.
2. If T; < T}, then f(T;) + 7 < f(Tj).
3. A task T; is served between f(T;) and f(T;) + ;.

4. For all tasks under service, no resource is requested exceeding its bound, B;.

A consequence of the reducibility relation oc is that one need only show that a proven NP-
complete problem reduces to the new problem. Using a two processor model, only a single re-
source, each 7; = 1, and < a forest, Garey and Johnson show that the well known Vertex Cover
problem [CLR89] reduces to Multiprocessor Scheduling. Though the proof is not included in this
summary, the reduction is constructed as follows. Given an input for the problem, one constructs
an m node graph G, each node representing a distinct task, with an edge connecting T; and T}
if and only if Ry (T;) + Ri(T;) < By, for all k, 1 < k < r. Tasks T; and T} can only be executed
simultaneously on different processors only if an edge connects them. A valid schedule exists for
this input if and only if D > m — |E|. Given G and positive integer k, there exists a vertex cover
of size k for G. Thus Multiprocessor Scheduling is NP-complete.

Refer to Garey and Johnson [GJ75] for the proof. While it may not be unexpected that the
problem is NP-complete with an arbitrary number of resources, it is more surprising to note that
the problem is NP-complete even with only a single resource.

Blazewicz, Drabowski, and Weglarz [BDW86] extend these results. Their work shows that in the
general, nonpreemptive case even when tasks are subdivided and served by more than one processor,
the scheduling problem is NP-complete. However, if the number of tasks is known to be between
1 and k, an integer linear programming formulation with a fixed number of variables is obtained.
The complexity is this case is O(n). Also, for preemptable tasks with arbitrary computation times,
an O(n) algorithm exists if the tasks require either 1 or some fixed k processors.

3.2.2 Reward/Penalty Coadaptation

An interesting solution to generating a feasible schedule is to use a coadaptive behavior heuristic.
This is attractive because the system adapts to its own use of the net and so only requires some
amount of time to reach stability. Therefore, no complex algorithmic techniques need to be built
into the system. Its communication routes gradually evolve in such a way that a feasible, though
suboptimal, schedule is generated. The idea put forth by Glockner and Pasquale [GP93] is that
after a node joins the system and needs to send tasks or messages to another processor, it does so
based on a set of probabilities. If node ¢ successfully sends a task to node j and system performance
improves, the probability of using node j again at some future time is increased. If system behavior
is degraded, the probability is reduced. Determination of whether system performance has improved
or not, however, is difficult to do in a distributed manner.
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Simple equations are used for calculating probabilities. In an n node system, to reward a node
for sending to some node i, the new probabilities become

pit+1) = pi(t) + ol —pi(t))
pizi(t+1) = (1—a)p;?)
and for a penalty become
pi(t+1) = pi(t)+ B(pi(t))

pislt+1) = (1-pB)pit) +—

n—1

The last term of the last penalty equation moves the automaton more quickly towards the equiprob-
able state.

Since system use of the communications network is used to generate its overall actions, the rate
at which events occur and the sizes of rewards and penalties, i.e., the values of o and 3, have a
large impact on system behavior.

3.2.3 Scheduling in Hard Real-Time Systems

The major feature distinguishing a hard real-time system from other types is that, as its name
indicates, deadlines are hard. That is, if the deadline is not met, the system cannot meet it’s func-
tional requirements possibly resulting in a catastrophe. Consider an assembly line robot blocking
the way of the next automobile on the line. It has only so much time to move to avoid a collision. If
the robot cannot be moved in time, it is imperative that the system recognize this and schedule an
emergency task to shut down the assembly line immediately. Schedules in a hard real-time system
must guarantee that when a task is scheduled, it will be processed by its deadline, or if that is not
possible, that some acceptable degradation in service or fault tolerance is offered.

Rate-Monotonic Scheduling. For periodically executed tasks on a single processor system,
efficient algorithms exist which were developed early in scheduling research. In 1973 Liu and
Wayland [LL73] analyzed a hard real-time system assuming:

1. Tasks with hard deadlines are periodic with constant period.
2. A task must complete before another request for it occurs.
3. Tasks are independent.

4. Computation time for a task is a constant.

5. Nonperiodic tasks do not have hard deadlines but can displace periodic tasks.

A deadline in this scheme (associated only with a periodic task) refers to the next instant that
a task will be requested again. Scheduling algorithms are preemptive and priority driven. In this
system, a task experiences the longest service delay whenever a task is simultaneously requested
with all other tasks of higher priority. As a result, it can be proven that a good heuristic is to
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assign higher priorities to tasks with higher request rates. This is called the rate-monotonic priority
assignment and is frequently referred to in the literature. Furthermore, it can be shown that if a
task set has a feasible priority assignment, then the rate-monotonic priority assignment is feasible.

It is also interesting to observe processor utilization rate. Liu and Wayland show that, if the
ratio between two request periods is less than 2, the least upper bound of processor utilization is
U= m(21/ ™ —1). In the specific case of two tasks, the maximum processor utilization possible is
~ (.83 while for large task sets is on the order of 0.70.

For more flexible scheduling, a dynamic, deadline driven method is considered. The task whose
deadline is nearest will be executed first. As long as the sum of task processor utilization is less than
1, the deadline driven scheduling algorithm is feasible. If a feasible schedule cannot be generated,
a processor will have no idle time before overflow. Using a combination of the rate-monotonic
and deadline driven scheduling algorithms allows the system to statically (i.e., rate-monotonically)
schedule a subset of tasks while the rest are scheduled in the deadline driven manner. While it is
proven that this does not allow 100% processor utilization, it is much better than a purely rate-
monotonic schedule and is the basis for many recent scheduling algorithms. However, it is rarely the
case that tasks with deadlines are periodic and that task execution times are constant. Subsequent
work has attempted to take this into account.

Preemptive Scheduling with Precedence Constraints. Several efficient algorithms have
been found which generate optimal schedules in special cases. Muntz and Coffman [MC70] consid-
ered how to schedule tasks whose precedence structure is represented as an acyclic directed graph.
To generate the shortest length preemptive schedule a reverse precedence tree is constructed weight-
ing each node (task) with its worst case computation time. The leaf nodes then are tasks that have
no predecessors, while the root is the last task to start prior the deadline. Processor time is assigned
to leaf nodes highest in the reverse tree. As time goes on and tasks become partially served, if their
remaining service time moves them lower in the tree than other leaves, then those other leaves will
be assigned processor time. The closer an unfinished task is to the leaves, the more processor time
it will be assigned. This is an O(n?) algorithm and finds a minimal length preemptive schedule.

Preemptive Scheduling with Time and Resource Constraints. Even with a single re-
source, it has is computationally intensive to generate schedules and especially to do so dynamically.
The more complicated problem of scheduling n preemptable tasks in a system with r resources is
considered by Zhao, Ramamritham, and Stankovic in [ZRS87]. Resources are usable in either shared
or exclusive modes. Using combinations of simple heuristics, suboptimal schedules are generated
in O(rn?) time which is significantly lower than optimal algorithms.

In this multiprocessor model, a schedule for a set of preemptable tasks is viewed as a sequence
of time slices. During any slice, several tasks can be running in parallel with each task assigned to
one or more system resources. A full schedule is one in which every task is scheduled to run for at
least as long as its required processing time (longer in the case of preemptions), and a full feasible
schedule is a full schedule which completes before the deadline. The problem then is finding a set
of slices that correspond to a full feasible schedule.

In a dynamic distributed system, tasks unpredictably arrive at nodes and require scheduling.
The updated schedule, however, must still guarantee the completion of tasks previously scheduled.
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This algorithm addresses the problem of scheduling arriving tasks on a single processor assuming
that an algorithm exists to effectively move tasks between processors.

The search space is a tree whose root is the empty schedule. Each additional descendant adds
to its parent’s partial schedule so that leaf nodes contain full schedules. With n tasks and a active
resources (a resource with processing power usable by at most one task at a time) can have up to
(z) children. To make such a large search space computationally tractable, heuristics are used so
that even in the worst case, scheduling can be directed from the root to a full feasible leaf node
schedule. Using the heuristics, a node at at a level is described as strongly feasible or not. It turns
out that if a node is not strongly feasible, no path from its children will lead to a full feasible
schedule. It is possible, though, to reach a level with no strongly feasible nodes even though the
tasks are schedulable. In this case, limited backtracking is used.

The heuristics base scheduling on arrival time, deadline, laxity, computation time, or other
basic properties of a task. Depending on the application, one group of heuristics may make more
sense than other. Simulations show, however, that heuristics utilizing Minimum Deadline First and
Minimum Laxity First perform best.

Branch and Bound Task Allocation. For the Ballistic Missile Defense Advanced Technology
Center and TRW, Ma, Lee, and Tsuchiya [MLT82] developed a task allocation algorithm for a
distributed system striving for minimal interprocessor communication cost, processor load balanc-
ing, and meeting real-time application requirements. Solutions by integer programming methods
are limited by the fact that for scheduling, time and memory requirements grow as exponential
functions of the problem order. Therefore, heuristic methods are appropriate when an optimal
solution is not computable within timing constraints. The method proposed is based on the branch
and bound method, a zero—one programming technique. To verify its correctness, the algorithm
was tested on an Air Defense system broken down into 23 real time tasks on 3 processors.

Detailed task preprocessing is necessary requiring that task interaction, amount of data com-
municated, computation time required, etc., must be known beforehand. There are several other
required data structures: a task preference matriz indicating tasks which must be run on specific
processor, a task exclusive matriz defining mutually exclusive tasks which cannot be run on the
same processor, and task redundancy permitting multiple copies of a task for system reliability.
Network preprocessing is also needed, thus topology and link costs must be made available prior
to system startup. The cost of using a link is based on the amount of data to transmit and the
distance the data must travel. There is also a cost associated with processing a given task on a
given processor.

With the above data, branch and bound method is implemented by viewing the allocation
problem as a search tree. When m tasks are allocated among n processors, an m-level tree is
generated with each node having n children each representing a possible processor allocation. The
search tree then has n"™ nodes. However, many branches can be pruned using elimination rules.
If a node at level k is eliminated, then n™ % possible allocations are pruned. Pruning in this
algorithm is necessarily dependent on application specific constraints, so a lowest or even average
upper bound is not obtainable. By checking partial costs during the search and comparing to some
upper bound, expensive subtrees can be eliminated. Subtree elimination also occurs based on the
preference and exclusive matrix values.
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For the Air Defense problem, the algorithm finds an optimum solution in 10* iterations with an
upper bound of O(10'?). Because this technique is heavily application oriented, it is not a generally
useful one.

Nonpreemptive Scheduling with Bidding and Focused Addressing. FEarly research in
scheduling focused on single and multiprocessor systems. With loosely coupled systems becoming
the norm, i.e., LANSs, the focus of research widened to include distributed systems. Stankovic, Ra-
mamritham, and Cheng in [SRC85] introduce an effective algorithm for this environment combining
two heuristics, bidding and focused addressing. Each node in the network runs a local scheduler
which, when necessary, interacts with others to schedule tasks in a distributed manner. Each node
is modeled as having a set of periodic tasks for which it is responsible. These tasks are sched-
uled and thus guaranteed. Arriving without notice from the network are aperiodic tasks which are
scheduled when possible. Whenever a task is scheduled, it is guaranteed. That is, the processor
has determined it has enough excess computational power to complete the task by its deadline. If
a task cannot be guaranteed, other schedulers are contacted to see if one of them can guarantee
the task.

The algorithm is made up of four tasks which all share data such as the Periodic Task Table,
System Task Table, List of Requests for Bids, and List of Bids Sent Out. Aside from an initialization
task, there is a dispatcher task, a bidder task, and a local scheduler task. The dispatcher is invoked
each time a task completes. Of the scheduled tasks, periodic or aperiodic, the task with the earliest
deadline is executed next. This does not provide an optimal, network-wide schedule but is fast and
reduces overhead. Using the periodic and system task tables, the local scheduler decides whether
or not a newly arriving task can be scheduled.

When a task cannot be scheduled locally, the heuristics are employed. By keeping track of
information on processor time surpluses, likely candidates to take on more tasks can be predicted.
In a distributed environment with a large delay relative to processing speed, the information is
always out of date so the focusing algorithm uses the results only as an estimate. If a candidate
is found, the task is sent to it. If one is not found (and actually if one is found, too), the bidding
scheme is begun. When a task cannot be scheduled locally, a Request For Bids is sent out. The
task is sent to one of the processors which responds. The bid request and any responses are also
used by other nodes to update their system tables. Simulations show that the combination of the
two heuristics works quite well.

3.2.4 Scheduling in Soft Real-Time Systems

Not all tasks in a general real-time system have hard deadlines. When a deadline is soft, or
desirable but not mandatory, that means a precise output is not required. Imprecise calculations
can be useful as a means of implementing graceful degradation of system behavior. It is common,
for instance, for a system to contain sieve functions, functions whose sole purpose is to produce an
output at least as precise as its input or some older output value. For example, while processing a
return radar signal, the step in each iteration which calculates a new estimate of the signal to noise
ratio can be skipped and the previous value used [LLS191]. Similarly, in process control or while
tracking an object, some less precise result is better than none.
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Soft scheduling can also be implemented when monotone functions are present. This is a
function whose quality of intermediate results does not diminish as execution time increases. It is
therefore possible to simply terminate task execution before completion. Whatever result has been
calculated to that point is used as the output.

It is also possible to simply have multiple versions of tasks. A larger, more complex version
offers a precise result while a smaller, simpler version offers only an estimate but in a short span
of time.

Depending on the application, tasks with soft deadlines are either error cumulative or error
non-cumulative. Non-cumulative are easiest to handle because their optional subtasks are always
optional. Error cumulative tasks, like the object tracking example, on the other hand require special
treatment. After some number of consecutive imprecise results, a precise result is required, and the
optional subtask temporarily becomes a mandatory one.

Minimizing Imprecision. Liu et al. propose several ways of scheduling tasks of the above type
[LSLR94], [LLS'91] where the standard model of a task is extended. Instead of being considered an
atomic entity, it is now made up of two subtasks: a mandatory subtask and an optional one. This is
analogous to the multiple task version just described. The pared down version can be thought of as
the mandatory task, and the larger and more precise version as the optional task. From this point
of view, it can be seen that general soft real-time systems are supersets of traditional soft real-time
systems where all tasks are optional, and hard real-time systems where all tasks are mandatory.

The soft scheduler first takes care of the mandatory subtasks then uses whatever time is left
to schedule the optional subtasks. Any unscheduled optional subtasks contribute to system error.
The scheduling of optional subtasks, then, can be done with an eye towards minimizing various
types of error: maximum error, average error, discarded optional tasks, number of tardy tasks,
average response time, and so on. Furthermore, when an imprecise result is fed into a successor
task, that task in the best case can only generate an output with the same amount of error. If
its result is made still more imprecise, one can see it is easy for a system’s behavior to quickly
degenerate. Error must be accounted for not only at the task level but at the system level as well.
As one would expect, the problem is easier when all optional tasks have equal weight.

In imprecise systems, the definition of a feasible schedule can be divided into two categories. If
a schedule can be generated which provides processor time for all mandatory and all optional tasks,
the schedule is precise. If all mandatory tasks are scheduled but optional tasks are only partially
so, the schedule is said to be imprecise. The general framework of Liu et al.’s algorithm, named
Algorithm F, is as follows:

1. Try to schedule all tasks treating them as optional. If the schedule is precise, stop. Otherwise,
continue with step 2.

2. Try to schedule all mandatory tasks precisely. If this is not possible, stop; there is no feasible
schedule. Otherwise, continue with step 3.

3. Transform the schedule from step 2 into one which allows as many optional tasks as possible
processing time and minimizes total error.
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As an aside, if tasks are independent and parallelizable, offline scheduling can be calculated
using integer programming. If it is assumed that multiprocessing overhead is a linear function of
the degree of concurrency, formulating the system constraints is made easier. Integer programming
is computationally expensive, however, and the current best algorithm is a polynomial time one by
Karmarkar with a complexity of O((a + 3)82% + (a + 8)'°3), where « is the number of inequalities
and  is the number of variables.

Imprecise Rate-Monotonic Scheduling. In a soft real-time system with tasks modeled as
described above, to implement rate-monotonic scheduling requires some modification to the algo-
rithm. These are put forth by Shih, Liu, and Liu in [SLL93]. As in Liu and Layland’s original
algorithm, the modified version is also preemptive and priority driven. Now, however, requests are
divided into two groups: current requests and old requests. They are then prioritized using the
following three rules:

1. Current requests have lower priority than old requests.
2. Priorities of each group are assigned in the original rate-monotonic way.

3. All old requests are scheduled in a first-in-first-out way.

The deadline of a task can be expressed as
dij = bi + jpi + 6

where b; is the ready time of the first request of the task, j is the jth request, p; is the period of the
task, and §; is the deadline deferral of the task. If -y is the ratio between the longest and shortest
periods of all tasks, then the modified rate-monotonic scheduler is optimal when the deadline of
every job is deferred by max(1,y — 1) periods or more.

4 Network Layer

Very little published work addresses the problems associated with the network layer of a real-
time system. Presumably this is because currently it is almost unheard of to internetwork real-
time LANs. Most applications advertised as real-time are in fact soft real-time with loose timing
constraints. These constraints, furthermore, are generally arrived at by taking into account the
communications media over which the traffic must travel. The application is designed to fit the
network rather than vice-versa. To some extent this is, of course, inevitable. An application cannot
request higher performance than the network can deliver. However, protocols which take deadlines
into account are make to offer better use of available bandwidth.

At the network layer this reduces to two major problems: finding routes, and scheduling packet
transmissions over them. There are many methods of generating routes which will not be elaborated
on here. A distributed algorithm for mobile wireless networks by Corson and Ephremides [CE95]
is appears promising for use in real-time networks, though, because it generates all possible routes
between a source and destination. This could easily be modified to generate routes while also
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collecting data such as link capacity, utilization, etc. Subbarao and Murali present a literature
survey in [SM95] of routing techniques applicable to mobile radio networks. They show that more
work is needed for better route generation, especially in mobile nets with no backbone.

Once several routes are determined, however, it is necessary to calculate which ones can support
the requested qualities of service. This is addressed by Zheng and Shin [ZS94] for both preemptive
and non-preemptive scheduling. They present straightforward equations based on negotiated traffic
rates, channel capacity, and requested delay. Based on resultant values, routes can be kept or
discarded based on the applications needs.

5 Higher Layers

Currently, network management techniques do their best to offer real-time communications without
real-time protocols. That is, traffic that exceeds predetermined thresholds for jitter, delay, and so
on, are simply discarded. Give protocols through the network layer which support hard and soft
real-time messages, it is expected that this will have little effect on network management. The
difference will be that better service can be guaranteed (and charged for) which explicitly takes
into account an application’s needs rather than just hoping for the best as a side effect of the
communications medium.

6 Other Areas

This paper has emphasized real-time research areas in computer network protocols and their cor-
responding scheduling algorithms. However, research is ongoing in many other areas of real-time
systems.

Languages and compilers are needed so that the applications programmer can indicate how
processes communicate and, of special importance, under what constraints they must operate.
The compilation must also divide a process into the smallest schedulable objects, tasks. Real-
time languages must also deal with timing constraints by using a worst case computation time for
a task. Therefore, open ended loops, unconditional branches, recursion, and the like cannot be
allowed without careful control for tasks with hard deadlines.

Implementing timing constraints in a distributed system introduces another problem: clock
synchronization. The only way processors’ clocks can be synchronized is to read each other’s clocks
which is made difficult by communication delays, clock drift (typically on the order of 1 usec/sec),
and even clock failures. Mills [Mil94], in his development of the Network Time Protocol, has shown
that on an Ethernet or FDDI it is possible to achieve reliable synchronization to within a few
hundred microseconds. This is accomplished by driver and kernel modifications in conjunction
with radio interfaces to allow synchronization with radio clocks.

Clearly, a real-time language is useful only if the computer’s operating system supports such an
environment. It is not enough for a kernel to simply be small and fast, though that is a good first
step. A real-time kernel should be aware of a task’s importance in the system and allocate resources
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when needed to groups of cooperating tasks. When a task cannot meet its deadline, the operating
system would be able to offer an alternative rather than precipitating a system-wide failure.

The highest level of requirements are tools for design and analysis of real-time systems. Not
only high level, conceptual ideas must be represented but also descriptions of logical functioning
and behavior, and even implementation level details. Real-time systems of today, however, are
generally analyzed with large simulations. The main shortcoming with this approach is that only
system bugs are discovered. Furthermore, it is difficult and time consuming to generate situations
so that the simulator tests all states of the system. Small, subsequent modifications to the system
usually have dramatic affects on its behavior not predictable from the initial results necessitating
a new round of simulations. Formal verification tools are thus necessary which take into account
both logical and timeliness properties of scheduling.

Some examples of current efforts in these and other areas are detailed in [SR93] and [SR88].
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