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Abstract

Addressing the challenge of packet transmission in a wireless soft real-time system, we present five
splitting protocols that take packet deadlines into account. With them, connectionless service with real-
time QoS guarantees at the MAC layer can be offered. Three protocols are blocked access and two are
free access algorithms. Mathematical models are developed and results compared with simulations. As
is the case with non real-time splitting algorithms, the blocked access versions offer higher success rates
than the free access versions. We further show that of the two best performing blocked access protocols,

under moderate to heavy loads, the Sliding Partition CRA outperforms the Two Cell CRA.

1 Introduction

A group of nodes working in concert to complete some set of tasks by specified deadlines is a real-time
system. Such systems can be broadly subcategorized into hard and soft real-time systems. Hard real-time
systems are those whose data is so important that all deadlines must be met to avoid catastrophic physical or
financial failures. Examples might include aeronautic systems, power plants, or weapons fire control systems.
Soft real-time systems, however, can safely afford some amount of lateness or loss of data. Some examples
are personal audio or video transmissions, radar based object tracking, or remotely monitored meteorological
updates. The nature of the data transferred can also be further categorized. Streaming data, like the personal
audio and video mentioned above, require longer term, connection-oriented service. In contrast, bursty data
transfer between nodes in a distributed real-time system tend to be short, connectionless and similar in

nature to what is seen in traditional queueing networks. For instance a sensing node might send a new set
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of readings to another node. After processing, it in turn might alert yet another node to some new status.
The new features of the traffic, though, are its real-time properties: the time constrained nature of the data
being communicated.

We consider here the specific problem of a soft real-time system implemented on a wireless network
offering connectionless service. We assume that the network will be used to support the somewhat bursty
exchange of data between nodes cooperating to jointly implement a real-time system on a single wireless
network. Until recently, there has been little need for the support of real-time data over wireless nets because
the high probability of link errors makes radio unattractive for transport of time sensitive data. Hence, most
work on wireless communication has focused on long term resource allocation for telephone calls in cellular
networks, or, when the case of data transport is considered, the use of protocol tunneling across cellular
systems. In both cases, though, the transport of data is connection oriented.

However, in certain environments, e.g., military battlefield communications or coordination of search and
rescue vehicles, data is short and bursty, and there is no option but to use wireless channels for real-time
communications. When real-time transport of data is needed in random access networks, quality of service
guarantees must take into account that not all of the offered load can be transmitted. That is, the higher
protocol layers, especially the application layer, must be aware of the capabilities and limitations of the
MAC (media access control) layer. Conversely, the MAC layer can make the most of the available resources
by providing just the level of quality needed by the application and not more, thus conserving resources for
use by other applications or nodes.

Presently, it is often the case that application layer real-time requests are responded to on random
access nets by making do with the services provided, ultimately, by the MAC layer and filtering out “late
comers.” For some applications, this approach is acceptable; the performance of existing protocols provides
the quality of service needed. However, on wireless links, usually offering less bandwidth than wire links, to
meet functional requirements of system designs, it is necessary to provide media access that better meets
the time constraints of the data. It is not new hardware technology that is needed, but new channel access

techniques.

2 Background

The most popular random access MAC techniques are Aloha (Abramson 1970, Abramson 1985) and Ether-
net (Metcalfe & Boggs 1976) or variants of them. Their shortcoming in the real-time environment is clear:
collisions result in a random transmission order of involved packets. Since this offers potentially unbounded
access times at worst, and transmission scheduling ignoring time constraints at best, it is undesirable in
real-time settings. Aside from straightforward techniques such as priority classes or transmission scheduling
based on a priori knowledge, approaches to limiting this shortcoming for time constrained communication

on random access channels include the use of virtual time clocks and splitting techniques.



In CSMA-CD systems, virtual time clocks were first considered by Molle & Kleinrock (1985) and based
on message arrival time. The technique has the advantage of making transmission of queued messages fairer,
though it provides no consideration for deadlines. The method was adapted by Ramamritham & Zhao (1987)
to take into account various time related properties of a packet for soft real-time systems and shown via
simulation to work better than protocols not designed for real-time use.

Subsequently, Zhao, Stankovic & Ramamritham (1990) proposed a splitting protocol that always per-
formed in simulation at least as well as the virtual time protocols and often better. Consequently, we pursue
splitting protocols, though for use on wireless nets rather than CSMA-CD. It should also be noted that
while CSMA-CD is not a possibility for wireless LANs since an antenna cannot be used for simultaneous
transmission and reception, in this situation, research in CSMA-CD can be considered for use in wireless
systems and vice-versa. This is because the CSMA-CD splitting protocols make use of both collision de-
tection and CSMA only in ways peripheral to the splitting algorithm. While Bertsekas & Gallager (1992)
show that splitting in conjunction with CSMA-CD offers no improvement over slotted Aloha, the splitting
methods we present may, in fact, be attractive for implementation in some CSMA-CD protocols due to the
fact that they consider real-time properties of the traffic. The strength of splitting protocols, however, is
their ability to efficiently resolve collisions, which of course occur much less frequently when CSMA and CD
are used.

Algorithmically simpler CSMA-CD splitting protocols than Zhao et al. (1990) were presented for both
hard and soft real-time systems by Arvind (1991), where protocol operations were simulated and some worst
case performance analysis was presented. A similar protocol for wireless transmission of hard and non real-
time data was analyzed in detail by Papantoni-Kazakos (1992). Hers is a hard real-time variant of the soft
real-time protocol presented and analyzed by Paterakis, Georgiadis & Papantoni-Kazakos (1989) described
below.

Further examining splitting protocols, they can be grossly classified based on two common properties.
Namely, the random variable used for splitting and the splitting methodology used. As a concrete example,
the first data communication splitting algorithm proposed, that we call CTM here using the surname initials
of the three researchers, was by Capetanakis(1979a, 1979b) and, independently, by Tsybakov & Mikhailov
(1978). In their method, the involved nodes flip coins after a collision. Those who flip tails wait, while those
flipping heads retransmit. This continues recursively on both sets of packets, so that a high multiplicity
collision will result in a large number of subwindows. The splitting variable is the coin toss outcome, and
the splitting method is a fully recursive one.

Gallager (Gallager 1978, Bertsekas & Gallager 1992) and, independently, Tsybakov & Mikhailov (1980)
improved on the fully recursive algorithm in a number of ways. In this algorithm, that we name GTM
again using surname initials, the splitting variable is queue arrival time. The splitting method uses a sliding
partition. That is, there are never more than two split sets; the partition slides to the left, or older, side

until zero or one packets are “trapped” there.



The more recent two cell splitting by Paterakis et al. (1989) is similar in many respects to the GTM
algorithm except that the splitting variable is again a coin toss outcome, though the splitting technique still
never allows more than two sets of packets. There are other differences between the algorithms, but for broad
categorization, these two properties are useful for the sake of comparison against those presented below.

Most algorithms presented in this paper use laxity, i.e., time until the packet expires, for the splitting
variable. We combine this with the splitting methodologies used by the algorithms described above to develop
new splitting protocols for real-time use.

Random access MAC algorithms, real-time or not, can often be characterized and analyzed with regen-
erative processes (Gallager 1996). In the protocols we present, one “cycle” of the system can be thought of
as the amount of time to resolve channel contention by some number of nodes. For the analysis of systems
of this sort, Georgiadis, Merakos & Papantoni-Kazakos (1987) developed a straightforward, general method
of delay analysis using regenerative properties of random multiple access algorithms. This was elaborated
on by Paterakis et al. (1989) where they present and analyze a simple protocol appropriate for limited types
of soft real-time systems where all packets initially have the same deadline. While Paterakis et al. studied a
specific protocol’s performance for initial deadlines of up to 30 slots, Panwar, Towsley & Armoni (1993) use
the value iteration method to find the optimal splitting algorithm for fixed initial deadlines of up to 4 slots.
In (Markowski & Sethi 1995), we extended the technique of Paterakis et al. to analyze a somewhat more
complex protocol but still used fixed initial deadlines. We included consideration of varying initial deadlines
in (Markowski & Sethi 1996). Here, we present a more efficient technique than in (Markowski & Sethi 1996)
for the case of varying initial deadlines, and apply it to the analysis of three blocked access protocols. We
then present and use still another analytic technique to study the performance of the free access counterparts

of the blocked access algorithms.

3 System Model

The system studied is an infinite population of similar users, each with a queue of length one, sharing a
common channel. Each new packet is assumed to arrive at a new node. The channel is accessed in a slotted
manner such that all transmissions begin only at slot boundaries, and a packet is exactly one slot long.
It is further assumed that at the end of each slot, binary feedback, i.e., collision or non-collision status,
is available describing the slot just ended. Typically, a carrier sensing by the node providing the binary
feedback is performed for some short duration at the midpoint of the data slot. At that time, collision/non-
collision status is determined, so that there is ample time to provide the feedback immediately following the
data slot. Finally, for this initial study, an error-free feedback channel is used.

Two types of random access algorithms (RAAs) are considered: blocked and free access. In a blocked
access RAA, after some initial collision between two or more packets occurs, only the packets involved in

that collision may contend for the channel. When the collision is resolved, and all packets have been either



transmitted or dropped, only then can other nodes again contend. Conversely, in free access RAAs, there
is no such access blocking. That is, regardless of whether or not any collisions have occurred, all nodes are
continually able to contend for the channel. Free access RAAs, therefore, generally have lower maximum
throughputs than blocked access RAAs due to higher contention.

Blocked access RAAs have two components: the first time transmit rule (FTTR), and the collision
resolution algorithm (CRA). The FTTR is used one or more times in succession until a collision occurs,
at which time the CRA resolves the contention. The FTTR used by all RAAs described in this paper is
to transmit a waiting packet with probability one. When the feedback resulting from some transmission
indicates that a collision occurred, the CRA is initiated. The CRA completes when all packets involved in
the initial collision have been either transmitted or dropped due to missed deadlines. The length of time
from the beginning to the end of the CRA is called the collision resolution interval (CRI), and all subsequent
analyses are based on one “cycle” of this regenerative stochastic process.

Splitting CRAs use some random variable to separate the collided users into at least two new sets, after
which, one of the sets becomes active and the CRA is applied to that set. Traditionally, the splitting variable
is either the outcome of a coin flip or the packet arrival time. In our algorithms, we split into two groups
of the same size. However, Wong (1964) showed that this is not always optimal. He derived a functional-
minimization equation of the dynamic programming type showing that splitting at the midpoint of a set can
be a suboptimal solution for locating a number pulled from a uniform distribution. Though this is the case,
for the sake of analysis, we do, however, split equally in our algorithms.

The splitting variable used is tied to the deadline of the packet, namely, its laxity. Laxity is the maximum
amount of time that can elapse prior to transmission, after which the packet will not reach its destination
on time. At each slot boundary, a packet’s laxity is decremented by one and the packet discarded should
the laxity reach zero. By splitting based on laxity, the real-time requirements of the system can best be met
by making the low laxity group the active one so that contending packets are always transmitted in a laxity
ordered manner, low to high, as appropriate in a real-time environment. Initial packet laxities are drawn
from a uniform distribution in the interval [2, T]. Two is the minimum laxity since it takes one slot to receive
feedback plus one more for actual transmission. The maximum initial laxity 7" is a system parameter and is
chosen based on the real-time application’s functional requirements.

Another characteristic common to all CRAs analyzed here is that packets are never delivered late. They
are either transmitted in a timely manner or dropped. At this low level, there are two competing viewpoints:
the system as a whole would like short CRIs, while individual packets hope for transmission regardless of
delay as long their deadlines are met. We balance these views by outright dropping of late packets. A higher
protocol layer decides if it is worth retransmitting late or not, especially in the case of multiple MAC layer

packets making up a single higher layer message.



4 Blocked Access CRAs

By the nature of blocked access CRAs, the time when contending packets entered the system is known; it is
the start of the CRI. At any time during the CRI, an initial collision that happened some while ago is being
resolved. This means that there is lag of, say, d slots between “now” and the start of the CRI. The analysis
must consider both this lag, and, based on the packet arrival process, the number of packets expected to
arrive while the CRI is ongoing. Because the lag can become large when the intensity of the arrival process
is high, windows are used, as first introduced by Gallager (Bertsekas & Gallager 1992). With large lags, it
is likely that when a CRI completes, it will be immediately followed by a collision. To avoid this, a window
A slots wide is used so that it is less likely to encompass more than one packet.

The window is time based and allows packets whose arrival times fall within the window to transmit.
But, should a collision occur, a new window is used where the packets involved are reordered in a laxity
window that spans the entire range of possible initial laxities [2, T]. This is the window upon which the laxity
based CRAs, described shortly, operate. When the CRI ends, the time based window slides forward another
A slots so that arrivals in that window can then transmit. Figure 4 illustrates some of these variables and
how they are related. In the figure, the current moment of the illustration is time ¢ and because of some
previous collision, the current lag is d slots. The previous CRI completed at time ¢;. To successfully transmit
all packets in the current window, the CRI must complete within the next T' — d slots. The variable , 4 is
defined in detail later but is simply the length of the CRI from some time # until its end at time #'.

An equivalent approach to using a sliding arrival-time based window might be to use a sliding laxity
window in conjunction with the FTTR. The idea is that even when a CRI is not in progress, a laxity
window would be used to allow some subset of the full laxity range to transmit. It turns out, however, that
there is no appreciable difference between the two. For both the sliding laxity and sliding time windows,
the goal is to find a window size reducing the likelihood of collisions while also increasing the likelihood of
finding a single packet. In both cases, when a collision does occur, the average case will involve the same
number and type of packets. Due to the memoryless nature of the Poisson process, there is no advantage
(or disadvantage) to using a sliding window of one type over a sliding window of another. When optimally
chosen, likelihood of collisions is the same, and any collision is followed by use of the same laxity based CRA.
Simulations confirm this, and we chose a sliding arrival-time based window. While this avoids the added
step required with sliding laxity windows of determining optimal window widths for each new laxity set,
using a sliding laxity window can be advantageous in practice. It offers the chance to separate the splitting
variable from the arrival process. In systems with non-Poisson arrivals, periodic ones, for example, this can

be especially useful.
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Figure 1: Fully recursive CRA.

4.1 Blocked Access Fully Recursive CRA

The first protocol considered uses packet laxity as the splitting variable and recursively splits each laxity
window on subsequent collisions. A sliding time window is used as well in the style of the GTM algorithm to
decrease the likelihood that a CRI will be followed by a collision. This is akin to the modification made by
Massey (1981) to the original CTM CRA. That is, a sliding arrival-time based window encompasses some
range of arrival times. Only packets whose arrival times fall within the window may contend for the channel,
so that the likelihood of high multiplicity collisions is lessened.

When a collision does occur, however, the packets enabled in the time based window are reordered in a
new laxity window encompassing the full laxity range. That window is split, and the CRA is applied to the
left half of the window until no more packets are waiting in it to be transmitted. Then the CRA is applied
to the right half of the laxity window. This is illustrated in Figure 1, though the initial sliding time window
is not shown. As a result, a splitting tree of arbitrary depth, i.e., a large number of subwindows, can exist
at a given point in time in a CRI. The only way to know when the CRI completes is for all nodes to be
monitoring channel history since system startup and for there to be no errors in the feedback. Note the
many consecutive non-collisions in the figure. Were a node to begin channel monitoring at the fourth slot,
the first non-collision, in the CRI, it would have no way of knowing that a CRI is even in progress or that
four windows need to be resolved. It would simply see a channel without collisions, essentially idle. While
clearly impractical for implementation, it is interesting to consider this CRA for the sake of comparison to

other real-time CRAs.

4.2 Blocked Access Sliding Partition Real-Time CRA

Figure 2 illustrates how a more practical algorithm operates. This CRA is a modification of the blocked
access fully recursive CRA in that the CRA is not applied recursively to each window half. Rather, after a
collision, a laxity partition separates the full range into two halves. Packets in the left half then retransmit.

If there is a collision, the laxity partition is slid to the midway point of the current left half. In this way,
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Figure 3: Two cell CRA.

there are never more than two windows during a CRI, as can be seen in the figure. And after the left
half transmission is a non-collision, the CRA is applied to the right half. This is similar to, but not quite
the same as, the improvement made to the original CTM CRA by Gallager (Gallager 1978)(Bertsekas &
Gallager 1992) and Tsybakov & Mikhailov (1980) that yielded the GTM CRA. In the ternary feedback GTM
algorithm, after a successful transmission in the left half, the remaining right half is ignored. The window
slides beyond the now resolved left half, and begins anew. Due to the fact that this CRA switches from an
initial arrival-time based window to a laxity window, in addition to the fact that only binary feedback is
available, we are unable to do the same here. However, due to the nature of both this and the GTM CRAs,

two consecutive non-collisions still indicate the end of a CRI.

4.3 Blocked Access Real-Time Two Cell

Paterakis et al. (1989) developed a CRA that uses random splitting like the original CTM CRA, but also

incorporates windowing in the same manner as the GTM and sliding partition CRAs described above. There



are always only two subsets of split users, those in cell one and those in cell two. Upon collision, nodes flip
a fair coin and either remain in cell one or move to cell two. Nodes in cell two never transmit. Cell one
nodes, however, always transmit at the next slot boundary. This has the advantages of the sliding partition
CRA—at most two windows active—with an advantage also found in the original CTM CRA; namely, the
splitting is independent of the arrival process. In Figure 3, the illustration shows the arrival-time based
sliding window where the current one happens to allow three packets to contend for the channel. After the
initial collision, the rest of the figure shows how the CRI might proceed given that there is a coin flip by
all cell one nodes after a collision. Like the previous CRA, two consecutive non-collisions signal the CRI
completion. This makes it easy for nodes to join the net any time after system startup, and to resynchronize

in the inevitable case of feedback errors.

5 Blocked Access Analysis

In such systems, it is straightforward to describe the performance measures. So that the interested reader can
easily perceive our extensions to the analytic technique of Paterakis et al. (1989), we follow their notational
scheme where possible. Due to space considerations, we present the analysis only for the real-time sliding
partition CRA. Using the modifications described, corresponding expressions for the other protocols have
been derived. The intensity of the Poisson arrival process, in packets per slot, is indicated by A. This is the
aggregate arrival rate, or offered load, at the MAC layer. That is, whether or not there is any blocking of
packets at higher protocol layers, a system-wide A packets/slot is assumed to reach the MAC layer, though
not all will be ultimately transmitted. Then, if H denotes the expected length of a CRI, and Z the expected
number of packets that will be transmitted during that CRI, the fraction of packets that meet their deadlines
is
p=(Z/H)/A. (1)
If we next define W as the cumulative expected delay of all packets in the CRI, then the per packet expected
delay is
D=W/Z. (2)
In the following sections, expressions for H, Z, and W are derived. We begin with basic expressions and build
upon them to derive expressions for the variables above. The expressions are, essentially, just somewhat
complicated counters. That is, H counts the number of slots in a CRI, Z counts the number of packets

transmitted, and W counts the number of slots spent waiting. In all cases, the counter value is returned at

the end of a CRI.

5.1 Probability of Packet Expiration

During each slot of a CRI, there is some probability that one or more of the contending packets will expire.

Recalling that T is the maximum possible initial laxity and that B is the maximum number of slots remaining



in the CRI, T — B is the current length, in slots, of the CRI. At each slot boundary, the laxity of each packet
decreases by one. As a result, the window can be thought to slide to left by one slot. Because late packets are
dropped, however, the window edges are never less than one. This is illustrated in Figure 5. The probability,
then, that one packet expires is conditional on location of the current laxity window. Since packet laxities
are drawn from a uniform distribution, the probability of a single packet being dropped when at most B

slots remain in the CRI is

p1 = P(pk drop | T, B,z w):1_max(l,z’-i—u;—(T—B))—max(l,a:—(T—B))‘ 3)

Note that immediately after the collision that initiates the CRI, B will be T'—1. After the CRI has progressed
for T — B slots, the left and right edges of the laxity window move to the left by that much as well. The
probability of not being in that window is the probability of a packet being dropped.

The probability of multiple packets being dropped is obtained by treating each single drop probability

as a Bernoulli trial. The number of total drops is then described with a binomial distribution, which is

bin(p, 1, k) = (Z) pH(1—p)"F,

using p; as the probability. Therefore, given a window spanning laxities [z,z + w] and with only B slots

remaining in the CRI, the probability that d of the k& packets will be dropped is

bin(p17 k: d)

5.2 Probable Length of CRI

In most of the subsequent equations, there is consideration of some event occurring within a CRI of length [,
which then must be multiplied by the probability that a CRI occurs that is, in fact, of length [. This latter
probability is derived below. For a collision involving some finite number of packets, the probable length
of the CRI can be expressed recursively. The notation Pie,(l | k1, ke, B, z,w1,b) is used to indicate the
conditional probability of the CRI being [ slots long given that there are k; packets in the left subwindow,
k2 packets in the right, and at most B slots remaining in the CRI. Furthermore, the left edge of the current
window is at laxity z, and the left subwindow has width a, and the right has width b. The conditional
probability that a CRI is of length / when an initial collision of multiplicity & packets occurs can then be
represented by P, (! | k,0,B,2,T,0). That is, by convention, we assume a CRI begins with all ¥ packets in
a left subwindow where the right subwindow is of zero width.

Realizing that a collision uses one slot, the probable length of the CRI can then be calculated using an
equation of the form Pe,(l|-) =...Pen(l—1])... However, because packets have initial laxities drawn
from a range of laxities, there is some probability that one or more packets will expire during the current

slot of the CRI. Thus, a summation over the number of packets lost multiplied by the probability of the
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likelihood of such an event is needed. The full expression, with initial conditions omitted for brevity, is

(S5 Prn(l =1 ky — d,0,B — 1,2 + w1, ws,0)

-Pirop(ka,d | T, B,z + wy,ws) kL =01,
Pen(l | k1, k2, B, z,wy,ws) = 4 _ e
D imo bin(wy /(Qwy + 2ws), k1,4) Y40

Pion(l—=1|i—d,ky + k1 — i, B — 1,2, w1 /2, w5 + w1 /2)
“Parop(i,d | T, B, z,w /2) otherwise.
(4)

The above gives the probability in terms of specific cases for values of k1 and k5. In the general case for a

Poisson arrival process, the probability of a CRI lasting [ slots is again expressed recursively. Let Pien (I | u,d)
denote the conditional probability that a CRI is [ slots long given that u slots must be examined, and that
the current lag is d slots. This probability is the sum of the probabilities that the u slots contain 0, 1, ...,
oo packets and that these packets can be successfully transmitted within the remaining time, T' — d.

—Au ()‘u)k
k!l

Ben(”U:d):ZBen(”kaoaT_l-d]>2aT_1>0)e (5)
k=0

5.3 Expected Length of CRI

An expression for the expected length of a CRI is developed in a manner similar to that used for the probable
length of a CRI. Given an initial collision involving k packets and at most B slots till the end of the CRI,
we denote the expected length as L, i,,B,z,w,,6- We again must consider the probabilities of one or more of

the k packets expiring as the CRI. For k > 1, i.e., initial conditions not listed, we get

)
k
143020 Lko—d,0,B—1,04w1,ws,0 - Parop(k2,d | T, B,x + wy,w2) ki <1,

Lk1,k2,B,z,w1,w2 = < 1 + Zf;o bln(wl/(le + 2’11]2), kla Z) Zfi:(} (6)
Li g kothi—i,B—1,2,w1/2,waw1 /2
“Parop(i,d | T, B, x,w1/2) otherwise.

For the general case where u slots must be resolved with a current lag of d, the expected CRI length is

(Au)*
B

E{lya} = i E{lyq|k,T—[d] }e >

k=0

(7)

With these expressions, we can now use the high level relationship induced by time-constrained, blocked

access CRAs, as put forth by Paterakis et al. (1989):

la,q, lag =1, 1<d<A
hq = ld,d+hld,da 1<ld,dST—[d], ISdSA (8)
Ind+haatin, 1<lga<T-[d], A<d<T-1
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Taking expectations and denoting Hy = E{hg} yields

- B{laa} + Yt HyPien(m | d,d), 1<d<A, o)
d =
E{llaa} + X MV H, AymPien(m|A,d), A<d<T—1.

This is a finite system of linear equations that can be easily solved with standard methods, e.g., Gauss-Jordan
elimination. The solution for the variable H; represents the expected number of slots required to begin with
a lag of 1 slot and to return to a lag of 1 slot. This is the expected value for the CRI length dependent on

arrival process, initial laxity range, and window width A.

5.4 Expected Number of Transmissions During CRI

The expression for the number of packets transmitted during a CRI follows the same recursive pattern as
does the expression for expected CRI length. However, where the expected length expression counts the
number of slots in the CRI, the expected number of transmissions counts packets. After each non-collision,

the counter is incremented by the number transmitted; either zero or one.

(
kit + Y0 Nko—d,0,8-1a-tws,wa0 * Parop(kz,d | T, B,z +wy,wz) ky =0,1,

Ny ko, Braywnwn = Soiko bin(ws /(2wr + 2ws), ki, i) S5, g (10)

Nz’—dl,k2+k1—i,B—l,z,w1/2,w2+w1/2
“Pirop(iydi | T, B,z, w1 /2) otherwise.

As before, the general case of resolving a window of u slots with a d slot lag is

—u ()\U)

E{nu,a} = ZE{nudlk T - [d] }e (11)
k=0

Similar to the CRI length expression, the relationship induced by the CRA is:

N4, d, lga=1, 1<d<A
Qd =94 Nad+ 1<lga<T-[d], 1<d<A (12)

NA,d T Qd—A+ia 4 1<ld,d§T—|-d], A<d<T-1.
Taking expectations and denoting A; = E{a4} yields
B{naq} + S0 A Pion(m | d, d), 1<d<A,

Ag= - (13)

B{nag + X0 Ay aAymPien(m | Ayd), A<d<T-1.
Z = A; is the expected number of packets transmitted during a CRI dependent on arrival process, initial

laxity range, and window width A.

5.5 Expected Cumulative Delay During CRI

The cumulative delay, Z, of all packets transmitted during the CRI is obtained by combining the previous

two expressions to sum the number transmitted and slots spent waiting. The number transmitted happens
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to also be the number of slots required to transmit them, so that for a given number of packets, the expected
cumulative delay is

k
kl + Edio (Zkz—d,O,B—l,m—i-wl,wg,O + ng—d,O,B—l,z—i-wl,wg,O)
'Pdrop(k27d|TaBax+wlaw2) klzoa]—:

Ziy ko, Bozywrws = . Soeto bin(wy /(2w1 + 2ws), k1, i) Yy (14)
(Zi—d,k2+k1—i,B—l,z,wl/Q,w2+w1/2

+Ni—d ko tky—i,B—1,2,w1 /2,wo w1 /2)
“Parop(i,d | T, B, x,w1/2) otherwise.

Therefore, the cumulative delay of packets transmitted during a single CRI (excluding delay due to lag and

window width) is

)k

(Au
!

B{eua) = Y B{zua | T~ ] o2

k=0
From the memoryless nature of the Poisson process, the average packet position in a window is the

(15)

middle. Therefore each packet in the window experiences, on average, a delay of half the window length.

The expected delay within a window, then, is simply,

E{thua} = %uE{nu,d}.

The time spent waiting is made up of three parts: a packet’s expected position in a window, the amount of
time before the window encompasses the packet, and the number of slots required for the CRA to transmit

the packet. This is expressed as

Va4 + Zd,d, lg,a=1, 1<d<A
Ya,a+ 2d,d + Wiy 4, 1<lgg<T—[d], 1<d<A

wq = ’ (16)
YA, + 2a,d

+(d = A)na,awWi-Atin ., 1<lga<T—[d], A<d<T-1.

Taking expectations where Wy = E{wgy}, we see that

T—[d]
E{¢g,a+ 2zaat+ Y. WnP(m|d,d), 1<d <A,
m=2

T—[d]
E{’L[}A,d +2a,0+ (d - A)nA,d} + Z Wa—atmP(m | A,d), A<d<T-1
m=1

Wa = (17)

The solution for the variable W = W; represents the expected cumulative delay of the packets transmitted
during a CRI. With W, it is now possible to substitute in values to Equations 1 and 2 for performance

evaluation.

6 Blocked Access Evaluation

A soft real-time system can be characterized by at least the following: traffic rate A, laxity range [2,T],

minimum acceptable success ratio e;, and average delay desired e;. Ideally, a protocol would adapt to a
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changing network by modifying these values while still meeting quality of service guarantees. More simply,
though, if a system’s real-time requirements are known at design time, it is easy to determine protocol
performance.

While it is the application that drives the choices for laxity range [2,T] and success rate ey, the initial
time window width A is a design parameter of the protocol itself. That is, it is chosen from the optimization
of the analysis of the previous section. Because of the complexity of the expressions developed, deriving
closed form solutions is difficult. For a given value of A, however, the problem is simple to solve numerically

and, as pointed out by Paterakis et al. (1989), reduces to:
A;’,ﬁ =sup(A : pr(A,N) > e). (18)

We present results only for A = 2.5 though data has been generated for various A values that, through
observation, encompass the maximum throughputs. We also conducted simulation studies of each protocol
using Opnet (Mil 3, Inc. 1996), a network simulation package. The simulator models the system as an infinite
user population, thus offering more conservative performance results than the finite user case (Paterakis,
Georgiadis & Papatoni-Kazakos 1987). Each simulation was run with 0.95 probability that the fraction
of successful transmissions p was within £0.005 of the steady state value. Input traffic rates, in units of
packets/slot, ranged from 0.050 to 0.600 in increments of 0.01. It is important to note that the simulator
is not numerically solving the recursions of the analysis. It performs the various splitting techniques in
the same manner that an implementation would, and samples are gathered with statistics generated upon
reaching steady state. The analytic curves, in contrast, are generated solely from numerical solutions to
Equations 1 and 2.

For the blocked access sliding partition CRA, Figure 6 graphs analytical and simulation success rate
results for Ajy o and illustrates the close correlation of data, even though the two methods used to acquire
the performance results are very different. Figure 7 graphs a similar comparison with the blocked access
sliding partition CRA, but for delays corresponding to A3 .9, Al 0.9, and Ajj 9. Error bars are not shown
since the condition of reaching steady state was made by monitoring p, not the delay. Because of the close
correlation between the two sets of results, subsequent graphs show only one or the other set for the sake
of readability. With simulation results, error bars will not be shown but in all cases are based on the
+0.005 tolerance of p. Analytical results for the sliding partition algorithm are graphed in Figure 8, showing
expected CRI lengths for various values of 7" and A. As expected, when the intensity is high, CRI length
begins to increase dramatically, and especially when T is large.

For maximum initial laxity 7' = 10, analytical results for the three protocols are compared in Figure 9. It
is interesting that the fully recursive CRA outperforms the others. In the original ternary feedback versions,
and even when windowing was added to the fully recursive CRA, it performed worst. In the soft real-time
environment, it appears that the finer window splitting of that CRA offers some advantage. However, when

T = 30, the advantage is lost as illustrated in Figure 10. While splitting finely allows perhaps quicker
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isolation of contending packets, it is then necessary for the recursion to spend another slot doubling the
window size, thus losing valuable time.

As one might expect, the sliding partition CRA, which takes packet laxities into account, performs
better than the random splitting of the two cell CRA. As laxity range increases, the performance differences
between the two become more significant. This is shown in Figure 11. Furthermore, as seen in Figure 12, the
CRA is seen to approach some operational maximum as the value of T is increased. From this, it appears
that results for, say, 7" = 30 could be used to approximate still wider laxity ranges. More importantly, it
indicates that the LLC (Logical Link Control) layer that submits packets to the MAC layer must be aware
that though deadlines of its frames might extend relatively far into the future, MAC peak performance is
reached with deadlines no more than 30 slots away. This will undoubtedly have some effect on design of the

LLC scheduling algorithm.

7 Free Access CRAs

Because free access CRAs allow packets to contend for the channel at any time, there is no way of knowing
at what point during a CRI a given packet arrived. At the beginning of each slot, there is some probability
that the arrival process will add zero or more packets to the system, and some probability that the departure
process—a combination of the CRA and expiring packets—will remove zero or more packets from the system.

Therefore, a time based window is also unnecessary.

7.1 Free Access Real-Time Sliding Partition/Fully Recursive CRA

The blocked access sliding partition CRA is easily modified for use in a free access manner. After the time
based window is removed, the only other change is that the left edge, the low laxity window edge, never
moves. By doing so, regardless of the progress in the CRI, lower laxity packets are always admitted. Higher
laxity packets, though, must wait for the lower laxity ones to resolve any collisions. So the algorithm does not
implement free access in the purest sense, but does so in a way that seemingly best supports soft real-time
transmissions. Interestingly, by similarly modifying the fully recursive laxity splitting algorithm, its free

access variant is identical to the free access sliding partition CRA.

7.2 Two Cell Random Splitting

The two cell CRA is also modified by removing the time based window. It is further modified such that all
new arrivals join the waiting group and react to the feedback exactly as if they were in the waiting group
during the previous slot. That is, they transmit after a non-collision, and remain in the waiting group after

a collision.
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8 Analysis

For free access analysis, the expressions for H,Z, and W must again be derived for use in Equations 1
and 2. Because there is no need for a time-based window or to track its location relative to the current
lag, the top level equations for the free access analysis are more straightforward than for blocked access.
However, because it is no longer known when a given packet enters the CRI, the expression for the packet
drop probability becomes more involved. Because a CRI is not guaranteed to be shorter than the largest
initial laxity, as in the blocked access case, the notation changes slightly. Rather than have a bound B
counting down from the maximum laxity of T slots, we start a counter P from zero and increment it at each

new slot.

8.1 Probability of Packet Drop

Given that there is a packet arrival within the last P slots and that the arrival process is Poisson, it is equally
likely that the packet arrived in any of the last P slots. When P < T, the probability of a packet drop is the
same as the blocked access case. For P > T, though, since T is the maximum initial laxity, we know that

the packet must have arrived within the last T slots. Therefore, the probability that a single packet will be

dropped is:
min(P,T—1) . .
_ _ 1 max(l,z+w— (T —14)) —max(l,z — (T —1))
p1 = P(pk drop | T, P, z,w) = ; 71 ” . (19)

As in the blocked access derivation, the probability that d packets out of an existing k packets are dropped
is a binomial distribution utilizing the probability above. This group drop probability is again denoted by

bin(ps, k, d).

8.2 Expected Length of CRI

The expected length of a CRI is obtained in a straightforward manner, though the notation is somewhat
involved. At the beginning of each slot, the Poisson arrival process determines the likelihood of new arrivals,
while the CRA determines the likelihood of departures. With these probabilities, the expected CRI length
is expressed as
(1 +30 252:0 Liy—dta,0,P+1,w1+ws,0

Parop(ka,d | T, Pywr + wa)e™ 27 k<1

L+ 32 bin(wn /2wy + 2w2), k1, 9) Y, -0 X'~ Ximo Yoo

Li_ 4y 4ay kot ky—i—dstas, P+1,w /2,wo 4wy /2

“Parop(i,di | T, Pyw:/2)

-Pirop(ka + k1 — i,do | T, P,wn /2, ws + w1 /2)

— 2 Alertaz) wq @ wo a2 :
{ € " artas)! \ witws P otherwise.

(20)

Ly, k2, Pawt yws = 4
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Recall that in the soft real-time, free access version of the sliding partition CRA, that the left edge of the

laxity is always 2. This means that after a successful transmission, the laxity window is fully expanded to

the full range. For the case above, where k; < 1, any new arrivals thus will be members of the subsequently

full-sized laxity window. In the case where k1 > 1, however, the probabilities of arrivals entering either half

of the window are considered.

8.3 Expected Number of Packets Transmitted During CRI

The expected number of packets successfully transmitted during a CRI is similarly derived. At the beginning

of each slot, the Poisson arrival process determines the likelihood of new arrivals, while the CRA determines

the likelihood of departures. With these probabilities, the expected CRI length is expressed as

Ly ko, Pwy,we =

S

(ki + 3 o I Zky—da0, P w1ws 0
Parop(ka,d | T, Pyw; + wa)e A7,
Yoo bin(wi/ 2wy + 2ws), k1,1) Yoo Sarte' " Saeco Laneo
Zi7d1+a.1,k2+k17i7d2+a.2,P+1,w1/2,w2+w1/2
“Pyrop(i,dy | T, Pyw /2)
Parop(ks + ki — i, do | T, Pyws [2,w2 + w1 /2)

(21)

— Ale1taz) wq o wo az :
{ € {arFas)! \ w1z P otherwise.

8.4 Expected Cumulative Delay

The expected cumulative packet delay during a CRI is slightly more complex. In addition to counting the

slots delayed during the CRI itself, on average an arriving packet waits half a slot, due to the free access,

before attempting its first transmission. Therefore, the expected delay is

Wk17k27P7w1,w2 =

,
k
k1/2 + EZOZO Edzzo (Wkg—d+a,0,P+1,w1+w2,0

Zky—d+a,0,P+1,w14ws,0)

a

-Pirop(ko,d | T, Pun + 1U2)67)‘/‘\l—!, ki <1
oo bin(wn /2wy +2w2), k1) Y, o Yate' " Lm0 Lanmo

(Wi dy+ai1,ka+ki—i—dotas, P+1,wi /2,ws+ws /2

+Zi_ 4y +ar ka1 —i—dataz, P+1,w1 /2, wstw: /2)

“Parop(i,di | T, Pywy/2)

-Pirop(ko + k1 — i,da | T, P, w1 /2, w2 + w1 /2)

a1 ag
—AA1te?) wy way .
{ € largas)! (w1+w2 PP, otherwise.
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9 Free Access Evaluation

The performance evaluation of the free access protocols is done using the same top level equations just as for
the blocked access ones. Because at each slot boundary, free access analysis must consider the probability
of new arrivals, and due to the exponential nature of the equations, it quickly becomes difficult to obtain
analytic results as CRI bound T and Poisson arrival intensity increase. Therefore, while Figure 13 shows
the close correlation between the analytical and simulation results for maximum initial laxity 7' = 5 in the
sliding partition free access protocol, for higher T' values, simulation results are more quickly obtained. The
simulation results of the two free access protocols are compared in Figure 14. For each algorithm, six curves
are plotted for initial laxity ranges [2,T] where T' = 5,10, 15, 20,25, 30. The two cell version significantly
outperforms the sliding partition based CRA. This is not surprising since new arrivals always join the waiting
cell avoiding collisions, on average, that are unvoidable in the free access sliding partition CRA. Conversely,
while delay levels off at a later point in the free access two cell CRA, we can see in Figure 15 that delay levels
off in the free access sliding partition CRA fairly fast and at a lower point, due to the increased contention,
than in the two cell CRA.

In the cases of both blocked and free access algorithms, meeting performance requirements of the appli-
cation layer are dependent on the MAC traffic intensity not exceeding a rate corresponding to the desired
success/delay criteria. We make the simplifying assumption that this A is either the by-product of the soft
real-time system implemented on the wireless net, or else some admission control is in force in the LLC
(Logical Link Control) layer just above the MAC layer.

In the case of traditional free access CRAs, free access algorithms have lower throughput because of
the increased channel contention. In the soft real-time case, though, it is interesting to reconsider these
algorithms because of the more involved departure process. For small laxity ranges, it turns out the the two
types of algorithms perform similarly. Figure 16 compares the performance of the sliding partition blocked
and free access versions when T' = 5. The difference is slight. However, when higher ranges are compared,
the performances quickly diverge. Figure 17 graphs success rates for initial laxities in [2,T]. We can see
that as T becomes larger, the blocked access algorithm performs increasingly better, whereas the free access
version’s performance becomes increasingly worse. The more practical range of success rates for e; = 0.9 is
illustrated in Figure 18. For both sets of analytically derived curves, values of T' = 5,10, 15 are graphed left
to right. While both algorithms show increased success rates when 7 is increased, it is easily seen that even
in this restricted range of success rates, the blocked access CRAs perform better. The corresponding delay

curve is graphed in Figure 19.

10 Conclusions

A real-time system meets its functional requirements not just by generating correct results, but by generating

correct and timely results. Deadlines can be fully supported only if the concept of time is incorporated into
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all layers of the protocol stack. This has been traditionally difficult to do in random access protocols,
where packet delays are potentially unbounded due to collisions. Higher layers have therefore been forced to
accept lower performance than possible simply because the foundation of the protocol stack offers no support
for deadlines. With the five algorithms presented, we have shown that window-splitting protocols can be
modified to work successfully in soft real-time environments.

In addition to the algorithms, we have presented several analytic models of them that can be used to
determine operational parameter values when given quality of service requirements. Supporting the analytic
techniques, simulations of the algorithmic actions yield results nearly identical, within the given tolerance,
with the numerical solutions. Results indicate that for general use, the blocked access sliding partition
algorithm offers the best performance.

Addressing the practicality of the protocols studied, it was mentioned that the fully recursive algorithm,
while interesting to study, cannot be implemented since it requires an error free channel and that all nodes
must monitor the channel from system start up. Both the two cell and sliding partition algorithms, how-
ever, have the desirable property that CRIs are always complete when two consecutive non-collisions are
observed. This allows stations to easily join the net by simply waiting for two non-collisions before their first
transmissions.

Splitting protocols, though, are not well suited for the transmission of streaming data, which is best
handled by connection-oriented services. Yet for wireless networks where short messages are passed between
nodes that are cooperating as parts of a larger soft real-time system, splitting protocols are appropriate. In
these situations, real-time splitting protocols avoid the overhead of setting up and breaking down connections
yet still offer quality of service guarantees. With such guarantees made at the MAC layer, a strong foundation

is provided for building real-time services throughout the protocol stack.
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