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ABSTRACT

This dissertation investigates the design and analysis of real-time protocols

at the MAC and LLC layers. In particular, the difficulty of making real-time quality

of service guarantees on a random access wireless network is considered.

First, an initial real-time MAC layer protocol is designed. A corresponding

technique for its analysis is developed as well. The protocol incorporates two new

techniques: transmission ordering based on real-time properties and packet blocking

due to deadline expiration.

Second, more protocols are developed and studied. Initially, the focus was on

determining how to make use of real-time properties, but here, the goal is to improve

on real-time performance. We look at three algorithms and compare their success

rates. Additionally, we consider their performance in two very different types of

protocols: blocked access and free access. Blocked access protocols are more orderly

and of the two types usually offer higher throughput. However, free access protocols

are easier to implement.

Third, we develop the first fully distributed, preemptive MAC protocol that

makes quality of service guarantees while allowing for the coexistence of hard, soft,

and non real-time data. To support full distribution of the algorithm, an additional

supporting protocol is developed. With it, each station takes part in the generation

of channel feedback data, essential to the proper operation of the MAC protocol

itself.

Fourth, we develop a simple LLC layer that uses a real-time scheduler to

determine which of its potentially many packets to submit to the MAC layer, where

xiv



actual transmission will take place. Several schedulers are compared, but in all

cases, scheduling decisions are based not only on queue sizes but also on transmission

success/failure results passed back from the MAC layer.

The first and second problems are used as the foundation to finally develop

the more general MAC layer protocol of the third. Combined with the LLC devel-

opment, the final result is a basic data link layer that provides for real-time support

of traffic in an ad hoc wireless network.
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Chapter 1

INTRODUCTION

While the popular ISO OSI model of computer network communications is

made up of seven layers, the bottom-most physical layer is the means of actual

interconnection and plays a large role in determining what sorts of protocols can

be used in the upper six layers. A network designer must take into account not

only bandwidth, error rate, and other physical properties of the medium of inter-

connection, but also cost and application requirements. In most office or laboratory

environments, eventual and correct communication of data is all that is necessary

because intermittent, failed transmissions are usually resolved much more quickly

than human senses can perceive. As a result, Ethernet currently meets the require-

ments of the bulk of computer users. However, no protocol satisfies the needs of all

situations.

Some applications are especially demanding. For instance, scientific visual-

ization requires large bandwidth. Commercial services such as teleconferencing or

virtual networking require not only large bandwidth, but a means of reliably pro-

viding, monitoring, and charging for the services. The type of system we consider,

the real-time system, has still different requirements. It interacts with the surround-

ing environment based on occurrences of real world events and hence has stricter

requirements than, say, an email system, on how the time critical data is handled.

For instance, if robots on an assembly line are about to crash, the communication

protocol must be able to give priority to the “Halt” message over the “Begin spray

painting” message.

1



Table 1.1: Definitions of real-time message types.

Hard real-time messages Vital messages that are guaranteed deliv-
ery by their deadlines.

Soft real-time messages Time critical messages that can afford
some lateness or loss.

Non real-time messages Messages that are not time critical.

Real-time traffic itself can also be further classified. Hard real-time traffic

is that which is so important that its deadlines must be honored once accepted for

transmission. More common in wireless systems is soft real-time data which, while

still time critical, can usually afford some lateness or even loss. A third class, firm

real-time, has requirements lie somewhere between those of hard and soft deadlines.

A certain sensor reading might be able to be lost three times in a row, but must

be received no more than four readings apart. And finally, a requirement often

overlooked in real-time systems is that non real-time data must be able to coexist

with real-time data. Non real-time data, data without deadlines, should not be given

such low priority that it has no opportunity to be transmitted. These definitions

are summarized in Table 1.1.

While real-time systems on wire-based networks are difficult to implement,

implementation on a wireless network is even more complex. A wireless link has a

much higher bit error rate (BER), about 10−4 or more, than an optical receiver which

is usually designed for ≤ 10−9, or coaxial cable where 10−7 is typical. While the

typical wireless BER is certainly not desirable, there are situations with no option

to use wire or fiber-based communication. Some examples are communication on

the battlefield, in forestry service, or to coordinate search and rescue efforts.

For instance, on the battlefield, one or more nodes may be dedicated to

searching for radar, infrared, or radio signals. If these are determined to not be

2



friendly, a message would be sent to other nodes. Those nodes, upon receiving the

same messages from other sensory nodes, might alert an artillery station. Similarly,

in forestry service, sensors might exist to detect fire, earthquakes, distress beacons,

and so on. As with battlefield nodes, when triggered, these nodes might at once

notify other nodes. If several sensors report fire, a helicopter dispatcher might be

notified. And the same pattern would exist for search and rescue real-time systems.

If a distress beacon is received, a search and rescue team might be dispatched. If

one search unit spots debris from a ship wreck, its location might be cross referenced

with water current data at another station to predict where life rafts might be. At

that point, a message could be automatically sent to the nearest rescue unit.

The same theme runs through the examples. Data is generated automatically

in a high level feedback system (where the feedback loop is often closed by human

decision making), tends to be comprised of short status updating data, and has the

potential to trigger an automatic response at other nodes. The data, data delivery

times, and response times are all critical factors in a real-time system. The real-

time wireless network underlying the system is responsible for getting the data to

its destination while the data is still useful.

1.1 Systems of Interest

Like these examples indicate, as real-time systems become more common,

there will be greater diversity as well. It is not our intention to develop a real-

time wireless data link layer protocol general enough for use by any application.

Instead, we focus on a certain class of systems. In these real-time systems, we

assume each station is cooperating as part of a larger, overall system. Because

it is interacting with the external world by making decisions based on complex

rules and heuristics, a real-time system is more complex than a traditional feedback

system with a simple PID (Proportional/Integral/Derivative) controller. However,

the system does behave in a similar fashion in that a subset of stations tends to be

3



Strategic

Sensory

Reactionary

Figure 1.1: Typical wireless real-time system.

sensory in nature and passes on its readings to other nodes. Those nodes interpret

the data, make decisions and send messages to other nodes which react in some way.

A typical system is illustrated in Figure 1.1, where velocity vectors and system level

functions are indicated. The data generated tends to be short in length and bursty

in nature, since the system responds to unpredictable changes in its environment.

Additionally, such systems are comprised of mobile nodes that must have the

ability to continue operations, if only in a degraded way, should one or more nodes

fail. This implies that there can be no central point of authority such as a base

station, which in turn means that protocols must be fully distributed. Networks of

this type have been popularly dubbed ad hoc networks.

1.2 Problem Motivation

Once within the system, the problem, from the point of view of the wireless

real-time applications, can be easily stated: messages with deadlines and priorities
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are generated and must be transmitted. In the general situation, time critical data is

created on one machine and must be forwarded by several other computers to reach

the destination. It is difficult when multiple hops are involved to know whether or

not a deadline can be met. The end-to-end deadline must, at the network layer,

be divided among the series of links between source and destination. Then a deter-

mination must be made, in a point-to-point manner, whether or not each local, or

link-based, deadline can be met.

This determination is made through interlayer communication at the network

and data link layer interface. The network layer, based on the capabilities of its

various outgoing links, must determine how to route the packet. This requires the

data link layer to have the ability to make decisions based on deadlines and priorities.

Such a requirement extends the capabilities of a typical data link layer, whose main

goal is implementation of a virtual “bit pipe” where any bits “poured” into one end

of the pipe should come out at the other end in an error-free manner.

To use a real-time bit pipe, the network layer has a set of real-time quality of

service (QoS) requirements such as minimum interarrival rate, maximum acceptable

loss rate, connection-oriented or connectionless service, real-time class required, and

so on, and must negotiate with the data link layer to see if the QoS requirements

can be met. The data link layer maps network layer requirements onto available

resources and responds by either accepting the additional load from the network

layer, denying it, or offering a probability, less than one, of service. The network layer

completes the negotiation by using the offered data link layer services or indicating

to the transport layer that not enough resources are available to support the QoS

requirements.

The focus of our work is the development of a real-time data link layer for use

in real-time wireless networks. We do not consider the network layer protocol or its

interface with the data link layer directly, but work towards building a set of data
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link layer services rich enough that higher layer protocols can elaborate on to offer

applications flexible and easy to use real-time features. Importantly, though, these

real-time features, ultimately supported at the base of the protocol stack, would

make maximal use of the channel, rather than make do with the side effects of a

best effort service.

Following the common IEEE data link model, we further break down the

layer into two sublayers: the logical link control (LLC) and the medium access

control (MAC) layers. The relationship between the ISO OSI model’s data link

layer and the IEEE model is shown in Figure 1.2. The MAC layer is near the base

of the protocol stack interfacing directly with the physical layer. To provide the

best real-time service at all layers in the protocol stack, it is necessary for real-

time services to exist here. In nearly all networks, however this is not the case.

Often the application layer sends real-time packets to a destination over a network

without real-time services. As a result, packets will be late, lost, duplicated, etc., in

unpredictable ways. The common solution is to have some sort of filtering program

at the receiver that drops late arrivals, buffers packets, and so on, in the hope

of controlling interframe delay. But offering real-time service at the MAC layer

makes it possible to build on these and offer still better real-time service at the

LLC layer. Building real-time protocols can continue at each level of the stack with

a protocol using its immediate lower layer services to create more elaborate real-

time services for the next higher layer so that the application, though still needing

some basic knowledge of the network’s capabilities, simply requests real-time service.

Packets are subsequently sent without the application having to deal further with

the implementation of the services.

1.3 The Real-Time LLC Layer

The LLC is the top half of the data link layer and responsible for the abstract

task of moving a network layer packet across a link. A general LLC layer offers
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Figure 1.2: ISO OSI stack showing MAC and LLC layers.

connection-oriented service, connectionless service, and acknowledged connectionless

service. Connection-oriented services are used for long term data transfer, such

as voice packets during telephone calls or transmission of video and large files.

Connectionless service is useful for short messages generated in a somewhat bursty

manner. This is typical of automated systems and what we are trying to support.

All of the messages will be either hard, firm, soft, or non real-time in nature and

with deadlines appropriate for the application. The protocols presented in this

dissertation are designed for these types of messages. Accordingly, we do not pursue

connection-oriented protocols.

Implementation of connectionless service is easier in many ways than connection-

oriented service. For example, there is no need for sliding windows, piggybacking

of acks, or connection establishment and breakdown. In most ways, though, imple-

menting connectionless service is more difficult for real-time use because the traffic

is not serviced in a first-in-first-out manner and because of the varying delays in-

duced by random access protocols. The LLC itself will have at least three data

queues: one each for hard, soft and non real-time data. While a very low traffic
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rate essentially reduces to a first-come-first-served (FCFS) servicing scheme, when

the load becomes moderate to heavy, scheduling is difficult. The LLC must be able

to quickly pick and submit a best candidate for transmission, since only one packet

at a time can be transmitted. However, due to the noisy nature of a radio link as

well as potential collisions, i.e., two or more nodes transmitting simultaneously, a

submitted packet might not be transmitted successfully. In that case the LLC must

determine whether or not the packet can be rescheduled for future submission.

But because the LLC must wait on the distributed MAC layer protocol for

packet transmission, LLC performance is tightly coupled to MAC layer performance.

The general focus of LLC layer actions are node-based though. Most of its actions in

support of real-time services revolve around studying its own queues and deciding,

via scheduling algorithms, which packet to submit for transmission.

1.4 The Real-Time MAC Layer

In contrast, the MAC layer is explicitly aware that it is one of several nodes

competing for access to the same radio channel. One view of the MAC layer protocol

is that it is a distributed server for the channel. The difference between this view and

a typical M/G/1 system is that the packets in the queue are distributed; nowhere

does global knowledge exist of how many items are waiting or in what order. As a

result, the queue servicing algorithm must be distributed among the nodes in the

system, and must operate in a manner that allows the most deserving packet first

service.

Since it is possible for packets to collide, it can take some time for the system

to collectively provide channel access to contending packets. During this interval, it

is possible for higher priority data streams to want the channel, requiring that the

ability to preempt lower priority streams exists. However, the lower priority traffic

must still meet any original QoS guarantees it was promised.
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Table 1.2: Data link layer algorithms studied.
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1.5 Overview of Research

Six major algorithms are studied in this dissertation; three at the MAC

layer and three more at the LLC layer. Table 1.2 lists their names and where

each fits into the scope of the research. Note that at the MAC layer, the same three

algorithms are studied but in two different types of protocols, blocked and free access.

Additionally, the Fully Recursive MAC algorithm is studied in Chapters 3 and 4 with

packet arrivals having different real-time properties. While these variations affect

the mathematical analysis, the algorithms remain mostly unchanged. Due to the

number of algorithms, variations and traffic models used, occasionally returning to

Table 1.2 is helpful when a reference point is needed.

As we develop increasingly more capable protocols in the subsequent chapters,

ultimately a preemptive MAC protocol is presented that can offer QoS guarantees

to hard, soft and non real-time data. The preemptive MAC protocol, comprised
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of a subset of the MAC algorithms in Table 1.2, is used as the foundation for a

simple LLC layer. To decide when and which packets to submit to the MAC layer

for transmission, the LLC layer uses a real-time scheduling algorithm requiring the

development of capabilities generally not existent in current data link layer protocols

for ad hoc wireless networks.

In Chapter 2 we present a survey of relevant literature. Building on the

existing work, Chapter 3 presents the first protocols we studied. To learn what

affects real-time protocols positively and what affects them negatively, we confine

our interest to soft real-time systems where all arriving packets have the same initial

deadline. We extend Chapter 3’s analytic technique in Chapter 4 to consider traffic

in soft real-time systems where initial deadlines are drawn from known distributions.

In Chapter 5, results from the Chapters 3 and 4 are used to design and analyze a

MAC layer protocol capable of transmitting hard, soft, and non real-time traffic

in a preemptive manner. The final technical chapter, Chapter 6, first implements

via simulation a non-ideal physical radio channel, then a detailed MAC layer, and

finally an LLC layer with acknowledgements, retransmissions, segmentation and

reassembly, and a real-time scheduler. Chapter 7 summarizes the work.
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Chapter 2

RESEARCH DIRECTIONS IN REAL-TIME SYSTEMS

Wireless real-time systems, in their most general forms, will have hard, soft

and non real-time data, all of which must access the same, often noisy, channel.

For our purposes in the discussion of wireles networks, we refine the system level

definitions of Table 1.1 as follows. We define hard real-time to mean deadlines of

accepted packets are guaranteed to be met on an error free channel, soft real-time

to mean expected, or average, success rates are offered, and non real-time to mean

that best effort service is provided. While the term deadline is frequently used when

describing real-time systems, it is often more convenient to discuss real-time design

issues in terms of laxity. Laxity is the amount of time remaining before a packet

must be transmitted in order to be received by its deadline.

In real-time systems where each station is a cooperating part of a larger

system, messages tend to be part of distributed “sense, process, react” transactions

and are fairly short, even more so for the special case of hard real-time data. Because

of this, protocols for long term resource allocation are unnecessary and are in fact a

hindrance due to the added overhead of setting up and breaking down connections.

In this dissertation, we present wireless MAC and LLC layer protocols that

provide a flexible means for the coexistence and transmission of heterogeneous real-

time data. We begin by offering support for soft real-time deadlines and build on

that to eventually offer quality of service guarantees for hard, soft and non real-time

data. Splitting protocols with limited feedback sensing are used to support these

guarantees.
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2.1 Wireless MAC Protocols

Nearly all implementations of wireless systems make use of Aloha [Abr70,

Abr85] or CSMA [KT75] techniques. The Aloha protocol has the advantage of

being simple to implement while making fair use of bandwidth. In the original

implementation at the University of Hawaii, a central node listened at radio fre-

quency 407 MHz for incoming packets. It immediately retransmitted these packets

at 413 MHz at 9600 b/s. Thus, a remote station knew its transmission collided

with another station’s if it did not hear its packet on 413 MHz. After a collision,

the remote station rescheduled a transmission after a random delay. In practice,

implementations could be simpler still: packets were transmitted without feedback.

Only when a higher layer protocol discovered not all data was correctly transmitted

is the data resubmitted to the MAC layer. If transmissions always occur at fixed

points in time, or slot boundaries, the protocol is called slotted Aloha, otherwise it is

unslotted Aloha. Analysis shows that unslotted Aloha has a maximum throughput

of 0.18, while slotted Aloha throughput is 0.36 of the available bandwidth when

packets of equal lengths are used [BG92]. This is shown in Figure 2.1.

An important shortcoming with Aloha, as can be seen in the illustration, is

that it is unstable. The maximum throughputs occur at particular offered loads.

As load increases beyond those points, throughput quickly decreases. In the case

of real-time data, there is the added problem that the random back-off following

collisions offers no provision for meeting transmission deadlines. As a result, real-

time guarantees cannot be made.

It is noteworthy that most cellular telephone systems use versions of reser-

vation Aloha. In this protocol, minislots—often one bit long—are accessed using

slotted Aloha. A base station echos back the list of minislots with indications of

which minislots were successfully obtained by stations. So if a station tried to write

a bit into a minislot and subsequently sees a corresponding reservation in the base
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Figure 2.1: Comparison of slotted and pure Aloha.

station’s list, the station knows it has successfully reserved upcoming data slots.

The data slots are then used in a round robin or TDMA way by the successful

stations.

Carrier sense multiple access (CSMA) systems improve upon pure Aloha pro-

tocols. Circuitry is used that monitors the radio channel just prior to transmission.

If signal strength above a certain level is sensed, the sensing station knows the

channel is busy, and the station waits some random time before it again performs a

carrier sensing. When the channel is idle, the station transmits its data. However,

due to the finite propagation speed of the signal, it is possible that after a station

senses an idle channel, it begins transmission only to collide soon after with another

station’s transmission.

In the case of CSMA protocols, throughput is affected by β, the length of

time required to determine that the channel is idle and based on the propagation and

detection delays. For slotted systems the throughput is 1/(1+
√
2β), while unslotted

systems have a throughput of 1/(1 + 2
√
β) [BG92]. This implies that performance
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Figure 2.2: CSMA Performance.

degrades as β increases, channel rate increases or packet length decreases. In ad-

dition, though less severe than with Aloha, CSMA also has stability problems. So

while a typical VHF channel of 16 kb/s with 0.1 s required to detect an idle channel

and packets of 1 kb has a maximum throughput of about 0.64, significantly greater

than slotted Aloha, we still cannot use the protocol to make real-time guarantees

due to the random backoff after collisions. The throughput versus load graph using

the above values is shown in Figure 2.2.

Splitting protocols, however, do allow us to make such guarantees while of-

fering a maximum throughput of around 0.5 of the available bandwidth. Initially,

splitting protocols were developed as a way to overcome the inherent instability

of Aloha-based protocols. Even in overloaded conditions, unlike Aloha or CSMA,

splitting protocols continue to offer maximum throughputs. While reservation Aloha

protocols can boast throughputs of about 90% for long messages such as telephone

calls, for short exchanges the reservation process not only becomes a more significant

fraction of the overhead, but the length of time required to reserve a data slot has
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the undesirable real-time property of being unbounded. Splitting protocols, as will

be described in later chapters, are capable of splitting the set of collided stations

into groups based on real-time properties of the traffic. It is then possible to offer

real-time guarantees as well as the maximum throughput of the protocols.

Splitting protocols evolved from military medical tests used to determine if

new recruits were infected with disease [Wol85]. Since most people are expected to

be healthy, many blood samples could be mixed together for a single test. Only

if the tests were positive would new samples with half of the original group in

each be tested until the infected recruits were isolated, as illustrated in Figure 2.3.

Whenever a test shows that a mixture is uninfected, testing of that mixture stops

since all contributing recruits must be healthy. Should the test indicate infection,

the test is performed on two new mixtures, each made from blood samples of one

half of the contributors to the original mixture. Notice that with the unusually

high infection ratio of this example, eleven tests were required to test eight recruits.

There is a large potential savings in numbers of tests required, however, as infection

rate in the population decreases.

In the case of wireless transmission, the “infected recruit” is data lost due

to a collision and the “test result” is the feedback indicating whether or not a

collision occurred in the previous slot. The “potential savings in numbers of tests”

corresponds to how efficiently a collision is resolved. After an initial collision, each

collided station uses the current value of some agreed upon random variable to join

either the active or the inactive group. The active group transmits during the next

slot, and the splitting continues until transmission by the active group is followed by

a noncollision feedback. Then the inactive group becomes the active group and the

algorithm is applied to it. The splitting protocols we developed will be described in

detail as they are introduced.
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Figure 2.3: Medical testing for infected blood.

2.2 Real-Time Wireless MAC Protocols

While virtually no work has been undertaken to support wireless real-time

communication in ad hoc networks, a small body of work exists that studies the

problem for wire-based real-time CSMA-CD networks. Though CSMA-CD cannot

practically be used for wireless networks since generally an antenna cannot be used

for simultaneous transmission and reception, in the case of splitting protocols, re-

search in CSMA-CD can be considered for use in wireless systems and vice-versa.

This is because the CSMA-CD splitting protocols make use of collision detection

and CSMA only in ways peripheral to the splitting algorithm. While Bertsekas

and Gallager [BG92] show that splitting in conjunction with CSMA-CD offers no

substantial throughput improvement over slotted Aloha, the splitting methods we

present may, in fact, be attractive for use in some CSMA-CD protocols because they

make use of real-time properties of the traffic. The strength of splitting protocols,

however, is their ability to efficiently resolve collisions, which occur much less fre-

quently when CSMA and CD are used. So while throughput will be not be increased

appreciably, real-time splitting protocols, even in CSMA-CD systems, do offer the

benefit of a worst case bound on channel access times.
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In addition to outperforming Aloha, studies in [ZSR90] have shown that win-

dow splitting outperforms other random access real-time techniques such as virtual

clocks. In non real-time CSMA-CD systems, virtual time clocks were first considered

by Molle and Kleinrock [MK85] and based on message arrival time. The technique

had the advantage of making transmission of queued messages fairer, though it

provides no consideration for deadlines. The method was adapted by Zhao and Ra-

mamritham [RZ87] to take into account various time related properties of a packet

for soft real-time systems and shown via simulation to work better than protocols not

designed for real-time use. The underlying protocol is inference avoiding. That is,

each transmission attempt is made without reference to past history of the channel

or of that particular station. However, the basic multiaccess scheme is augmented by

using two clocks at each node. One gives real and the other virtual time. When the

channel is busy, the virtual clock stops running and starts again when the channel is

idle. When it does run, the virtual clock runs faster than the real clock. How much

faster is a value to be determined based on expected traffic patterns. Depending

on the variation used, earliest packet transmission (virtual) times are set based on

either first come first served, minimum length first, minimum laxity first, minimum

deadline first. A message is sent only if its transmission time is less than or equal

to the time on the virtual clock.

Subsequently, Zhao, Stankovic, and Ramamritham [ZSR90] proposed a split-

ting protocol using the last two slots of channel history. It always performed in

simulation at least as well as the virtual time protocols and often better. However,

this particular splitting protocol introduced laxity abnormalities. When laxities

increased, presumably making transmission scheduling easier, system performance

was actually degraded. The protocol allowed increased contention when laxities

were greater, which in turn caused less packets to be transmitted by their deadlines.
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Algorithmically simpler CSMA-CD splitting protocols that used only a sin-

gle, most recent slot’s feedback were presented for both hard and soft real-time

systems by Arvind [Arv91]. Protocol operations were simulated and some worst

case performance analysis was presented. A similar protocol for wireless transmis-

sion of hard and non real-time data was independently developed and analyzed in

depth by Papantoni-Kazakos [PK92]. Hers is a hard real-time variant of the soft

real-time protocol presented and analyzed by Paterakis, Georgiadis and Papantoni-

Kazakos [PGPK89]. The latter assumes all packets have the same initial dead-

line [PGPK89]. We explored this type of soft real-time system but studied a more

complex fully recursive splitting algorithm in [MS95].

To support a more general soft real-time system, we first extended that work

to study protocol performances when initial deadlines are fixed [MS96]. We sub-

sequently extended that to consider performance when initial deadlines are drawn

from known distribution [MS97a],[MS97b],[MS98c]. These works presented six pro-

tocols and through analysis and simulation determined the one with the best overall

performance. Interestingly, they showed that performance reaches an operational

maximum as the range of deadlines increases. The existence of an operational max-

imum implies that splitting protocols perform no better after the maximum initial

laxity reaches a certain number of slots, approximately thirty it turns out. The im-

portance of this discovery is its impact on the LLC layer. Since the LLC schedules

MAC submissions and those packets often have deadlines much longer than thirty

slot times, the operation of the MAC layer’s transmission scheduling has a direct

effect on the design of the LLC scheduling algorithm.

In general, splitting protocols can be grossly classified based on two com-

mon properties: the random variable used for splitting and the splitting method-

ology used. As a concrete example, the first data communication splitting algo-

rithm proposed, which we call CTM here using the surname initials of the three
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researchers, was by Capetanakis [Cap79b],[Cap79a] and, independently, by Tsy-

bakov and Mikhailov [TM78]. In their method, the nodes involved in a collision flip

coins afterwards. Those that flip tails wait, while those flipping heads retransmit.

This continues recursively on both sets of packets, so a high multiplicity collision,

i.e., a collision involving many packets, will result in a large number of subwindows.

The splitting variable is the coin toss outcome, and the splitting method is a fully

recursive one.

Gallager [Gal78, BG92] and again, independently, Tsybakov and Mikhail-

ov [TM80], improved on the fully recursive algorithm in a number of ways. In the

algorithm, which we call GTM again using surname initials, the splitting variable is

queue arrival time. The splitting method uses only two groups unlike the unbounded

number in CTM. The active group, as defined at the end of Section 2.1, is continually

split until a packet is successfully transmitted. The inactive group is then ignored.

That is, the algorithm restarts using arrival times just after the newly resolved

interval as if the inactive group never existed. Ternary feedback indicating success,

idle, or collision is used in the algorithm.

The more recent two cell random splitting by Paterakis, Georgiadis and

Papantoni-Kazakos [PGPK89] is similar in many respects to the GTM algorithm

except that the splitting variable is a coin toss outcome, and binary feedback indi-

cating collision or noncollision is used, rather than ternary. The advantage of using

a coin toss is that it separates splitting from properties of the arrival process. This

is helpful if the arrival process is unknown or not well suited to FCFS splitting, e.g.,

arrivals occurring only at slot boundaries.

2.3 Supporting Heterogeneous Real-Time Data

As mentioned, a general system will support the coexistence of hard, soft and

non real-time data. For the case of heterogeneous traffic, other research considers the

coexistence of hard and non real-time data [VPK92, DPK93], hard and soft [Arv91],
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soft and non real-time data [CS97, CKT89], and also multiple classes of soft real-time

traffic [PKLT95]. However, most of these works assume a normalized transmission

time unit of one and ignore details of the MAC layer. Our analysis and simulations

take into account the workings of the MAC protocol while offering support for all

three classes of real-time traffic. Before our work, no published research offered

support for all three real-time classes in wireless networks, ad hoc or cellular.

2.4 Analytic Techniques for Random Access MAC Protocols

Once a protocol has been described algorithmically, its performance must be

studied. Random access MAC algorithms, real-time or not, can often be character-

ized by regenerative, or renewal, processes [Gal96]. This is a counting process for

which interarrival distances, packet arrivals in this case, are positive independent

identically distributed (IID) random variables. The advantage to studying regener-

ative processes is that the embedded renewal intervals let us separate the long term

behavior of the process from the behavior of the actual process within a renewal

period.

In the protocols we present, one renewal period is the amount of time to fully

resolve channel contention by some number of nodes. For the analysis of systems

of this sort, Georgiadis, Merakos, and Papantoni-Kazakos [GMPK87] developed a

straightforward, general method of delay analysis using regenerative properties of

random multiple access algorithms. That method of analysis was elaborated on by

Paterakis et al. [PGPK89] to analyze their protocol where all packets initially have

the same initial deadline. While Paterakis et al. took a particular protocol and

studied its performance, Panwar, Towsley and Armoni [PTA93] did the opposite.

They used the value iteration method to find the optimal splitting algorithm for

fixed initial laxities of up to 4 slots. The expressions derived that determine opti-

mal splitting are too complex to consider larger laxities. Hence, we take the more

20



conventional approach of designing protocols and then analyzing them. This also

allows the study of more general systems with varying initial laxities.

2.5 New Contributions

In the current literature, there are three unaddressed problems whose study is

necessary for the development of a wireless, real-time, ad hoc network. (1) Foremost

is the need for explicit deadline support at the MAC layer. Without it, poor use

is made of channel bandwidth, an already limited resource. Since for any real-time

application, real-time support is needed somewhere in the protocol stack, it is most

sensible to offer basic time-oriented services at the base of the stack where fullest

control can be exerted over use of the communication medium. (2) It is additionally

desirable to be able to guarantee the maximum bandwidth that can be used for

successful transmissions. Without this guarantee, it is impossible to bound worst

case transmission times, something critical to the implementation of a real-time

protocol. (3) It is also necessary to distinguish between classes of real-time services.

The related literature, summarized in the preceding sections of this chapter, have

either not considered the above problems or have only done so in a piece-meal

fashion.

By developing solutions to each of the open areas mentioned above, we have

been able to create the first preemptive wireless MAC protocol for use in ad hoc

networks [MS98a],[MS98b]. That, in turn, lets us tightly couple an LLC layer to it;

an LLC that makes decisions based on the real-time MAC services offered. In ad-

dition to the particular protocols and analytic methods developed, our work makes

new contributions at more conceptual levels as well. It has been traditionally diffi-

cult to offer worst case transmission times in random access protocols, where packet

delays may be potentially unbounded due to collisions. Through the use of real-

time splitting protocols, however, we show that it is indeed possible to make such

guarantees. Furthermore, average case delays can be predicted. Splitting protocols
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were originally developed with the idea that some central source will provide the

channel feedback information. Because our target environment is fully decentral-

ized, we develop a fully distributed feedback protocol eliminating the need for any

central point of control. Next, by assuming that a message is dropped whenever

its delay exceeds its initial laxity, and by using a minimum rate of successful trans-

mission, we show that not only can window-splitting protocols be modified to work

successfully in these environments, their throughput can even exceed the maximum

throughputs attained by current non real-time splitting protocols. For still more

general use, preemption is introduced so that various classes of real-time data can

co-exist. Preemption can occur both within a single node and between nodes.

In the model of our LLC layer, unlike most other published work, we couple

protocol actions directly to the real-time services of the MAC layer. While proto-

col layering is still strictly enforced, the new services can be made use of by LLC

schedulers. To get a still better understanding of what performance can be expected

in a real implementation, more realistic channels with bit errors are used as well.

Together, our solutions to these individual problems let us contribute to the growing

need for better real-time services by offering a capable real-time data link layer.
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Chapter 3

SOFT REAL-TIME MAC PROTOCOLS WITH FIXED

INITIAL DEADLINES

3.1 Introduction

The first real-time system we consider is limited in scope. Instead of allowing

the coexistence of hard, soft, and non real-time data, we initially concentrate on a

purely soft real-time protocol. The work in this chapter also appeared in [MS96]

and [MS95]. Since soft real-time traffic can afford a given level of loss or lateness,

soft real-time guarantees offer expected, or average, success rates and delays. Of

the three real-time stream types, it is the most complicated, since for soft real-time

systems, explicit dropping of packets is required, as will be described shortly. But

for both the hard and non real-time streams, the MAC layer attempts to transmit

all packets accepted, offering bounded delays for hard real-time and best effort for

non real-time data. Any packet dropping is not performed explicitly but is a result

of channel errors or loss of synchronization between stations. Soft real-time, though,

offers decreasing success rates as offered load increases, so it is important to fully

understand this class of traffic before addressing the others.

In addition to restricting our attention to soft real-time traffic, we also assume

all nodes are generating similar traffic and all packets have the same initial deadline.

These assumptions would be typical for systems involved with transmission of audio,

of sensor readings (temperature, radar, etc.), or mobile user position updates, and

so on. The data in these systems all have the same useful lifetime and an occasional
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loss is not harmful to overall performance. From the viewpoint of characterizing

the system mathematically, it also provides us the opportunity to make an initial

study of real-time properties without being overburdened by the detail in more

general systems. Later chapters build on these findings to create a more general

mathematical model.

3.2 An Example Algorithm

Before delving into the detail of the first algorithms studied, it is helpful to

consider an example. We use a simplified version of the Two Cell splitting protocol

by Paterakis et al. [PGPK89]. A slotted system is assumed and after each slot

time, feedback is provided by the system indicating that either a collision occurred

or that a non-collision occurred. If a collision occurred, each collided node flips a

coin.1 Depending on the outcome, the node either joins the active group or the

inactive group. Active group members all will transmit at the next slot boundary.

Inactive group members never transmit but instead wait until seeing a non-collision

feedback, at which time they transit to the active group.

If a two-way collision were to occur, it is easy to see that there are three

possible group memberships: (1) one active and one inactive member, (2) two ac-

tive members, or (3) two inactive members. These memberships are depicted in

Figure 3.1, where the left tree branches indicate the active group, and the right tree

branches, the inactive. The root node is the initial multiplicity two collision. Since

only the active group transmits, the channel feedback of collision (C) or noncollision

(NC) is shown under the active group. We want to determine the expected number

of slots it takes to resolve the collision. If there is one member in each group, the

resolution is three slots long: initial collision + active group transmission + inactive

1 That is, a random number in [0, 1) is generated at each node. The value “heads”
represents outcomes in one half of the interval, and “tails” in the other.
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Figure 3.1: Possible outcomes of multiplicity two collision.

group transits to active group and transmits. However if both nodes join the inac-

tive group, one slot is used with the initial collision followed by an idle slot. Then

the algorithm is applied to the followup collision. Similarly, if both members join

the active group after the initial collision, there is one slot for the initial collision

followed by recursing on that and finally the last noncollision for the zero member

inactive group. If lk is the number of slots required to resolve a k-way collision, a

multiplicity two collision is characterized by the expression

l2 =




3 slots, when each group contains 1 member

2 + l2 slots, when both members are inactive members

2 + l2 slots, when both members are active members

(3.1)

Taking expected values, where the notation Lk = E{lk} is the expected number of
slots required to resolve a collision of multiplicity k, the analysis proceeds as follows.

When an active group contains zero or one members, it clearly takes only one slot to

resolve. The last expression includes the three cases above as well as the probability

of each occurring.

L0 = 1 slot (3.2)

L1 = 1 slot

L2 =
1

2
(1 + L1 + L1) +

1

4
(1 + L0 + L2) +

1

4
(1 + L2 + L0)
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Straightforward algebraic manipulations tell us that L2 = 5 slots. It is easy to

extend this to the case for any k ≥ 0, where, incidentally, induction can be used to

show that Lk is linearly bounded for a Poisson arrival process.

This general technique is extended so that time constrained transmissions can

be analyzed. The departure process in the real-time environment is more involved

because departure is due not only to transmissions but also failure due to deadline

expiration.

3.3 Algorithm

With the example providing an indication of the analytic style used, our first

real-time protocol can be studied. In it, a packet has a single property of interest, its

laxity. Laxity is the maximum amount of time that can elapse prior to transmission,

after which the packet will not reach its destination on time (we consider a single-

hop radio network). Once a laxity is assigned to a packet, at each slot boundary

the laxity is decremented and the packet discarded should its laxity reach zero.

The channel is accessed in a slotted manner, i.e., transmissions begin only at slot

boundaries, with one slot long packets that are immediately followed by binary, or

collision/non-collision, feedback.

To improve throughput, a sliding window is used that enables a given portion

of the arrival process. That is, only packets whose arrival times fall within the

bounds of the window may contend for the channel. After all arrivals in the sliding

window have been transmitted or discarded, the window slides forward enabling the

next set of arrivals. The idea is that occasionally it will take much longer than

average to resolve a collision. During the long collision resolution interval (CRI),

many other packets have arrived and are waiting for the CRI to complete so that

they can be transmitted. It is likely that after a long CRI, the next slot will contain

a high multiplicity collision. Use of a sliding window, as shown in Figure 3.2, limits

contention. The width of the window should be long enough to avoid wasting
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Figure 3.2: Arrival time-based sliding window.

time resolving empty windows, yet long enough to avoid too many collisions. In the

illustration, the departure process axis is labeled beginning at time t. Resolving prior

collisions means that the interval of the arrival process currently enabled actually

arrived some time ago. And even at system startup, it takes one slot to receive

feedback, so that the sliding window is always at least one slot in the past and

often more. The difference between the current time and the leftmost edge of the

sliding window is called the lag, d. Because of the always positive system lag d,

the arrival process axis is labeled beginning at time t− d. Additionally, the sliding
window is shown at three different times. The window’s first position at time t,

encompasses one packet (A) and so takes L1 = 1 slot to be resolved. The window’s

second position, at time t + L1, allows two packets (B, C) to contend resulting in

a collision. It takes L2 slots on average to resolve, using the notation of the simple

example in the previous section. So the window slides forward to its third position

in the figure (t+ L1) + L2 slots later.

When two or more nodes transmit simultaneously and collide, the Collision

Resolution Algorithm (CRA) commences and only nodes involved in the collision
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may contend for the channel. Only after all collided packets have been either suc-

cessfully transmitted or else discarded due to missed deadlines, can other nodes

again contend for the channel. Within the sliding window of initial length ∆, any

packets involved in a collision are reordered by laxity, left to right, from lowest lax-

ity to highest. The left half of the laxity range will be considered the active group,

while the right half will be one of the possibly many inactive groups. In the slot

after a collision, only packets whose laxities fall within the active group may trans-

mit. If another collision occurs, the group is split in half, and the CRA recurses

first on the left half and then on the right. After each active group is resolved, the

most recently created inactive group becomes the active group. The CRA behaves

similarly to the classical FCFS splitting algorithm [Cap79b] with a few differences:

packets in a group following a collision are ordered by laxity rather than by node

arrival time, and feedback is binary rather than ternary. We further impose a bound

T which is the maximum number of slots a CRI may comprise. If T slot times are

exceeded, packets involved in the CRI are dropped, and the algorithm resets. This

is equivalent to all packets having an initial laxity of T.

Because of the laxity ordering, the first successful transmission during a CRI

will be the lowest laxity packet, the second will be the second lowest, and so on,

guaranteeing a minimum laxity ordered transmission schedule appropriate in a real-

time setting. During a CRI, an initial collision that happened some while ago is

being resolved. This means that there is a lag of d units between “now” and the

period of time currently being examined by the CRA. The lag d is important in a

real-time environment because the lag induced by the CRI means that only T − d
slots remain before a packet with initial laxity T must be transmitted or dropped. In

addition, the width u of a window plays a crucial role in the length of a CRI. Short

initial windows waste time because many will be empty, while long ones potentially

encompass several packets leading to still more collisions.
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Figure 3.3: Relation between sliding window and CRA.
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Letting ft denote the feedback corresponding to slot t, ft = c if there was a

collision in slot t, otherwise ft = nc if there was no collision in that slot. In addition,

we denote the position of the left edge of the window at time t as xt and its length

in slots as at. Finally, ht can take on the value of L or R indicating whether the

collision resolution algorithm was in the left or right subwindow. By convention,

the algorithm is initially in the right half. At time t = 0 the system is empty and

that slot has a feedback value of f0 = nc. Subsequently,

1. If collision resolution is not in progress, then a node with a packet which

arrived in slot t− 1 may transmit it in the current slot t.

2. If collision resolution is in progress:

• If ft−1 = nc and ht−1 = L, then

xt = xt−1 + at−1, at = at−1, and ht = R.

• If ft−1 = nc and ht−1 = R, then

xt = xt−1 + at−1, at = min(2at−1,min(d,∆)), and ht = R.

• If ft−1 = c, then xt = xt−1, at =
1
2
at−1, and ht = L.

Figure 3.3 shows how the algorithm operates. It is much like Figure 3.2, except to

simplify the illustration, the departure process is not shown. At the bottom, again

are drawn the various positions of the sliding window as time progresses. Whenever

a collision occurs, the window does not slide forward until the collision is resolved.

The first multiplicity four collision requires L4 slots for resolution. The window

then slides forward enabling the single packet to be transmitted. And finally it

slides forward again, encompassing a quickly resolved two-way collision. Figure 3.4

illustrates some of the variables of the analysis and how they are related. In the

figure, the current moment of the illustration is time t and because of some previous

collision, the current lag is d slots. The previous CRI completed at time t1. Due to
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Figure 3.4: Relation between some variables in algorithm.

lag, anything with a smaller laxity than t2 cannot be transmitted before its deadline

and so is rejected and discarded outright. Similarly, to successfully transmit all

packets in the current window, the CRI must complete within the next t′ = T − d
slots. The variable lu,d will be defined in detail in subsequent sections but is simply

the length of the CRI which begins at time t and ends at time t′.

3.4 Analysis

This system can be modeled as a finite Markov chain whose state names

represent a possible lag value from 1 to T. However, due to the difficulty of directly

analyzing this chain, as mentioned in the last chapter, we use the theory of regen-

erative processes, where a lag of 1 slot in the random multiple access algorithm

(RMAA) is the start of a renewal period.

3.4.1 Notation

When possible, we use the notation in [GMPK87], where the usefulness of

studying RMAAs with renewal theory is put forth. As mentioned, two considerations

vital to successful transmission of a packet are the current lag d and the window

width u to be examined. Appropriately, the following variables are subscripted with
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this information.

nu,d : Number of packets in window of width u with lag d which are

successfully transmitted during the CRI.

zu,d : Sum of delays after time t of packets in nu,d.

ψu,d : Sum of delays of the nu,d within the current window of width u.

lu,d : Number of slots needed to examine u slots when current lag is d slots.

In order to compute the expected values for the fraction of traffic transmitted within

the laxity bound and for the delay experienced by successful transmissions, the

variables above must be incorporated into expressions which reflect not just what

occurs for given window/lag values but for full CRI lengths. The length of a CRI,

our regeneration cycle, is the number of slots it takes to move from a lag of d = 1 to

the next d = 1 lag. Therefore, the subscript d on the following variables represents

the designated variable’s value when returning from the current lag of d slots to a

lag of one slot. When d 	= 1, the algorithm is at some intermediate point in the

CRI.

hd : Given current lag of d, the number of slots to return to lag of 1.

wd : Cumulative delay of packets transmitted during the hd slots.

αd : Number of packets transmitted during the hd slots.

Also, given that some event occurs during a CRI of length l, we must multiply that

event by the probability that the CRI is actually of that length. Thus, we denote

the form of the final type of variable as:

P (l | u, d) : Given that u slots are to be examined and the lag is presently

d slots, the probability that the CRI will be l slots long.

Finally, to compute probabilities of a given number of packets arriving in some

interval u, we use the Poisson arrival process. This is reasonable because we are

modeling real-time systems where the transfer of short data messages is primarily

undertaken in an automated manner, and so is bursty in nature.
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3.4.2 Model

As mentioned in the introduction of this chapter, we make the simplifying

assumption that initial laxities of all packets are identical and equal to T . Con-

sidering a single CRI as one cycle of the regenerative stochastic process, we define

Z = E{α1} as the number of packets successfully transmitted in a collision resolu-
tion interval (CRI). If H = E{h1} is the expected length of a CRI, then Z/H is the

traffic rate of successful packets. This rate must be less than or equal to the orig-

inal rate λ. Therefore, the fraction, ρ, of generated packets which are successfully

transmitted is

ρ =
Z/H

λ
. (3.3)

If we next define W = E{w1} as the cumulative expected delay of all packets in the
CRI, then the per packet expected delay is

D =
W

Z
. (3.4)

In the following sections, values for H, Z, and W are derived.

3.4.3 Recursions

In the following sections, let us denote by E{ · | k,B } the expected value,
given that k packets are in the current window, and the maximum length of the

collision resolution interval is B. Let P (· | k,B) denote the conditional probability
with given variables as above.

3.4.3.1 Probable Length of CRI

In Figure 3.3, a four way collision and one possible resolution are illustrated.

But of all the possible resolutions for a four way resolution, what, for example, is the

probability that a CRI will take eleven slots, as in the illustration? Or more gen-

erally, what is the probability for any multiplicity collision, that a CRI will require

eleven slots? The latter question, especially, is important when deriving expressions
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for expected values of CRI lengths, number of packets transmitted during a CRI,

and other values of interest.

To calculate the probability that a CRI is of some length l, the first step is

to consider the arrival process. We need to know the probability that n packets

will arrive, and then, secondly, use that in conjunction with the probability that the

multiplicity n collision will require exactly l slots to be resolved.

The probability of a CRI lasting l slots can be expressed recursively. Let

P (l | u, d) denote the probability that a CRI is l slots long given that u slots must
be examined, and that the current lag is d slots. This probability is the sum of

the probabilities, based on the arrival process, that the u slots contain 0, 1, . . . , ∞
packets and that these packets can be successfully transmitted within the remaining

time, T − d.
P (l | u, d) =

∞∑
k=0

P (l | k, T − 
d�)e−λu (λu)
k

k!
(3.5)

Note that in the expression above, P (l | u, d) is in terms of P (l | k,B) where k is
the number of packets, and B is the laxity bound with initial conditions are listed

below. In the general case of a collision, however, the algorithm states that the

current window will be split in two. Therefore, the probability that a CRI is of

length l given that a collision occurs and wastes one slot, imposes the constraint

that the sum of the CRI lengths of the two subwindows must be l − 1. Of the k

packets involved in the collision, the probability of a packet being in one half versus

the other is
(

k
i

)
2−k. For k ≥ 2 and B ≥ 2, this is recursively expressed as

P (l | k,B) = P (l − j | i, B − 1) (3.6)

· P (j − 1 | k − i, B − 1− (l − j)), with probability 2−k
(

k
i

)

This is expressed, for l > 1, B > 1, as

P (l | k,B) = 2−k
l−1∑
j=1

k∑
i=0

(
k

i

)
[P (l − j | i, B − 1) · P (j − 1 | k − i, B − 1− (l − j))]

(3.7)
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with the following initial conditions:

P (0 | k, 0) = 1,

P (0 | k,B) = 0, B > 0

P (l | k, 0) = 0, l > 0

P (l | k,B) = 0, l > B

P (1 | k,B) = 1, B ≥ 1, 0 ≤ k ≤ 1

P (1 | k, 1) = 1, k ≥ 2

P (1 | k,B) = 0, B ≥ 2, k ≥ 2

Because the number of packets k and the laxity T are finite, the probabilities of

CRI lengths can be determined by calculating a finite number of terms.

3.4.3.2 Expected Length of CRI

With an expression for the probable length of a CRI, it is possible to now

derive an expression for the expected length of a CRI. This is the variable H in

Equation 3.3.

When the lag d is such that ∆ < d, the expected length of a collision resolu-

tion interval (CRI) is determined recursively as follows. With a lag of d, there are

d slots to examine. However, only at most ∆ slots at a time will be considered. As

a result, the expected CRI length, hd, with lag d is the number of slots it takes to

examine ∆ slots plus the d−∆ remaining slots plus the additional number of slots

it took to analyze that first window of length ∆. This, as well as when the lag is

small and d < ∆, is expressed as

hd =




ld,d, ld,d = 1, 1 ≤ d ≤ ∆

ld,d + hld,d
, 1 < ld,d ≤ T − 
d�, 1 ≤ d ≤ ∆

l∆,d + hd−∆+l∆,d
, ∆ < d ≤ T − 1

(3.8)
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The expected value, lu,d, of a CRI with u slots to be examined and current lag of

d is developed shortly. However, a CRI is always of integer length. To determine

the expected length of the remainder of the CRI after ∆ slots are resolved, means

giving consideration to each of the possible lengths of the CRI for the first ∆ slots.

The results of Section 3.4.3.1 are used for this keeping in mind that the CRI length

can range between 1 slot and T − d slots. So, taking expectations and denoting
Hd = E{hd}, yields

Hd =



E{ld,d}+

T−�d�∑
m=2

HmP (m | d, d), 1 ≤ d ≤ ∆

E{l∆,d}+
T−�d�∑
m=1

Hd−∆+mP (m | ∆, d), ∆ < d ≤ T − 1

(3.9)

The first term is the average number of slots it will take to resolve the current

window. The second term in each equation takes into consideration that sometimes

it will take one slot, sometimes two slots, etc., on up to the maximum of T−
d� slots,
each with their respective probabilities, as developed in the last section. Depending

on the case, the resolution removes either d or ∆ slots from the unresolved interval.

However, it took m slots to achieve that resolution, so the lag is incremented by

that much.

This system of equations generated in Equation 3.9 is finite because of the

bounded nature of the algorithm. The system is represented by an n × n+1 matrix
where all elements are the conditional probabilities except for the rightmost column.

That column is made up of (the negatives of) the expected values. When the system

of equations is solved, the variable of interest is H1. Its value is the expected number

of slots required, when the system is at a lag of one slot, to return to a lag of one

slot—one renewal interval. In Equation 3.3, the variable H is in fact H1.

Equation 3.8 is presented in Paterakis et al. [PGPK89] as a general descrip-

tion of any bounded CRA. Equation 3.9, the expected value of Equation 3.8, ad-

dresses the analytic details specific to the CRA presented in this chapter. So, given

a length of u time units to resolve with a current lag of d time units, the expected
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length of that CRI is derived by first summing against all possible numbers of packet

arrivals k in the window u and multiplying, respectively, by their probabilities of

occurrence yielding

E{lu,d} =
∞∑

k=0

E{ lu,d | k, T − 
d� }e−λu (λu)
k

k!
(3.10)

Considering each term of the summation individually, when it is given that the

window u contains k packets and there is a laxity bound B, initial conditions are

straightforward. If 0 or 1 packets are in the window, the CRI length will be one.

When k ≥ 2, the resulting collision takes one slot. Furthermore, though the k

packets are each equally likely to be in either the left or right subwindow, the sum

of the bounds of the two windows must be at most B − 1 since the collision used

one already. The left subwindow always takes at least one slot, and in some cases

can even use all B − 1 slots. Any remaining slots of the original B − 1 can be used

by the right subwindow. Because a given CRI, as opposed to the average case, can

be only an integer number of slots between one and T − 
d�, each possible length
must be considered. The summation in Equation 3.11 loops through the range of

possible CRI lengths, recurses on each, and multiplies each result by the probability

as given in Equation 3.7.

Denoting Lk,B = E{ lu,d | k,B }, the recursive expression for the length of a
CRI based on the operation of the algorithm is

Lk,B =




1, 0 ≤ k ≤ 1

1 + Li,B−1 with probability
(

k
i

)
2−k, k > 1

+
B−1∑
m=1
P (m | i, B − 1)Lk−i,B−1−m

(3.11)

For initial conditions Lk,0 = 0 for all k, and L0,B = L1,B = 1 for B ≥ 1, then

Lk,B = 2−k
k∑

i=0

(
k

i

)[
1 + Li,B−1 +

B−1∑
m=1

P (m | i, B − 1)Lk−i,B−1−m

]
(3.12)
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Note that the bounded nature of the algorithm guarantees a finite expansion of

terms.

3.4.3.3 Successfully Transmitted Packets

The next value to be determined is the expected number of successful trans-

missions between times with a lag of 1, that is, a single CRI. This requires knowledge

of the expected length of a CRI as developed in the preceding section. Given a cur-

rent lag of d slots with d ≥ ∆, there will be some number of packets transmitted

during examination of the current window. This examination removes ∆ slots from

the lag d but introduces l∆,d more slots. Thus, the total expected number of trans-

mitted packets would be n∆,d + αd−∆+l∆,d
. To also account for the situation where

d < ∆, meaning the lag is very near the current moment in time, the following

expression is more general:

αd =




nd,d ld,d = 1, 1 ≤ d ≤ ∆

nd,d + αld,d
, 1 < ld,d ≤ T − 
d�, 1 ≤ d ≤ ∆

n∆,d + αd−∆+l∆,d
, ∆ < d ≤ T − 1

(3.13)

Taking expectations and denoting Ad = E{αd},

Ad =



E{nd,d}+

T−�d�∑
m=2

AmP (m | d, d), 1 ≤ d ≤ ∆

E{n∆,d}+
T−�d�∑
m=1

Ad−∆+mP (m | ∆, d), ∆ < d ≤ T − 1

(3.14)

Finally, the number of packets transmitted during a single CRI is

E{nu,d} =
∞∑

k=0

E{nu,d | k, T − 
d� }e−λu (λu)
k

k!
(3.15)

Denoting Nk,B = E{nu,d | k,B }, to subsequently calculate the expected number of
packets successfully transmitted during the period that it takes to move from a lag of

d to a lag of 1, the algorithm induces the relationship below. The left subwindow can

use up to B−1 slots to transmit the i packets in its window. Similar to obtaining the
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expected CRI length in the previous section, each possible CRI length is considered

because however many slots a given left window CRI requires, the right window’s

CRI has that many fewer slots. Because individual cases are being considered, the

expected value of a CRI length cannot be used as a subscript on the last factor of

the last term.

Nk,B =




0, k = 0, B ≥ 1

1, k = 1, B ≥ 1

Ni,B−1 +
B−1∑
m=1
P (m | i, B − 1)Nk−i,B−1−m, k > 1,with probability

(
k
i

)
2−k

(3.16)

For initial conditions Nk,0 = 0 for all k, and N0,B = 0, N1,B = 1 for B > 1, then

Nk,B = 2−k
k∑

i=0

(
k

i

) [
Ni,B−1 +

B−1∑
m=1

P (m | i, B − 1)Nk−i,B−1−m

]
(3.17)

As before, this is a finite expansion because of the properties of the CRA.

3.4.3.4 Experienced Packet Delay

Determining the cumulative delay experienced by successfully transmitted

packets is the most complex of the calculations. It is the sum of the delays expe-

rienced within the window u, the delays experienced by the current lag, and the

delays during the CRI itself. That is,

wd =




ψd,d + zd,d, ld,d = 1, 1 ≤ d ≤ ∆

ψd,d + zd,d + wld,d
, 1 < ld,d ≤ T − 
d�, 1 ≤ d ≤ ∆

ψ∆,d + z∆,d

+ (d−∆)n∆,d + wd−∆+l∆,d
, ∆ < d ≤ T − 1

(3.18)

From the memoryless nature of the Poisson process, the long term average position

within a window u is the middle. Therefore each packet in the window experiences,

on average, a delay of half the window length. The expected value, then, is,

E{ψu,d} = 1

2
uE{nu,d}.
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Taking expectations where Wd = E{wd}, we see that

Wd =




E{ψd,d + zd,d}+
T−�d�∑
m=2

WmP (m | d, d), 1 ≤ d ≤ ∆

E{ψ∆,d + z∆,d + (d−∆)n∆,d} ∆ < d ≤ T − 1

+z∆,d + (d−∆)n∆,d}+
T−�d�∑
m=1

Wd−∆+mP (m | ∆, d)
(3.19)

Therefore, the cumulative delay of packets transmitted during a single CRI is

E{zu,d} =
∞∑

k=0

E{ zu,d | k, T − 
d� }e−λu (λu)
k

k!
(3.20)

Considering the initial conditions, a window with no packets experiences no delay,

and a window with one packet experiences a delay of one. It is more involved,

however, when a collision has occurred. After splitting, each packet in the left

window experiences an additional delay of one slot due to the collision. The packets

in the right window, though, will experience the total delay of the left window’s

resolution in addition to a similar one slot delay/packet for the initial collision which

caused the split. Similar to the development of previous expressions, the number of

slots used by the left subwindow are subtracted from the maximum available slots

for use by the right subwindow. This is expressed mathematically as

Zk,B =




0, k = 0

1, k = 1

(Ni,B−1 + Zi,B−1) +
B−1∑
m=1
P (m | i, B − 1) k ≥ 2,with

[(m+ 1)Nk−i,B−1−m + Zk−i,B−1−m], probability
(

k
i

)
2−k

(3.21)

With the initial conditions above, i.e., Zk,0 = 0, Z0,B = 0, and Z1,B = 1,

Zk,B =
k∑

i=0

(
k

i

)
{Ni,B−1 + Zi,B−1 (3.22)

+
B−1∑
m=1

P (m | i, B − 1)[(m+ 1)Nk−i,B−1−m + Zk−i,B−1−m]

}

and is a finite expansion.
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3.5 Evaluation

In real-time systems it is important that the application’s requirements be

met by all layers of the protocol stack. As previously mentioned, at the media access

layer of a soft real-time system, this translates to a guarantee that some minimum

fraction of traffic is in fact transmitted. Similarly, while there is a maximum laxity

value, it is also desirable to design for a significantly smaller average delay. We

call these design parameters SuccFraction, denoted by e1 in equations, for the

fraction of packets transmitted successfully, and AvDelay, denoted by e2, for the

delay experienced by an average packet.

While it is the application that drives the choices for maximum laxity T ,

SuccFraction and AvDelay, the initial window width ∆ is a basic design parameter

of the protocol itself. That is, the value of ∆ is chosen from the optimization of the

analysis of the previous section. The window width can be anywhere in (1, T − 1].

For this range we would like to find the maximum system traffic rate, λ∗, that

allows successful transmission of at least SuccFraction of the traffic. Because of

the complexity of the expressions developed, analytic optimization is difficult. For

given values of ∆, however, the problem is simple to solve numerically and reduces

to:

λ∗T,e1
= sup(λ : ρT (∆, λ) ≥ e1) (3.23)

We present results for ∆ = 3 though data has been generated for various ∆ values

which, through observation, encompass the maximum throughputs.

We also conducted a simulation study of this protocol using Opnet [Mil96], a

network simulation package. The simulations accurately modeled the overall system

functionality including the channel behavior, but did not explicitly model individual

stations. Each simulation was run with 95% confidence intervals that the fraction of

successful transmissions ρ was within ±0.005 of the steady state value. Input traffic
rates, in packets/slot, ranged from 0.050 to 0.600 in increments of 0.005. When
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Figure 3.5: Comparison of simulated and analytic results for fraction successful
when ∆ = 3.0 and T = 20

window size ∆ = 3.0 and laxity T = 20, Figures 3.5 and 3.6 show overlaid graphs of

analytic and simulated results. Because of the closeness of results, subsequent graphs

do not include simulated data for easier readability. Simulation results, however,

have been obtained for all presented graphs and show similar closeness.

In Figure 3.7, three curves are graphed showing the maximum sustainable

input traffic rates attainable when window size ∆ = 3.0 and the indicated values of

SuccFraction are used. It can be seen from these figures that the maximum input

rate increases as initial laxity is increased and also as the threshold for success rate

is decreased.

Given a minimum success fraction, an additional constraint can be added

to the problem posed in Equation 3.23 above so that an average delay is met in

addition to meeting the maximum laxity T , yielding:

λ∗T,e1,e2
= sup(λ : ρT (∆, λ) ≥ e1, DT (∆, λ) ≤ e2) (3.24)
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Figure 3.8: Maximum input traffic rate vs initial laxity with SuccFraction =
0.99, 0.95, 0.90, AvDelay = 3.

When an average delay of AvDelay= 3 slots is met, the results are shown in Fig-

ure 3.8. Similar graphs are shown for 5 and 7 slots in Figures 3.9 and 3.10 respec-

tively. All three figures represent performance with window ∆ = 3.0. It is interesting

to note that with the new constraint AvDelay, the curves on each of these graphs

converge whereupon the function slowly decreases. This is expected when the traffic

rate is increased, hence increasing average delay, but not relaxing the average delay

desired.

3.6 Summary

In this chapter we have studied a soft real-time MAC protocol for use in wire-

less systems. While it is suitable for use in some environments, it is far from general

purpose. Recall, however, that the main goals of the work presented are to take

the first steps towards the design and analysis of a general real-time MAC protocol.

Equally important, if not more so at this stage, is finding a model to characterize
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Figure 3.9: Maximum input traffic rate vs initial laxity with SuccFraction =
0.99, 0.95, 0.90, AvDelay = 5.
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and analyze a real-time MAC protocol. We did this while also presenting a new

splitting protocol that makes explicit use of real-time properties.

We find that as initial laxity increases, success rate does as well. However,

the increase in success rate is marginal beyond initial laxities of about 25. The small

increase suggests that with fixed initial laxities, there is no significant performance

advantage in a system that handles wider laxity ranges. And further, for a system

requiring an average delay, choices of initial laxity are limited. Maximum throughput

is attained for particular initial laxities when an average delay constraint is specified.

In order for an application to achieve the highest possible throughput with a desired

average delay, the system designer must consider the MAC layer capabilities.
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Chapter 4

BLOCKED AND FREE ACCESS REAL-TIME

SPLITTING PROTOCOLS

4.1 Introduction

Further addressing the challenge of packet transmission in a wireless soft

real-time system, we present five splitting protocols in this chapter that take packet

deadlines into account. The studies presented in this chapter have also been pub-

lished as [MS98c], [MS97a], and [MS97b]. The protocols offer connectionless service

with real-time QoS guarantees at the MAC layer. Three of the protocols are blocked

access and two are free access algorithms. Mathematical models are developed fol-

lowed by a comparison between numerical and simulation results.

As in the previous chapter, we again consider the problem of a soft real-time

system implemented on a wireless network offering connectionless service. Here,

however, we are interested in protocol performance when the arriving traffic has

initial laxities drawn from a known distribution. When soft real-time transport

of data is needed in random access networks, quality of service guarantees must

take into account that not all of the offered load can be transmitted. The higher

protocol layers, and especially the application layer, should be aware of the general

capabilities and limitations of the MAC (media access control) layer. Additionally,

the LLC layer can make the most of the available resources by providing just the level

of quality needed by the application and not more, thus conserving MAC resources

for use by other applications or nodes.
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Presently, it is commonly the case that application layer real-time requests

are responded to on random access nets by making do with the services provided,

ultimately, by the MAC layer and filtering out “late comers.” For some applica-

tions, this approach is acceptable; the performance of existing protocols provides

the quality of service needed, or else buffering can be used to somewhat shield user

awareness from unpredictable lower layer performance. However, on wireless links

that usually offer less bandwidth than wire links, media access that better meets

the time constraints of the data is needed to meet functional requirements of system

designs. It is not new hardware technology or physical layer improvement that is

needed, but new channel access techniques.

4.2 System Model

The system studied is an infinite population of similar users, each with a

queue of length one, sharing a common channel. Each new packet is assumed to

arrive at a new node. The channel is accessed in a slotted manner such that all

transmissions begin only at slot boundaries, and a packet is exactly one slot long.

It is further assumed that at the end of each slot, binary feedback, i.e., collision

or non-collision status, is available describing the slot just ended. Typically, a

carrier sensing by the node providing the binary feedback is performed for a short

duration at the midpoint of the data slot. At that time, collision/non-collision status

is determined, so that there is ample time to provide the feedback immediately

following the data slot. Additionally, an error-free feedback channel is assumed.

The slotted channel assumption is the most difficult of those listed above to

realize in an implementation, and especially so in a fully distributed case. Synchro-

nization, however, is possible with stable clocks, receiver feedback, and guard time

between the end of one transmission of the start of the next [BG92]. The assumption

of infinite users is not realistic but when used in analysis, provides us with worst

case packet delay. Finally, in systems where transmitters are far from each other,
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feedback immediately after a data slot is not possible. However, delayed feedback

causes no problems for the algorithm. Several interleaved delayed feedback systems

can used to make fullest use of the bandwidth.

Two types of random access algorithms (RAAs) are considered: blocked and

free access. In a blocked access RAA, after an initial collision between two or more

packets occurs, only the nodes whose packets were involved in that collision may

contend for the channel. When the collision is resolved, and all packets have been

either transmitted or dropped, only then can other nodes again contend. Conversely,

in free access RAAs, there is no such access blocking. Regardless of prior collisions,

all nodes with packets to transmit always contend for the channel. Free access

RAAs, therefore, traditionally have had lower maximum throughputs than blocked

access RAAs due to higher contention, but they are easier to implement. In real-time

systems, though, the departure process is more complex. In addition to departing

due to transmissions, packets can be dropped because of deadline expiration as well.

We thought, in light of this, that it would be worthwhile to consider them in a real-

time environment. Table 4.1, the MAC portion of Table 1.2, shows which algorithms

will be studied in this chapter. Section 4.3 describes blocked access versions, and

Section 4.6 describes free access versions of the three soft real-time MAC algorithms.

Subsections within each of those major sections describe the particular algorithms

of interest.

Blocked access RAAs have two components: the first time transmit rule

(FTTR), and the collision resolution algorithm (CRA). The FTTR is used in suc-

cession until a collision occurs, at which time the FTTR is deactivated, and the CRA

resolves the contention. The FTTR used by all RAAs described in this paper is to

transmit a waiting packet with probability one. When feedback from a transmission

indicates that a collision occurred, the CRA is initiated. The CRA completes when

all packets involved in the initial collision either have been transmitted or dropped
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Table 4.1: MAC algorithms studied.
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due to missed deadlines. The length of time until the initial collision is resolved is

called the collision resolution interval (CRI), and all subsequent analyses are based

on one “cycle” of this regenerative stochastic process.

Splitting CRAs use a random variable to separate the collided users into at

least two new sets, after which, one of the sets becomes active and the CRA is

applied to that set. Traditionally, the splitting variable is either the outcome of a

random number generator or the packet arrival time. In our algorithms, we split

into two groups of the same size. However, Wong [Won64] showed that this is not

always optimal. He derived a functional-minimization equation of the dynamic pro-

gramming type showing that splitting at the midpoint of a set can be a suboptimal

solution for locating a number pulled from a uniform distribution. Though this is

the case, for the sake of analysis and development of easy to implement algorithms,

we do, in fact, split intervals equally in our algorithms.

The splitting variable used is related with the deadline of the packet, namely,

its laxity. At each slot boundary, a packet’s laxity is decremented by one and

the packet dropped should the laxity reach zero. By splitting based on laxity, the

real-time requirements of the system can best be met by making the low laxity
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group the active one so that contending packets are always transmitted in a laxity

ordered manner, low to high, as appropriate in a real-time environment. Initial

packet laxities are drawn from a uniform distribution in the interval [2, T ]. Two is

the minimum laxity since it takes one slot to receive feedback plus one more for

actual transmission. The maximum initial laxity T is a system parameter and is

chosen based on the real-time system’s functional requirements.

Another characteristic common to all CRAs analyzed here is that packets are

never delivered late. They are either transmitted in a timely manner or dropped. At

this low level, there are two competing viewpoints: the system as a whole would like

short CRIs to increase throughput, while individual packets hope for transmission

regardless of delay as long as their deadlines are met. We balance these views by

outright dropping of late packets. A higher protocol layer decides if it is worth

retransmitting late or not, especially in the case of multiple MAC layer packets

making up a single higher layer message.

4.3 Blocked Access CRAs

By the nature of blocked access CRAs, the time when contending packets

enter the system is known; it is the start of the CRI. At any time during the

CRI, an initial collision that happened previously is being resolved. This means

that there is lag of, say, d slots between “now” and the start of the CRI. The

analysis must consider both this lag and, based on the packet arrival process, the

number of packets expected to arrive while the CRI is ongoing. Because the lag

can become large when the rate of the arrival process is high, windows are used,

as first introduced by Gallager [BG92]. With large lags, it is likely that when a

CRI completes, it will be immediately followed by a collision. To avoid this, an

arrival-time based window ∆ slots wide is used to limit channel contention.

Assumptions used for the analysis in this chapter are much the same as in

the previous chapter. The window is arrival-time based and allows only those nodes
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whose packet arrival times fall within the window to be transmitted. But, should a

collision occur, a new window is used where the packets involved are reordered in a

laxity window that spans the entire range of possible initial laxities [2, T ]. This is

the window upon which the laxity-based CRAs, described shortly, operate. When

the CRI ends, the time-based window slides forward another ∆ slots so that arrivals

in that window can then transmit. Figure 3.4 can again be used as illustration of

the association between some of the more important variables in the analysis.

An equivalent approach to using a sliding arrival-time based window, as

shown in the illustration, might be to use a sliding laxity window as part of the

FTTR. The idea is that even when a CRI is not in progress, a laxity window would

be used to allow a subset of the full laxity range to transmit. It turns out, however,

that there is no difference between the two. For both the sliding laxity and sliding

time windows, the goal is to find a window size reducing the likelihood of collisions

while also increasing the likelihood of finding a single packet. In both cases, when

a collision does occur, the average case will involve the same number and type of

packets. Due to the memoryless nature of the Poisson process, there is no advan-

tage (or disadvantage) to using a sliding window of one type over a sliding window

of another. When optimally chosen, likelihood of collisions is the same, and any

collision is followed by use of the same laxity-based CRA. Simulations confirm this,

and we chose a sliding arrival-time based window. This avoids the added step when

using sliding laxity windows of determining optimal window widths for each new

laxity set. However, using a sliding laxity window can be advantageous in practice.

It offers the chance to separate the splitting variable from the arrival process. In

systems with non-Poisson arrivals, e.g., periodic ones, this can be especially useful.

4.3.1 Blocked Access Fully Recursive CRA

The first algorithm considered is the blocked access Fully Recursive CRA,

introduced in Chapter 3. The Fully Recursive algorithm uses packet laxity as the
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Figure 4.1: Blocked access fully recursive CRA.

splitting variable and recursively splits each laxity window on subsequent collisions.

A sliding time window is used as well in the style of the GTM algorithm to decrease

the likelihood that a CRI will be followed by a collision. Use of a sliding window is

akin to the modification made by Capetanakis [Mas81] to the original CTM CRA.

That is, an arrival-time based window encompasses a range of arrival times. Only

packets whose arrival times fall within the window may contend for the channel, so

that the likelihood of high multiplicity collisions is lessened.

When a collision does occur, however, the packets enabled in the time-based

window are reordered in a new laxity window encompassing the full laxity range.

That window is split, and the CRA is applied to the left half of the window until

no more packets in it are waiting to be transmitted. Then the CRA is applied to

the right half of the laxity window. An example splitting sequence is illustrated in

Figure 4.1, though the initial sliding time window is not shown. With the blocked

access Fully Recursive CRA, a splitting tree of arbitrary depth, i.e., a large number

of subwindows, can exist at a given point in time in a CRI. The only way to

know when the CRI completes is for all nodes to be monitoring channel history

since system startup, and for there to be no errors in the feedback. Note the many

consecutive non-collisions in Figure 4.1. Were a node to begin channel monitoring
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Figure 4.2: Blocked access sliding partition CRA.

at the fourth slot, i.e., time t + 3, the first non-collision in the CRI, it would have

no way of knowing that a CRI is even in progress or that four windows need to be

resolved. Hence, the node is unable to know with certainty when it may transmit.

While clearly impractical for implementation, it is interesting to consider such a

straightforward CRA for the sake of comparison to other real-time CRAs.

4.3.2 Blocked Access Sliding Partition Real-Time CRA

The blocked access Sliding Partition algorithm, illustrated in Figure 4.2, is

a more practical algorithm. This CRA is a modification of the blocked access Fully

Recursive CRA in that the CRA is not applied recursively to each window half.

Rather, after a collision, we use a laxity partition to separate the full range into

two halves. Packets in the left half, the active set, then retransmit. If there is a

collision, the laxity partition is slid to the midpoint of the current active set. In

this way, there are never more than two windows during a CRI, as can be seen

in Figure 4.2. And after the left half transmission is a non-collision, the blocked

access Sliding Partition CRA is applied to the right half, the unresolved interval.

Though the initial collision lets us know that at least one more packet still remains

to be transmitted, the memoryless nature of the Poisson arrival process offers no

information regarding location or number of additional packets in the unresolved
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Figure 4.3: Blocked access two cell CRA.

interval. Therefore, there is no gain by performing the more complex recursive

splitting. Additionally, having only two groups offers a practical advantage. When

both are resolved, the departure process feedback is two consecutive noncollisions,

one for each window. Every time this sequence is observed, it indicates that a CRI

is no longer in progress. For a node just joining a net, waiting for two consecutive

noncollisions is an easy way to know when to activate its own FTTR.

4.3.3 Blocked Access Real-Time Two Cell

Paterakis et al. [PGPK89] developed the blocked access Two Cell CRA that

uses random splitting like the original CTM CRA, but also incorporates windowing

in the same manner as the GTM and Sliding Partition CRAs described above. There

are always only two subsets of split users, those in cell one and those in cell two.

Upon collision, nodes flip a fair coin and either remain in cell one or move to cell

two. Nodes in cell two never transmit. Cell one nodes, however, always transmit at

the next slot boundary. This has the advantages of the Sliding Partition CRA—at

most two windows active—with an advantage also found in the original CTM CRA,

namely, that the splitting is independent of the arrival process. Figure 4.3 illustrates
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the arrival-time based sliding window in the blocked access Two Cell CRA where

the current window happens to allow three packets to contend for the channel. After

the initial collision, the rest of Figure 4.3 shows how the CRI might proceed given

that there is a coin flip by all cell one nodes after a collision. Like the Sliding

Partition CRA, two consecutive non-collisions signal the CRI completion. This easy

to recognize event makes it easy for nodes to join the net any time after system

startup, and to resynchronize in the inevitable case of feedback errors.

4.4 Blocked Access Analysis

The top level performance measures are the same as those of the previous

chapter, and we follow the same notational scheme when possible. While expressions

have been derived for all protocols studied, we present the analysis only for the

blocked access Sliding Partition CRA, which turns out to be the best performing

algorithm. We also present results for the other protocols studied. The intensity

of the Poisson arrival process, in packets per slot, is indicated by λ. This is the

aggregate arrival rate, or offered load, at the MAC layer. That is, whether or

not there is any blocking of packets at higher protocol layers, a system-wide λ

packets/slot is assumed to reach the MAC layer, though not all can be ultimately

transmitted. Repeating Equations 3.3 and 3.4, as an aid to the reader, if H denotes

the expected length of a CRI, and Z the expected number of packets that will be

transmitted during that CRI, the fraction of packets that meet their deadlines is

ρ =
Z/H

λ
(4.1)

If we next define W as the cumulative expected delay of all packets in the CRI, then

the per packet expected delay is

D =
W

Z
(4.2)

As before, expressions for H,Z, andW are derived. We begin with basic expressions

and build upon them to derive expressions for the variables above. The expressions
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are the same, somewhat complicated counters as before. That is, H counts the

number of slots in a CRI, Z counts the number of packets transmitted, and W

counts the number of slots spent waiting. In all cases, the counter value is returned

at the end of a CRI. Characterizing the events during an epoch of this system,

because of the more realistic initial packet laxities, is more complicated than the

case of fixed initial laxities.

4.4.1 Probability of Packet Expiration

During each slot of a CRI, there is some probability that one or more of the

contending packets will expire. Recalling that T is the maximum possible initial

laxity and that B is the maximum number of slots remaining in the CRI, T − B
is the current length, in slots, of the CRI. At each slot boundary, the laxity of

each packet decreases by one. As a result, the window can be thought to slide

to left by one slot. Because late packets are dropped, however, the window edges

are never less than one. Note, however, that this does not mean application layer

packets cannot be delivered late. At the LLC layer, deadlines in units of seconds or

minutes are mapped into deadlines of slots. Nothing prevents that mapping from

introducing late arrival. The MAC layer laxity window is illustrated in Figure 4.4.

The probability, then, that one packet expires is conditional on location of the

current laxity window. Since packet laxities are drawn from a uniform distribution,

the probability of a single packet being dropped when at most B slots remain in the

CRI is

p1 = P (pk drop | T,B, x, w) = 1−max(1, x+ w − (T − B))−max(1, x− (T − B))
w

(4.3)

Note that immediately after the collision that initiates the CRI, B will be T − 1.

After the CRI has progressed for T − B slots, the left and right edges of the laxity

57



x+ax+a-(T-B)x1

Original Window

T-B slots later

laxity

Figure 4.4: Sliding laxity window.

window move to the left by that much as well. The probability of not being in that

window is the probability of a packet being dropped.

The probability of multiple packets being dropped is obtained by treating

each single drop probability as a Bernoulli trial. The number of total drops is then

characterized by a binomial distribution,

bin(p, n, k) =

(
n

k

)
pk(1− p)n−k,

using p1 as the probability. Therefore, given a window spanning laxities [x, x + w]

and with only B slots remaining in the CRI, the probability that d of the k packets

will be dropped is

bin(p1, k, d).

4.4.2 Probable Length of CRI

In most of the subsequent equations, there is consideration of some event

occurring within a CRI of length l, which then must be multiplied by the probability

that a CRI occurs that is, in fact, of length l. The latter probability is derived in this

section. For a collision involving a finite number of packets, the probable length of

the CRI can be expressed recursively. The notation Plen(l | k1, k2, B, x, w1, b) is used

to indicate the conditional probability of the CRI being l slots long given that there

are k1 packets in the left subwindow, k2 packets in the right, and at most B slots

remaining in the CRI. Furthermore, the left edge of the current window is at laxity
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x, and the left subwindow has width a, and the right has width b. The conditional

probability that a CRI is of length l when an initial collision of multiplicity k packets

occurs can then be represented by Plen(l | k, 0, B, 2, T, 0). That is, by convention,
we assume a CRI begins with all k packets in a left subwindow where the right

subwindow is of zero width.

Realizing that a collision uses one slot, the probable length of the CRI can

then be calculated using an equation of the form Plen(l | ·) = . . . Plen(l − 1 | ·) . . .
However, because packets have initial laxities drawn from a range of laxities, there

is some probability that one or more packets will expire during the current slot of

the CRI. Thus, a summation is needed over the number of packets lost multiplied

by the probability of the likelihood of such an event. Note that the probability of

packet drop in the inactive window with the k2 packets is not considered. This is

unnecessary because while in the inactive window, the packets cannot contend for

the channel and hence have no effect on throughput. Once the inactive window

becomes the active window, however, the drop probability is then calculated. While

it would not be incorrect to model packet dropping in the inactive window, it has

no effect on the results, and unnecessarily increases the numerical analysis code by

an order of magnitude. Thus, the full expression is,

Plen(l | k1, k2, B, x, w1, w2) (4.4)

=




∑k2
d=0 Plen(l − 1 | k2 − d, 0, B − 1, x+ w1, w2, 0)

·Pdrop(k2, d | T,B, x+ w1, w2) k1 = 0, 1

∑k1
i=0 bin(w1/(2w1 + 2w2), k1, i)

∑i
d=0

Plen(l − 1 | i− d, k2 + k1 − i, B − 1, x, w1/2, w2 + w1/2)

·Pdrop(i, d | T,B, x, w1/2) otherwise

with initial conditions

Plen(l = 1 | k1, k2, B, x, w1, w2)
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=




0, if l > B

0, if k1 = k2 = 0

1, if B = 1

1, if k1 = 1, k2 = 0

Pdrop(k2, k2 | T,B, x+ w1, w2), if k1 ≤ 1, k2 > 0

Pdrop(k1, k1 | T,B, x, w1), if k1 > 1, k2 = 0

Pdrop(k2, k2 | T,B, x+ w1, w2), if k1 = 1, k2 > 0

Pdrop(k1, k1 | T,B, x, w1)

·Pdrop(k2, k2 | T,B, x+ w1, w2), if k1 > 1, k2 > 0

To improve readability, note that initial condition specifications are read sequen-

tially. That is, consider the first two initial conditions above. The result is zero

when l > B regardless of other variable values. This implies in the second initial

condition that the outcome is again zero if k1 = k2 = 0, and if l ≤ B. In the

first case of the recursion, 0 or 1 packets were in the active window. Accordingly,

in preparation for the next slot, the k1 and k2 parameters show that the inactive

window containing k2 packets now becomes the active window. For the moment,

there is an inactive window of zero width. The second case of the equation, though,

shows what happens after a collision. Of the k1 > 1 packets that collide in the

active window, each possible split must be considered with each multiplied by the

probability of such a split.

The initial conditions are much more involved than the corresponding ones

of the previous chapter when packets with fixed initial laxities were used. The first

four, though, are straightforward enough. If the limit has expired or if there are no

packets to transmit, the CRI can clearly not be the length of interest. If the bound

is one, or if there is one packet to transmit, then the probability of the CRI being

one slot long is one. For the others, more care must be taken. The only way that a

CRI can complete in one slot when there is more than one packet to transmit is if
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all deadlines happen to expire. That is the set of events that the latter four initial

conditions capture.

The above gives the probability based on specific initial values of k1 and k2.

More often, we are not interested in particular cases but want the overall probability

that the CRI will be of a length l given the current lag and the current window

width. In the general case for a Poisson arrival process, the probability of a CRI

lasting l slots is again expressed recursively. Let Plen(l | u, d) denote the conditional
probability that a CRI is l slots long given that u slots, the current window, must

be examined, and that the current lag is d slots. This probability is the sum of the

probabilities that the u slots contain 0, 1, . . . , ∞ packets and that these packets

can be successfully transmitted within the remaining time, T − d. Since these are
transmissions made while the FTTR is active, the laxity window is at its full width,

[2, T ). Also because of the FTTR transmission, there is no inactive window, though

the lag might be more than one if the system is not yet at a renewal point. This is

expressed below where one can also see the Poisson arrival probability. To consider

other arrival processes, this term would be changed to reflect the process of interest.

Plen(l | u, d) =
∞∑

k=0

Plen(l | k, 0, T − 
d�, 2, T − 1, 0)e−λu (λu)
k

k!
(4.5)

4.4.3 Expected Length of CRI

An expression for the expected length of a CRI is developed in a manner

similar to that used for the probable length of a CRI. Given an initial collision

involving k packets and at most B slots till the end of the CRI, we denote the

expected length as Lk1,k2,B,x,w1,w2. We again must consider the probabilities of one
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or more of the k packets expiring as the CRI progresses. For k > 1,

Lk1,k2,B,x,w1,w2 =




1 +
∑k2

d=0 Lk2−d,0,B−1,x+w1,w2,0

·Pdrop(k2, d | T,B, x+ w1, w2) k1 ≤ 1

1 +
∑k1

i=0 bin(w1/(2w1 + 2w2), k1, i)
∑i

d=0

Li−d,k2+k1−i,B−1,x,w1/2,w2+w1/2

·Pdrop(i, d | T,B, x, w1/2) otherwise

(4.6)

and with initial conditions L...B... = 1, if B = 1, and Lk1,k2,... = 1, if k1 ≤ 1, k2 = 0.

For the general case where u slots must be resolved with a current lag of d,

the expected CRI length is

E{lu,d} =
∞∑

k=0

E{ lu,d | k, T − 
d� 2, T − 1, 0}e−λu (λu)
k

k!
(4.7)

The effect of lag d on the expression is that it reduces the number of slots remaining

until the CRA resets and involved packets are discarded. The effect of window width

u is, as its width increases, to increase the likelihood of more arrivals. With these

expressions, we can now use the high level relationship induced by time-constrained

blocked access RAAs, expressed in Equation 3.9, to calculate a value for H1, the

expected number of slots it takes to leave and return to a system state of a one slot

lag.

4.4.4 Expected Number of Transmissions During CRI

In a similar manner, an expression for the number of packets transmitted dur-

ing a CRI can be derived. However, where the expected length expression counts the

number of slots in the CRI, the expected number of transmissions counts only pack-

ets. After each non-collision, the counter is incremented by the number transmitted;
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either zero or one.

Nk1,k2,B,x,w1,w2 =




k1 +
∑k2

d=0Nk2−d,0,B−1,x+w1,w2,0

·Pdrop(k2, d | T,B, x+ w1, w2) k1 ≤ 1

∑k1
i=0 bin(w1/(2w1 + 2w2), k1, i)

∑i
d1=0

Ni−d1,k2+k1−i,B−1,x,w1/2,w2+w1/2

·Pdrop(i, d1 | T,B, x, w1/2) otherwise

(4.8)

with initial conditions Nk1,k2,... = 0, if k1 = k2 = 0, Nk1,k2,... = 1, if k1 = 1, k2 = 0,

and N...B... = 0, if B = 1. Notice that the value of N is incremented only after a

noncollision that contained 1 packet, a successful transmission.

As before, the general case of resolving a window of u slots with a d slot lag

is

E{nu,d} =
∞∑

k=0

E{nu,d | k, T − 
d� }e−λu (λu)
k

k!
(4.9)

Substituting the above expressions into Equation 3.14 lets us calculate Z = A1,

the expected number of packets transmitted during a CRI. With the expressions of

previous sections for derivation of H, we can now get values for transmission success

rate, ρ, in Equation 4.1.

4.4.5 Expected Cumulative Delay During CRI

The cumulative delay, Z, of all packets transmitted during the CRI is obtained

in a more complicated manner than CRI length or number of packets transmitted.

This expression must count the number of slots spent waiting, but only by packets

that are eventually transmitted. The most straightforward way of doing this is to

augment the expression for N. The number of packets ultimately transmitted, due

to our assumption of having one slot long packets, also happens to be the number

of slots required to transmit them. In addition, though, other waiting packets are
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delayed by packet transmissions occurring earlier in the CRI, hence the two terms

in the recursion:

Zk1,k2,B,x,w1,w2 =




k1 +
∑k2

d=0(Zk2−d,0,B−1,x+w1,w2,0 +Nk2−d,0,B−1,x+w1,w2,0)

·Pdrop(k2, d | T,B, x+ w1, w2) k1 = 0, 1

∑k1
i=0 bin(w1/(2w1 + 2w2), k1, i)

∑i
d=0

(Zi−d,k2+k1−i,B−1,x,w1/2,w2+w1/2

+Ni−d,k2+k1−i,B−1,x,w1/2,w2+w1/2)

·Pdrop(i, d | T,B, x, w1/2) otherwise

(4.10)

Therefore, the cumulative delay of packets transmitted during a single CRI (exclud-

ing delay due to lag and window width) is

E{zu,d} =
∞∑

k=0

E{ zu,d | k, T − 
d� }e−λu (λu)
k

k!
(4.11)

From the memoryless nature of the Poisson process, the average packet po-

sition in a window is the middle. Therefore each packet in the window experiences,

on average, a delay of half the window length. The expected delay within a window,

then, is simply,

E{ψu,d} = 1

2
uE{nu,d}.

The time spent waiting is made up of three parts: a packet’s expected position

in a window, the amount of time before the window encompasses the packet, and

the number of slots required for the CRA to transmit the packet. These are used

in Equation 3.19. The solution for the variable W = W1 represents the expected

cumulative delay of the packets transmitted during a CRI. With W calculated, the

per packet delay can be obtained using Equation 4.2.
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4.5 Blocked Access Evaluation

In Chapter 3, performance of the blocked access Fully Recursive CRA when

arriving traffic had the same initial laxity was studied based on success rate, average

delay, and worst case delay. We evaluate the blocked access Fully Recursive, Sliding

Partition, and Two Cell CRAs in the same manner here, though arriving traffic has

laxities drawn from a uniform distribution.

The soft real-time protocols studied in the previous sections can be character-

ized by at least the following: traffic rate λ, laxity range [2, T ], minimum acceptable

success ratio SuccFraction, denoted by e1 in equations, and average delay desired

AvDelay, denoted by e2. Ideally, a protocol would adapt to a changing network by

modifying these values while still meeting quality of service guarantees. More sim-

ply, though, if a system’s real-time requirements are known at design time, it is easy

to determine protocol performance.

For a given minimum acceptable success rate SuccFraction, the initial slid-

ing time-based window of width ∆ yields different results. The highest success rates

are obtained when the best value for ∆ is used.

λ∗T,e1
= sup(λ : ρT (∆, λ) ≥ e1) (4.12)

We have generated data for a range of ∆ values and through observation, ∆ = 2.5

is best. Therefore, we present results only for that value. The simulation studies of

each protocol were conducted using an Opnet [Mil96] model. The simulation mod-

els the system as an infinite user population, thus offering more conservative perfor-

mance results than the finite user case [PGPK87]. Each simulation was run with 0.95

confidence that the fraction of successful transmissions ρ was within ±0.005 of the
steady state value. Input traffic rates, in units of packets/slot, ranged from 0.050 to

0.600 in increments of 0.01. It is important to note that the simulation is not nu-

merically solving the recursions of the analysis. The simulation performs the various
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Figure 4.5: Blocked access Sliding Partition success rate.

splitting techniques in the same manner that an implementation would, and sam-

ples are gathered with statistics generated upon reaching steady state. The analytic

curves, in contrast, are generated solely from numerical solutions to Equations 4.1

and 4.2.

For the blocked access Sliding Partition CRA, Figure 4.5 graphs analytic

and simulation success rate results for λ∗10,0.9 and illustrates the closeness of data,

even though the two methods used to acquire the performance results are very

different. Figure 4.6 graphs a similar comparison again using the blocked access

Sliding Partition CRA, but for delays corresponding to λ∗5,0.9, λ
∗
10,0.9, and λ

∗
15,0.9.

Error bars are not shown since the condition of reaching steady state was made by

monitoring ρ, not the delay. Because of the close agreement between the two sets of

results, subsequent graphs show only one or the other set for the sake of readability.

With simulation results, error bars will not be shown but in all cases are based on

the ±0.005 tolerance of ρ. Analytic results for the Sliding Partition algorithm are

graphed in Figure 4.7, showing expected CRI lengths for various values of T and λ.
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Figure 4.6: Blocked access Sliding Partition delay.
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Figure 4.8: Blocked access protocols, T = 10.

As expected, when the arrival intensity is high, CRI length increases accordingly,

and especially when T is large.

For maximum initial laxity T = 10, analytic results for the three protocols are

compared in Figure 4.8. It is interesting that the Fully Recursive CRA outperforms

the others. In the original ternary feedback versions, and even when windowing

was added to the Fully Recursive CRA, it performed worst. In the soft real-time

environment, it appears that the finer window splitting of that CRA offers an ad-

vantage. However, when T = 30, the advantage is lost as illustrated in Figure 4.9.

While splitting finely allows somewhat quicker isolation of contending packets, it

is then necessary for the recursion to spend another slot doubling the window size,

thus losing valuable time.

As one might expect, the Sliding Partition CRA, which takes packet laxities

into account, performs better than the random splitting of the Two Cell CRA. As

laxity range increases, the performance differences between the two become more

significant. This is shown in Figure 4.10. Furthermore, as seen in Figure 4.11, the
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Figure 4.9: Blocked access protocols, T = 30.
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Figure 4.11: Blocked access Sliding Partition, T = 5, 10, 15, 20.

CRA is seen to approach an operational maximum as the value of T is increased.

From this, it appears that results for, say, T = 30 could be used to approximate

still wider laxity ranges. More importantly, it indicates that the LLC (Logical

Link Control) layer that submits packets to the MAC layer must be aware that

though deadlines of its frames might extend relatively far into the future, MAC

peak performance is reached with deadlines no more than 30 slots away. Conversion

of LLC deadlines in units of seconds to MAC deadlines in units of slots will be

affected by the value of T. This is in turn will affect the design of the LLC scheduling

algorithm.

4.6 Free Access CRAs

Because free access CRAs allow nodes with packets to contend for the channel

at any time, there is no way of knowing at what point during a CRI a given packet

arrived. At the beginning of each slot, there is a nonzero probability that the arrival

process will add zero or more packets to the system, and a nonzero probability
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that the departure process—a combination of the CRA and expiring packets—will

remove zero or more packets from the system. Therefore, a time-based window is

also unnecessary.

4.6.1 Free Access Real-Time Sliding Partition/Fully Recursive CRA

The blocked access Sliding Partition CRA is easily modified for use in a free

access manner. After the time-based window is removed, the only other change

is that the left edge, the low laxity window edge, never moves. By making the

left window edge immovable, regardless of the state of a CRI, lower laxity packets

are always admitted. Because splitting still occurs and affects the right window

edge, it is not permissible at all times to transmit higher laxity packets. So the

algorithm does not implement free access in the purest sense, but does so in a

way that seemingly best supports soft real-time transmissions. Interestingly, by

similarly modifying the Fully Recursive splitting algorithm, the free access variant

of the Fully Recursive algorithm is identical to the free access Sliding Partition CRA.

(The dashed line in Tables 1.2 and 4.1 indicates that there is no distinction between

the two algorithms because they are, in fact, the same.)

4.6.2 Free Access Two Cell Random Splitting

The Two Cell CRA is also modified by removing the time-based window.

It is further modified such that all new arrivals join the waiting group and react

to the feedback exactly as if they were in the waiting group during the previous

slot. That is, they transmit after a non-collision, and remain in the waiting group

after a collision. As a result, the free access Two Cell algorithm is more hybrid

in nature; partially blocked access, partially free access. But as mentioned in the

Sliding Partition algorithm discussion above, real-time protocols, free access or not,

have to impose deadline-based limits.
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4.7 Free Access Analysis

For free access analysis, the expressions for H,Z, and W must again be

derived for use in Equations 4.1 and 4.2. Because there is no need for a time-based

window or to track its location relative to the current lag, the top level equations for

the free access analysis are more straightforward than for blocked access. However,

because it is no longer known when a given packet enters the CRI, the expression for

the packet drop probability becomes more involved. Since a CRI is not guaranteed

to be shorter than the largest initial laxity, as in the blocked access case, the notation

changes. Rather than have a bound B counting down from the maximum laxity of

T slots, we start a counter P from zero and increment it at each new slot.

4.7.1 Probability of Packet Drop

Given that there is a packet arrival within the last P slots and that the arrival

process is Poisson, it is equally likely that the packet arrived in any of the last P

slots. When P < T, the probability of a packet drop is the same as in the blocked

access case. For P ≥ T, though, since T is the maximum initial laxity, we know

that the packet must have arrived within the last T slots. Therefore, the probability

that a single packet will be dropped is:

p1 = P (pk drop | T, P, x, w) (4.13)

=
1

min(P, T − 1)

min(P,T−1)∑
i=2

max(1, x+ w − (T − i))−max(1, x− (T − i))
w

As in the blocked access derivation, the probability that d packets out of an existing

k packets are dropped is a binomial distribution utilizing the probability above.

This group drop probability is again denoted by

bin(p1, k, d).
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4.7.2 Expected Length of CRI

The expected length of a CRI is obtained in a straightforward manner, though

the notation is somewhat involved. At the beginning of each slot, the Poisson arrival

process determines the likelihood of new arrivals during the past slot (of width 1),

while the CRA determines the likelihood of departures. With these probabilities,

the expected CRI length is expressed as

Lk1,k2,P,x,w1,w2 =




1 +
∑∞

a=0

∑k2
d=0 Lk2−d+a,0,P+1,w1+w2,0

·Pdrop(k2, d | T, P, w1 + w2)e
−λ λa

a!
, k1 ≤ 1

1 +
∑k1

i=0 bin(w1/(2w1 + 2w2), k1, i)
∑i

d1=0

∑k2+k1−i
d2=0∑∞

a1=0

∑∞
a2=0Li−d1+a1,k2+k1−i−d2+a2,P+1,w1/2,w2+w1/2

·Pdrop(i, d1 | T, P, x, w1/2)

·Pdrop(k2 + k1 − i, d2 | T, P, x+ w1/2, w2 + w1/2)

·e−λ λ(a1+a2)

(a1+a2)!
bin(w1/(w1 + w2), a1 + a2, a1) otherwise

(4.14)

The first case represents a noncollision in the active window; either zero or

one packets are transmitted. Before the inactive window becomes the active one,

however, several things must be considered. During the slot just passed, it is possible

that a number of packets arrive. This is represented by the summation over a, where

a is the number of new arrivals from a Poisson process in the past slot. Similarly,

the summation over d represents the number of waiting packets in the inactive group

that expired and were dropped during the previous slot.

The same considerations must be used after a collision, the second case above.

Here, though, there is the added consideration of which laxity window half a new

packet arrives in, as well as which half a packet might depart from. Hence, the four

summations for arrivals and departures from the two halves.
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4.7.3 Expected Number of Packets Transmitted During CRI

The expected number of packets successfully transmitted during a CRI is

similarly derived. At the beginning of each slot, the Poisson arrival process deter-

mines the likelihood of new arrivals in the one slot width, while the CRA determines

the likelihood of departures. With these probabilities, the expected CRI length is

expressed as

Zk1,k2,P,w1,w2 =




k1 +
∑∞

a=0

∑k2
d=0 Zk2−d+a,0,P+1,w1+w2,0

·Pdrop(k2, d | T, P, w1 + w2)e
−λ λa

a!
, k1 ≤ 1

∑k1
i=0 bin(w1/(2w1 + 2w2), k1, i)

∑i
d1=0

∑k2+k1−i
d2=0∑∞

a1=0

∑∞
a2=0 Zi−d1+a1,k2+k1−i−d2+a2,P+1,w1/2,w2+w1/2

·Pdrop(i, d1 | T, P, w1/2)

·Pdrop(k2 + k1 − i, d2 | T, P, w1/2, w2 + w1/2)

·e−λ λ(a1+a2)

(a1+a2)!
bin(w1/(w1 + w2), a1 + a2, a1) otherwise

(4.15)

The only difference between this expression and Equation 4.14 is that the value of

Z is only incremented after a noncollision due to a successful transmission.
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4.7.4 Expected Cumulative Delay

The expected cumulative packet delay during a CRI is slightly more complex.

In addition to awaiting transmission during the CRI, an arriving packet waits an-

other half slot on average before receiving its collision/noncollision feedback. There-

fore, the expected delay is

Wk1,k2,P,w1,w2 =




k1/2 +
∑∞

a=0

∑k2
d=0(Wk2−d+a,0,P+1,w1+w2,0

Zk2−d+a,0,P+1,w1+w2,0)

·Pdrop(k2, d | T, P, w1 + w2)e
−λ λa

a!
, k1 ≤ 1

∑k1
i=0 bin(w1/(2w1 + 2w2), k1, i)

∑i
d1=0

∑k2+k1−i
d2=0∑∞

a1=0

∑∞
a2=0(Wi−d1+a1,k2+k1−i−d2+a2,P+1,w1/2,w2+w1/2

+Zi−d1+a1,k2+k1−i−d2+a2,P+1,w1/2,w2+w1/2)

·Pdrop(i, d1 | T, P, w1/2)

·Pdrop(k2 + k1 − i, d2 | T, P, w1/2, w2 + w1/2)

·e−λ λa1+a2)

(a1+a2)!
bin(w1/(w1 + w2), a1 + a2, a1) otherwise

(4.16)

Like Equation 3.21 of the last chapter, cumulative delay is determined by aug-

menting the expression for expected number of packets transmitted during a CRI.

In addition to counting packets, the number of slots spent waiting by all packets

prior to transmission are also counted. Finally, with values for Z,H, and W, the

performance evaluation expressions in Equations 4.1 and 4.2 can be used.

4.8 Free Access Evaluation

The performance evaluation of the free access protocols is done using the

same top level equations just as for the blocked access ones. Because at each slot

boundary, free access analysis must consider the probability of new arrivals, and due

to the exponential nature of the equations, it quickly becomes difficult to obtain

analytic results as CRI bound T and Poisson arrival intensity increase. Therefore,
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Figure 4.12: Free access Sliding Partition success rate.
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Figure 4.13: Free access Sliding Partition and Two Cell success rates.
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Figure 4.14: Free access Sliding Partition and Two Cell delays.

while Figure 4.12 shows the closeness between the analytic and simulation results for

maximum initial laxity T = 5 in the sliding partition free access protocol, for higher

T values, simulation results are more quickly obtained. The simulation results of

the two free access protocols are compared in Figure 4.13. For each algorithm, six

curves are plotted for initial laxity ranges [2, T ] where T = 5, 10, 15, 20, 25, 30. The

Two Cell version significantly outperforms the Sliding Partition based CRA. This is

not surprising since new arrivals always join the waiting cell avoiding collisions, on

average, that are unvoidable in the free access Sliding Partition CRA. Conversely,

while delay levels off at a later point in the free access Two Cell CRA, we can see in

Figure 4.14 that delay levels off in the free access Sliding Partition CRA fairly fast

and at a lower point, due to the increased contention, than in the Two Cell CRA.

In the cases of both blocked and free access algorithms, meeting performance

requirements of the application layer are dependent on the MAC traffic intensity

not exceeding a rate corresponding to the desired success/delay criteria. We make

the simplifying assumption that this λ is either the by-product of the soft real-time
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Figure 4.15: Blocked and free access Sliding Partition success rates, T = 5.

system implemented on the wireless net, or else some admission control is in force

in the LLC (Logical Link Control) layer just above the MAC layer.

In the case of traditional free access CRAs, they have lower throughput than

blocked access CRAs because of the increased channel contention. In the soft real-

time case, though, it is interesting to reconsider these algorithms because of the more

involved departure process. For small laxity ranges, the two types of algorithms

perform similarly. Figure 4.15 compares the performance of the Sliding Partition

blocked and free access versions when T = 5. The difference is slight. However,

when higher ranges are compared, the performances quickly diverge. Figure 4.16

graphs success rates for initial laxities in [2, T ]. We can see that as T becomes larger,

the blocked access version of the Sliding Partition algorithm performs increasingly

better, whereas the free access version performs increasingly worse. The more prac-

tical range of success rates for SuccFraction= 0.9 is illustrated in Figure 4.17. For

both sets of analytically derived curves, values of T = 5, 10, 15 are graphed left to

right. While both algorithms show increased success rates as T becomes larger, it
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Figure 4.16: Blocked and free access Sliding Partition success rates, T = 5 . . . 30.
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Figure 4.17: Blocked and free access Sliding Partition, SuccFraction= .9.

79



1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

D
el

ay
 (

sl
ot

s)

Offered Load (pks/slot)

T=5

T=15

Blocked Access
Free Access

Figure 4.18: Blocked and free access Sliding Partition delay, SuccFraction= .9.

is easily seen that even in this restricted range of success rates, the blocked access

Sliding Partition CRA performs better. The corresponding delay curve is graphed

in Figure 4.18.

4.9 Summary

In this chapter, we have studied the blocked and free access versions of the

Fully Recursive, Sliding Partition, and Two Cell CRAs. Recall, though, that the

free access Fully Recursive CRA and the free access Sliding Partition CRA reduce

to the same algorithm, thus yielding five, rather than six, algorithms. Presenting

these five algorithms, we have shown that splitting protocols can be modified to

work successfully in soft real-time environments more general than assumed both in

the previous chapter as well as the published literature. In addition to development

of the algorithms, we derived analytic models of them that can be used to predict

performance levels and hence enable us to offer QoS guarantees to the LLC layer.

Supporting the analytic techniques, simulations of the algorithmic actions yield
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results identical, within the given tolerance, with the numerical solutions. Results

indicate that for general use, the blocked access Sliding Partition algorithm offers

the best performance.

It is important to consider not only relative performances of the protocols, but

also issues regarding eventual implementation. While the Fully Recursive algorithm

performs well in some situations, the CRA cannot be implemented since it requires

both an error free channel and that all nodes monitor the channel from system start

up. Both the Two Cell and Sliding Partition algorithms, however, have the desirable

property that CRIs are always complete when two consecutive non-collisions are

observed. This allows stations to easily join the net by simply waiting for two

non-collisions before their first transmissions.

Splitting protocols, though, are not well suited for the transmission of high

bandwidth streaming data, whether continuous or variable bit rate, which is best

handled by connection-oriented services. Yet for wireless networks where short mes-

sages are passed between nodes that are cooperating as parts of a larger soft real-time

system, splitting protocols are appropriate. In these situations, real-time splitting

protocols avoid the overhead of setting up and breaking down connections yet still

offer quality of service guarantees. With such guarantees made at the MAC layer, a

strong foundation is provided for building real-time services throughout the protocol

stack.
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Chapter 5

WIRELESS MAC TRANSMISSION OF HARD, SOFT

AND NON REAL-TIME DATA

5.1 Introduction

Because wireless links have a much higher error rate than wire or cable links,

wireless networks are usually not a first choice for implementation of real-time sys-

tems. However, when real-time performance is required by mobile users, wireless

networks are the only option. While implementing real-time systems on cellular net-

works is sometimes an option due to the wide availability of the networks, there are

situations when use of a cellular network is not a feasible solution. An extreme case

is digital communication on the battlefield. There, not only is long term resource

allocation as provided by cellular protocols not required, but more importantly, base

stations do not exist. In fact, a centralized system in a military setting is undesir-

able due to a single point of failure, making the central node an unenviable center

of attention.

To honor the deadlines and real-time classes associated with the data, a

fully decentralized protocol is required that provides real-time services. In their

most general forms, wireless real-time systems will have hard, soft and non real-

time data, which must coexist on the same, often noisy, channel. In this chapter,

we present a wireless MAC layer protocol that provides a flexible means for the

coexistence of these three classes of real-time data along with appropriate quality of

service guarantees for hard, soft and non real-time data. We refer to the protocol as
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the HSN protocol, where HSN is short for Hard/Soft/Non. The work in this chapter

will also appear in [MS98a] and [MS98b].

5.2 System Specification

The sort of wireless network we consider is made up of a small number of

nodes, usually no more than a dozen, that are all within transmission range of each

other. As before, all nodes use a single frequency and access the channel in a slotted

manner. At the end of a data transmission, feedback from each node’s physical

layer is available, indicating whether the previous slot contained a collision or a

noncollision. A noncollision is either an idle channel or a successful transmission

during the data slot. In addition to collision feedback, feed forward preemption

data is also provided. With it, as will be described in detail in the next section,

all nodes involved in any ongoing transmission can see if they have been preempted

by higher priority data. Hard real-time transmissions always preempt pending soft

or non real-time transmissions, and soft always preempts pending non real-time

transmissions. Using preemption, guarantees to hard real-time data can always be

met, though at the expense of additional delays for soft and non real-time data.

Hard real-time transmissions are accommodated in a straightforward way.

Imposed on the system is a minimum interarrival rate for hard real-time packets. On

average, at most λ(h) packets per slot are permitted. For practical implementation,

this translates to allowing at most one packet per cycle, where a cycle is some number

of slots to be determined. Since a subset of a known finite population can attempt

a hard real-time transmission, calculating the worst case collision resolution time is

easy. That worst case value is the minimum possible cycle length.

We can further set a maximum collision resolution length for soft real-time

data. If it is known that a deadline will never be more than T slots into the future,

the worst case soft collision resolution will be T slots long since the packets will

have been transmitted or dropped by then. The sum of the worst case hard and
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soft collision resolution intervals (CRIs) is one possible system cycle length, though

no channel markers exist indicating it as such. That particular cycle length would

be fairly conservative by leaving space for all real-time traffic classes. The likely

minimum cycle length of interest in most systems would be the largest of worst case

hard real-time and worst case soft real-time CRI lengths. The absolute minimum,

as mentioned, would be the number of slots to resolve the worst case hard real-time

collision with no explicit provision for soft or non real-time data. But on average,

the worst case resolution times will not be needed, and left over slots can be used

for lower priority real-time transmissions.

Optimal “tuning” of the protocol might additionally impose an average delay

on soft real-time transmissions. It has been shown [PGPK89], [MS95] that there

is a globally maximum traffic rate for a given range of deadlines that provides a

maximum success rate. For non real-time data, we also find that when considering

the likeliness of preemption, there is a soft real-time traffic rate minimizing delay

for the non real-time stream.

While channel noise disrupting feedback slots will cause stations to lose syn-

chronization, other work [Gon92] has shown that throughput for similar protocols

remains nonzero, and so is practical for implementation in non-ideal environments.

We will show similar results for our protocol in Chapter 6.

5.3 HSN Protocol Description

As before, we assume that all nodes are operating on the same frequency and

that data packets are of a fixed length and transmitted only at slot boundaries. In

addition, data slots are always immediately followed by three minislots used by each

node to determine what to do for the next data slot, as shown in Figure 5.1. With

this simple channel structure, implementing preemption is easy. If either a soft or

non real-time CRI is in progress, after the next slot boundary all nodes check the

preemption minislots. If the first minislot is set, or a logical 1, then at least one
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Figure 5.1: Format of distributed feedback.

node will be transmitting a hard real-time packet in the upcoming data slot. All soft

and non real-time packets will be preempted until the first preemption minislot is

not set, or a logical 0, again, at which time the preempted CRI resumes. Similarly,

if the first preemption bit is not set, but the second one is, then all nodes know that

the next data slot be a soft real-time transmission. So only when neither of the two

preemption minislots are set can a non real-time transmission take place.

To perform the actual splitting in each stream when collisions occur, for

hard and soft real-time transmissions, the blocked access Sliding Partition splitting

protocol presented in detail in the last chapter is used. Slight modifications are made

for hard real-time use. The n hard real-time stations are assumed to be numbered

consecutively from 0 to n − 1 where each node knows its own number. These

identifiers are not necessarily a network address, but can be considered resources

themselves, an idea put forth by Arvind [Arv91], available for contention at higher

protocol levels. Most likely, the LLC layer, in a distributed manner, would be

responsible for maintaining a small table of which nodes are assigned which hard

real-time identifiers. For a hard real-time system with such a node numbering, the

FTTR is simple: if a station has a packet to transmit, it is transmitted at the next

slot boundary. If a collision occurs, the CRA is initiated. The CRA uses a one

dimensional window encompassing the range [0, n−1]. After the initiating collision,
the window is split into an active window and an inactive window. At the next slot,

nodes whose identifiers are in the active window may again transmit. If another

collision occurs, the active window is split, and the new inactive window joins the
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previous inactive window. Window splitting continues until feedback indicates a

noncollision occurred. Note that the unique node identifier makes “ties” impossible.

The worst case CRI for hard real-time nodes would be the amount of time to resolve

a collision if all n nodes transmit at the same time. So that guarantees can be offered

to hard real-time packets, a constraint is imposed on the system that each hard real-

time node may transmit at most one packet during a cycle. A cycle, therefore, is at

least as long as the worst case hard CRI.

The Sliding Partition algorithm remains unchanged for use with soft real-time

data except that CRIs in progress may be preempted by hard real-time arrivals.

For the non real-time data, the Two Cell algorithm presented in [PK92] is used

unmodified except that it too is preemptable. Here, the random variable used for

splitting is a fair coin toss. On heads, say, a station joins Cell 1, and on tails joins

Cell 2. At the next slot, only stations in Cell 1 can transmit. Upon collision, all

Cell 1 stations again flip a coin and either remain in that cell or join Cell 2. Cell 2

members never transmit. However, when a data slot is followed by non-collision

feedback, all stations rejoin Cell 1.

When a non or soft real-time CRI is in progress, the CRI can potentially be

preempted by a hard real-time transmission/CRI. Since only rarely will the worst

case collisions occur, many slots will often remain unused by higher priority trans-

missions. We study the protocol performance resulting from using the largest and

smallest likely cycle lengths, that is, the sum of the worst case hard and soft real-

time CRIs, or just the maximum of the hard and soft CRI lengths. We do not,

however, consider optimization of cycle length here but use the two representative

cycles lengths shown in Equation 5.2 in Section 5.5.

Figure 5.2 illustrates how each of the three algorithms operates. Recall that

two consecutive non-collisions always mark the end of a CRI since there are never

more than two windows, the active and the inactive. Once each is resolved, the CRI
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Figure 5.2: Hard, soft and non real-time splitting techniques.

ends and the FTTR is reenabled. The left and middle portions of the figure illustrate

how the blocked access Sliding Partition CRA operates in the hard and soft real-time

streams. The hard real-time axis is labeled with station identifiers representing the

number of nodes in the network. The axis labels for the soft real-time illustration are

the full initial laxity range, arbitrarily chosen to be [2, 6) for the example. The non

real-time portion of Figure 5.2 shows a Two Cell CRI. Sections 4.3.1 through sec:c4tc

provide more detail and additional illustrations regarding these three algorithms.
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5.4 Distributed Feedback Algorithm

A unique requirement to the real-time systems considered here is that they

are fully decentralized. Traditionally, splitting protocols receive their feedback data

from a centralized node such as a base station. Since less predictable environments

make this impossible, all feedback, both the initial preemption minislots as well

as the trailing collision/noncollision minislot, must be generated by the member

stations of the network.

Since an antenna cannot be used to simultaneously transmit and receive, a

transmitting station must rely on feedback generated by one or more other stations.

Of the stations that did not transmit data, one or more of them will have generated

feedback. Indeed, knowing that more than one station agrees on the observation is

desirable. The feedback, therefore, cannot itself be a bit pattern that needs decoding

because that would be destroyed by a collision. “Collisions” in feedback are actually

a good sign that much of the system is synchronized. So rather than holding bit

patterns, the minislots are used as something-or-nothing slots. That is, the presence

of any transmission, not necessarily a decodable bit pattern, is a something, while

the absence of transmission energy is a nothing.

The simplest algorithm would require that all nodes not involved in a trans-

mission generate feedback. For military systems, periodic generation of feedback is

not desirable. In a military wireless network, a simple solution would be for each

of the nodes not transmitting, to generate feedback with probability p = 1/(n− 1),

where n is the number of nodes in the network. If not known in advance, n can be

estimated based on recent channel utilization.

As part of the physical layer, whether to use the existence or absence of energy

to indicate collision is beyond the scope of this work but interesting to consider

briefly. On an error free channel, loss of synchronization occurs only when all nodes

remain quiet when feedback with a something level should have been generated but
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Figure 5.3: Hard real-time cycles.

was not. No feedback is generated only when p < 1 and all nodes happen to draw a

random number forcing them to remain silent. On non-ideal channels this can also

happen because of fading or because a noise burst cancels the transmitted signal.

In these cases, making nothing equivalent to collision status is more desirable. That

way, the nodes split their windows when in fact no splitting was necessary. However,

the net remains fully synchronized.

On a non-ideal channel, though, occasional bursts of background noise will

generate something feedback when it should have been nothing. Here, something

should be equivalent to collision for the same reason stated in the preceding para-

graph. Since channel noise is obviously beyond the control of a protocol, a wise

choice for p—which is application dependent—offers the best tradeoff. The anal-

ysis presented in this chapter assumes feedback is generated with p = 1 and that

there are zero channel errors. However, later in the chapter we present results for

non-idealized channels.

5.5 Hard Real-Time Analysis

Note that the system cycle length, used to determine the minimum interrival

rate of hard real-time traffic, is different from one epoch of the regenerative stochastic

process characterizing the protocol. A regeneration point is reached when there are

no packets requiring service. To determine the system cycle length, the length of

a worst case hard real-time collision resolution interval (CRI) must be determined.
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To resolve the high multiplicity collision when all hard real-time stations collide,

a simple repeating pattern occurs; the window is successively split followed by a

collision in each until finally the active window encompasses only a single station’s

identifier. After making the formerly inactive window active, the pattern repeats

until the final station transmits. Summing the collisions based on splitting the entire

active window and adding one more slot for the final noncollision feedback, yields

L(h)
max = 1 +

n∑
i=2

(
log2 i�+ 1) (5.1)

The maximum and minimum system cycle lengths, respectively, are then

c = L(h)
max + T, c = max(L(h)

max, T ) (5.2)

and are illustrated more conceptually in Figure 5.3. Once can imagine systems with

the majority of traffic being non real-time, so that additional slots might be added to

the cycle length to guarantee a minimum fraction of non real-time traffic. However,

we do not consider such systems since doing so requires only a simple extension of

the analysis.

5.5.1 Hard Real-Time Probable CRI Length

A collision that is not worst case offers more possible outcomes and hence

requires more elaborate analysis. Given an interval encompassing station identifiers

with left edge x and left (active) and right (inactive) windows of lengths w1 and w2,

respectively, the probability that after splitting the new active window will contain

i packets is:

P
(h)
split(k1, k2, x, w1, w2, i) (5.3)

=




0, if i < max(0, k1 − w′
1),

or i > min(k1, w
′
1)(

w′
1
i

)(
w′

2
k2+k1−i

)
/
∑min(k1,w′

1)

n=max(0,k1−w′
1)

(
w′

1
n

)(
w′

2
k2+k1−n

)
, otherwise
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where w′
1 = 
x + w1

2
� − 
x�, and w′

2 = 
x + w1 + w2� − 
x + w1

2
�. The limits of

summation and conditions on the probability being zero take into account the fact

stations have consecutively numbered integers. For instance, a window six slots

wide containing four packets must contain, after splitting, at least one and at most

three packets in a window half. Equation 5.4 is used by most of the hard real-time

analysis to consider the probability of various system outcomes.

5.5.2 Hard Real-Time Expected CRI Length

To calculate the expected length of a hard CRI involving k packets and a

window encompassing the interval [x, x+w), all possible splits need to be considered.

Similar to Equation 5.2, the notation L
(h)
k1,k2,x,w1,w2

indicates the expected length of

a hard CRI given that the active window [x, x + w1) contains k1 packets and the

inactive window [x+w1, x+w1+w2) contains k2 packets. Then the expected length

of a hard CRI for a given situation is

L
(h)
k1,k2,x,w1,w2

=




L
(h)
k2,0,x+w1,w2,0, if 
x+ w1� − 
x� < 2, or k1 < 2∑k1
i=0 P

(h)
split(k1, k2, x, w1, w2, i)

·(1 + L(h)

i,k2+k1−i,x,
w1
2

,w2+
w1
2

), otherwise

(5.4)

with initial conditions: L
(h)
0,0,... = 0;L

(h)
1,0,... = 1;L

(h)
0,1,... = 2;L

(h)
1,1,... = 2.

The summation considers the expected length of the remaining CRI after a

split resulted in i packets in the active window. For all possible values of i, the

expected length is subsequently multiplied by the probability that a split leaving i

packets would actually occur.

Since our goal, though, is to determine the expected length of a hard CRI

in general, not just in particular situations as modeled in Equation 5.4, an addi-

tional probability is needed to consider how many packets might arrive at a given

slot within a cycle. This probability can be obtained by designing a counter that

monitors how often a slot might contain i packets. Initially zero, the counter is
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incremented by one each time another slot under consideration contains i new hard

real-time arrivals. An expression accomplishing this is shown below, where k is the

total number of packets that will be transmitted during this cycle, n is the number

transmitted in the current slot, s is the number of slots remaining in the cycle, and

c is the counter value.

mi(k, n, s, c) =




0, if s = 0 and k 	= 0

c, if s = 0 and k = 0 and n 	= i
c+ 1, if s = 0 and k = 0 and n = i∑k

j=0mi(k − j, j, s− 1, c), if n = i∑k
j=0mi(k − j, j, s− 1, c+ 1), if n 	= i

(5.5)

The function mi would be initially called with n = −1 so that with certainty n 	= i,
and with counter c = 0. Ultimately the value of the counter c is returned and is the

number of combinations where at least one slot in the cycle contains i packets. As

such, c is only incremented when a slot has i packets as shown in the third case of

Equation 5.5. To get the fraction of all combinations that have one or more slots

with i packets, the above result is divided by the number of possible k−transmission
combinations during a cycle.

t(k, s, c) =




0, if s = 0 and k 	= 0

c, if s = 0 and k = 0∑k
j=0 t(k − j, s− 1, c+ 1), otherwise

(5.6)

In this expression, the counter is incremented by one for every valid combination.

Invalid combinations occur when, for instance, k packets will be transmitted in a

cycle, but when reaching the end of the cycle, less than k have been transmitted.

With these equations, one can express the expected length of a hard CRI

where each of the n hard real-time stations will transmit with probability p one

packet during a cycle. The first summation below considers the cases of zero through

all stations transmitting sometime in the cycle, the second summation considers the
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number of transmissions at each slot in the CRI, and the final factor generates the

expected CRI length for particular situations:

l(h) = E{CRI len} =
n∑

k=0

(
n

k

)
pk(1− p)n−k

︸ ︷︷ ︸
P{k tx’d in cycle}

·
k∑

j=0

mj(k,−1, c, 0)
t(k, c, 0)︸ ︷︷ ︸

P{j tx’d this slot}

· L
(h)
j,0,1,n,0,︸ ︷︷ ︸

E{ CRI len}
(5.7)

where c is one of the system cycle lengths of Equation 5.2.

Recalling that hard real-time transmissions always preempt both soft and

non real-time transmissions, the analysis of those systems must consider on a slot

by slot basis the probable lengths of preempting hard real-time CRIs. That is, an

expression must be derived to calculate what is the probability that a hard CRI is of

a length l. Such an expression can be easily specified in a recursive manner similar

to Equation 5.7:

P (h)(l | n, p) =
n∑

k=0

(
n

k

)
pk(1− p)n−k

k∑
j=0

mj(k,−1, c, 0)
t(k, c, 0)

P (h)(l | j, 0, 1, n, 0). (5.8)

where the probability of a CRI in particular cases being of length l is

P
(h)
len (l | k1, k2, x, w1, w2) =




P
(h)
len (l − 1 | k2, 0, x+ w1, w2, 0). k1 ≤ 1

∑k
i=0 P

(h)
split(k1, k2, x, w1, w2, i)

·P (h)
len (l − 1 | i, k2 + k1 − i, x, w1

2
, w2 +

w1

2
), k1 > 1

(5.9)

with initial conditions: P (l = 0 | k1 = 0, k2 = 0, . . .) = 1;P (l = 0 | . . .) and
k1 + k2 	= 0 is 0; P (l 	= 0 | . . .) and k1 + k2 = 0 is 0; P (l > c | . . .) = 0;P (l = 1 |
k1 = 1, k2 = 0, . . .) = 1;P (l = 1 | . . .) and k1 + k2 > 1 is 0; P (l = 2 | k1 = 1, k2 =

1, . . .) = 1;P (l 	= 2 | k1 = 1, k2 = 1, . . .) = 0.

5.5.3 Hard Real-Time Expected Packet Delay

Like the previous analyses, per packet delay is determined by dividing the

number of packets transmitted by the cumulative delay. In the case of the hard real-

time subsystem, clearly the number of packets transmitted during a system cycle of
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length c slots is

N (h) = np (5.10)

where n is the number of hard real-time nodes, and p is the probability that a given

node will transmit a packet during a system cycle.

An expression for cumulative delay is more involved. Like determining CRI

length, the cumulative delay expression must consider the delay regarding every

possible per cycle transmission combination, multiplying a given value by the prob-

ability of the occurrence of such a pattern.

Z
(h)
k1,k2,x,w1,w2

=




0, if k1 = k2 = 0

1, if k1 = 1, k2 = 0

2, if k1 = 0, k2 = 1

3, if k1 = 1, k2 = 1

Z
(h)
k2,0,x+w1,w2,0, if 
x+ w1� − 
x� < 2,

or k1 < 2∑k1
i=0 P

(h)
split(k1, k2, x, w1, w2, i) otherwise

·(k1 + k2 + Z(h)

i,k2+k1−i,x,
w1
2

,w2+
w1
2

)

(5.11)

Given expected delay from Equation 5.11 for particular situations, it is next nec-

essary to determine the likelihood of those particular situations. Paralleling the

derivation of the CRI length analysis, the expected delay considering each of the

finite possible initial collisions is

a(h) =
n∑

k=0

(
n

k

)
pk(1− p)n−k

︸ ︷︷ ︸
P{k tx’d in cycle}

·
k∑

j=0

mj(k,−1, c, 0)
t(k, c, 0)︸ ︷︷ ︸

P{j tx’d this slot}

· W
(h)
j,0,1,n,0,︸ ︷︷ ︸

E{ packet delay}
(5.12)

where c is again a system cycle length from Equation 5.2.
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5.6 Soft Real-Time Analysis

The soft real-time algorithm is the most involved of the three streams because

of probabilistic guarantees are needed. For both hard and non real-time data, all

submitted packets are always, assuming good channel state, transmitted. The differ-

ence, of course, is that hard traffic further guaranteed a worst case delay, while non

real-time traffic is not. Soft real-time traffic, on the other hand, is guaranteed only

that on average a given fraction of the offered load will be transmitted before expir-

ing. Because not all packets can always be transmitted successfully in a CRI, there

is a nonzero probability that zero or more packets will expire in each slot. To make

a probabilistic guarantee on success rate, the protocol necessarily needs to be aware

of the possible range of initial laxities associated with the traffic arrival process. As

mentioned in previous chapters, the minimum laxity possible is two slots, while the

maximum, also in units of slots, is a system parameter denoted by T. We use the

blocked access Sliding Partition algorithm presented and analyzed in [MS98c] but

modify the algorithm to accommodate preemption by the hard real-time stream.

5.6.1 Soft Real-Time Probable CRI Length

Each recursion of the analytic equations takes place at slot boundaries. As

such, at each boundary it is possible that preemption by the hard real-time traffic

stream will occur. The first summation in Equation 5.13 considers just this. Given

that the preemption is s slots long, where s ≥ 0, the next recursion, rather than

decrementing just one from the slots remaining in the CRI, one plus the number of

preemption slots is decremented.
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P
(s)
len(l | k1, k2, B, x, w1, w2) =




∑k2
d=0

Hard CRI︷ ︸︸ ︷
L

(h)
max∑

s=0

P
(h)
len (s | n, p)

·P (s)
len(l − 1 | k2 − d, 0, B − 1− s,
x+ w1, w2, 0)

·P (s)
drop(k2, d | T,B − s, x+ w1, w2), k1 = 0, 1

∑k1
i=0 bin(w1/(2w1 + 2w2), k1, i)

·∑i
d=0

∑L
(h)
max

s=0 P
(h)
len (s | n, p)

·P (s)
len(l − 1 | i− d, k2 + k1 − i,
B − 1− s, x, w1/2, w2 + w1/2)

·P (s)
drop(i, d | T,B − s, x, w1/2), otherwise

(5.13)

Preemption complicates the initial conditions as well. For cases where all

packets have not been either transmitted or dropped, and yet the CRI is nearly

ended, additional conditions now exist for a nonzero probability that the CRI will

be of length l. For instance, in a multiplicity three collision of packets all having

laxities of 10 slots, the CRI length might still be only one slot. After the initial

collision, the soft CRI could be preempted by a hard CRI that takes 9 or more slots.

Therefore, the initial conditions taking into account preemption become
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P
(s)
len(l = 1 | . . .) =




1, if B = 1

1, if k1 = 1, k2 = 0∑L
(h)
max

s=0 P
(h)(s | n, p) if k1 ≤ 1, k2 > 0

·P (s)
drop(k2, k2 | T,B − s, x+ w1, w2), B − s > 1

∑L
(h)
max

s=0 P
(h)(s | n, p) if k1 > 1, k2 = 0

·P (s)
drop(k1, k1 | T,B − s, x+ w1, w2), B − s > 1

∑L
(h)
max

s=0 P
(h)(s | n, p)

·P (s)
drop(k1, k1 | T,B − s, x, w1) if k1 > 1, k2 > 0

·P (s)
drop(k2, k2 | T,B − s, x+ w1, w2), B − s > 1

(5.14)

with further initial conditions P
(s)
len(l | . . .) = 0 if k1 = k2 = 0, or if l > B.

5.6.2 Soft Real-Time Expected CRI Length

Similarly, expressions are modified for expected CRI length, expected number

of packets transmitted during a CRI, and expected delay of those packets. The

expression is shown below for the Sliding Partition expected length of a CRI. The

only differences involve preemption by newly arriving hard real-time packets. Prior

to each recursion, each possible number s of hard arrivals is considered. The variable

B counting down slots remaining before the soft packets are discarded is decremented

by the length of any hard real-time preemption.
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L
(s)
k1,k2,B,x,w1,w2

=




1 +
∑k2

d=0

∑L
(h)
max

s=0 P
(h)
len (s | n, p)

·P (s)
drop(k2, d | T,B − s, x+ w1, w2)

·(s+ L(s)
k2−d,0,B−1−s,x+w1,w2,0), k1 ≤ 1

∑k1
i=0 bin(w1/(2w1 + 2w2), k1, i)

·∑i
d=0

∑L
(h)
max

s=0 P
(h)
len (s | n, p)

·P (s)
drop(i, d | T,B − s, x, w1/2)

·(s+ L(s)
i−d,k2+k1−i,B−1−s,x,w1/2,w2+w1/2), otherwise

(5.15)

with initial conditions L(s) = 1 if B = 1, L(s) = 1 if k1 ≤ 1, k2 = 0.

5.6.3 Soft Real-Time Expected Number of Transmitted Packets

In the same manner, Equation 4.8 is modified to account for hard real-time

preemption:

N
(s)
k1,k2,B,x,w1,w2

=




k1 +
∑k2

d=0

∑L
(h)
max

s=0 P
(h)
len (s | n, p)

·P (s)
drop(k2, d | T,B − s, x+ w1, w2)

·N (s)
k2−d,0,B−1−s,x+w1,w2,0, k1 ≤ 1

∑k1
i=0 bin(w1/(2w1 + 2w2), k1, i)

·∑i
d=0

∑L
(h)
max

s=0 P
(h)
len (s | n, p)

·P (s)
drop(i, d | T,B − s, x, w1/2)

·N (s)
i−d,k2+k1−i,B−1−s,x,w1/2,w2+w1/2, otherwise

(5.16)

with initial conditions N (s) = 1 if k1 = 1, k2 = 0, and N (s) = 0 if k1 = k2 = 0.

5.6.4 Soft Real-Time Expected Cumulative Delay

And finally, Equation 4.10 is modified as well:
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Z
(s)
k1,k2,B,x,w1,w2

=




k1 +
∑k2

d=0

∑L
(h)
max

s=0 P
(h)
len (s | n, p)

·P (s)
drop(k2, d | T,B − s, x+ w1, w2)

·Z(s)
k2−d,0,B−1−s,x+w1,w2,0, k1 ≤ 1

∑k1
i=0 bin(w1/(2w1 + 2w2), k1, i)

·∑i
d=0

∑L
(h)
max

s=0 P
(h)
len (s | n, p)

·P (s)
drop(i, d | T,B − s, x, w1/2)

·(N (s)
i−d,k2+k1−i,B−1−s,x,w1/2,w2+w1/2

s+ Z
(s)
i−d,k2+k1−i,B−1−s,x,w1/2,w2+w1/2), otherwise

(5.17)

with initial conditions Z(s) = 0 if k1 = k2 = 0, or if B = 1; Z(s) = 1 if k1 = 1, k2 = 0,

or k1 = 1, B = 1.

5.7 Non Real-Time Analysis

The Two Cell algorithm presented by Paterakis et al. [PPK89] is used un-

modified for non real-time transmission. However, analysis of the algorithm must

allow preemption by both hard and soft real-time streams. The Two Cell CRA

is a window splitting protocol that splits based on a coin toss, and maintains the

channel format of data slots followed by binary feedback and preemption minislots.

A preemption of non real-time servicing can occur if there is one or more hard real-

time arrivals or if there are zero hard and one or more soft real-time arrivals. The

probability of these events occurring is:

p(n) =

hard CRI︷ ︸︸ ︷
L

(h)
max∑
l=1

l · P (h)
len (l | n, p)+

soft CRI︷ ︸︸ ︷
P

(h)
len (0 | n, p)

T∑
l=0

l · P (s)(l | . . .) (5.18)

Accordingly, the expected length of a non real-time CRI is modeled as

L
(n)
k1,k2

=



p(n) + 1 + L

(n)
k2,0, k1 ≤ 1

p(n) + 1 + 2−k1
∑k1

i=0

(
k1

i

)
L

(n)
i,k2+k1−i, otherwise

(5.19)
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However, this generates a system of linear equations infinite in dimensionality. So we

can instead use a simpler approach. From the analysis of the Two Cell algorithm,

we know that its maximum throughput is 0.43 packets per slot. Therefore, the

algorithm’s throughput in the preemptive real-time setting is

s(n) = 0.43
[
1− l(h) − l(s)

]
(5.20)

where l(h) is the expected CRI length of a hard real-time CRI, and l(s) is the expected

CRI length of a soft real-time CRI but ignores preempting hard real-time slots. The

two individual expected lengths are needed, rather than simply using Equation 5.15

as is, to account for times when there is hard real-time traffic but no soft real-time

traffic and vice-versa. Ignoring the hard preemption slots is easily accomplished by

modifying Equation 5.15 so that the “s + . . .” in the expressions are replaced by

“1 + . . .” where the terms represented by the ellipsis are unchanged. The idea is

to count just the number of slots preempted. Since soft CRIs can be preempted

by hard CRIs, the counter in the soft preemption expressions must not count for a

second time the slots already counted by s in the hard real-time expressions. Packet

delay is similarly calculated by augmenting the isolated, or stand-alone, Two Cell

delay results from [PPK89] with preempting delays.

5.8 Results

Because of the preemptive nature of the HSN protocol described in this chap-

ter, not only are the general performance results interesting, but also interesting are

results showing what effect preemption has on the various real-time traffic streams.

The hard real-time stream, since it always has highest priority, is of course un-

affected by any preemption. However, depending on how system cycle length is

chosen, the maximum arrival rate of hard traffic is, in fact, affected. Since one

packet per node per cycle may be transmitted, the shorter the cycle the higher the

maximum transmission rate.
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Figure 5.4: H-RT worst case and expected length CRIs.

Results were obtained for both the minimum likely and the maximum likely

system cycle lengths shown in Equation 5.2. For various numbers of hard real-time

nodes, Figure 5.4 graphs both the worst case and the expected CRI lengths when a

maximum cycle length is used. It is immediately clear that the worst case CRI length

grows much more quickly than the expected length. As a result, the minimum likely

cycle length, max(L(h)
max, T ), is often the better choice since it allows more frequent

transmissions by hard real-time nodes, at the expense of less throughput in the

soft and non real-time portions of the system. If still higher frequency of hard

real-time transmissions is needed, the cycle length could be made as short as the

worst case hard CRI length, L(h). A cycle length this short would be desirable when

the majority of the system traffic is hard real-time. If the majority is non real-

time, one can envision the need for an even longer cycle length than our “maximum

likely” length used in this analysis. The cycle length could be further increased to

accommodate more non real-time traffic, for instance.

In Figure 5.5, the effect of varying transmission rates of the hard real-time
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Figure 5.5: Effect of H-RT traffic rate on S-RT using max cycle, T=5.
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Figure 5.6: Effect of H-RT traffic rate on S-RT using min cycle, T=5.
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Figure 5.7: Effect of H-RT traffic rate on S-RT delay, max cycle, T=5.

nodes on the soft real-time traffic is shown. As the probability p, of a single node

transmitting a hard real-time packet in a cycle length, here 14 slots with 4 hard

real-time nodes, is increased from zero to one, the success rate for the soft real-time

traffic steadily drops. In this case, the maximum likely cycle length is used, and so

the drop in success rate is about 2% at worst. In Figure 5.6, where the minimum

likely cycle length is used, the performance is affected more significantly with an

almost 4% drop in success rate due to more frequent preemption while maintaining

the same 90% success rate. For the maximum cycle length, Figure 5.7 graphs the

delay curves for the same success rate curves of Figure 5.5. Interestingly, delays

for all values of p are nearly identical because we are graphing performance for

success rates of 90% or above. Since a soft CRI can last at most T slots, where

T = 5 slots for these results, preempting the CRI does not “stop time” for the soft

packets. Preemption only prevents soft packets from being transmitted as they age

resulting in less successful transmission but the same delay for those that do not

expire. As a result, the curves show that the maximum average delay is reached
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Figure 5.8: N-RT maximum loads for min/max cycle lengths, 4 H-RT nodes,
T=30.

in all cases, but due to preemption, the offered load is decreased correspondingly.

That is, since we are analytically finding the maximum λ that meets the desired

success rate, this is equivalent to finding the success rate (as preemption frequency

increases) whose delay is as high as tolerable. So while the success rates differ, the

delay characteristics are the same.

Studying non real-time traffic is still more involved since non real-time traffic

can be preempted by both hard and soft traffic. We know from [PPK89] that the

maximum throughput of the Two Cell algorithm is 0.43 of the available bandwidth.

In general, the sum of hard and soft traffic is nonzero and so the total through-

put of the non real-time system is not only reduced, also the per packet delay is

proportionally increased.

Figure 5.8 compares the non real-time maximum throughput when the max-

imum and minimum cycle lengths are used. The uppermost surface is the set of

results when the maximum cycle length is used. The x axis is the probability that
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Figure 5.9: Maximum sustainable N-RT load, 6 H-RT nodes, T=30.

each of hard real-time nodes will transmit during the current cycle, the y axis is

the range of corresponding soft real-time traffic rates that will be offered a 90% or

better success rate, and the z axis is the non real-time throughput. There are six

hard real-time nodes.

As one would expect, Figure 5.8 shows that with zero hard or soft real-time

traffic, the non real-time system has its theoretical maximum throughput of 0.43

packets/slot. But when either or both of the hard and soft systems approach their

maximum transmissions rates, the non real-time system has its lowest throughput.

When the cycle length is shorter, however, we see that throughput for the non real-

time system suffers more than in the corresponding system with a long cycle length,

though the difference is only approximately 5%.

Next, we look more closely at the results when the maximum cycle length

is used. In Figure 5.9, the surface is additionally divided into three regions labeled

in the legend, where the soft real-time success rate is 90%, 95% and 99% or better

for the offered load. For given hard and soft traffic rates, Figure 5.10 shows the
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Figure 5.11: S-RT traffic rate vs. N-RT delay, 6 H-RT nodes, T=30.
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Figure 5.12: Maximum sustainable N-RT load, 6 H-RT nodes, T=30.
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Figure 5.13: N-RT delay for max sustainable loads, 6 H-RT nodes, T=30.
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Figure 5.14: S-RT traffic rate vs. N-RT delay, 6 H-RT nodes, T=30.

delay experienced by the non real-time traffic stream. Figure 5.11, redrawn with

the independent axis in units of soft real-time packets/slot, shows a typical “slice”

of the surface. What is noteworthy is that the minima create a slight valley through

the surface. Figures 5.12, 5.13 and 5.14 show performance results under the same

conditions but for six hard real-time stations with a minimum system cycle length.

Similar trends are seen, though of course the delay is higher because of increased

preemption.

The initial decrease in non real-time delay as non real-time traffic rate in-

creases can be explained by preemption. The preemption permits less non real-time

traffic to enter, which in turn offers less non real-time delay since there is less con-

tention in that stream. However, as preemption increases due to increased soft

real-time traffic, the non real-time delay begins to rise again. Optimal use of the

protocol would, when possible, tune parameters to operate in the lowest delay “val-

ley.”

It should be emphasized that the analytic results obtained in this section
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show the system performance at the extremes of operation. For instance, using the

Bernoulli probability p for the hard real-time system implies a traffic rate of

λ(h) = pn/c ⇐⇒ p = cλ(h)/n (5.21)

where n are the number of nodes and c the cycle length. For a given traffic rate λ(h),

it is possible to generate a non-ideal p, or one not as large as it could be. Hence,

the system will have more bandwidth available for soft and non real-time traffic.

Similarly, non real-time traffic would usually not be transmitted at the maximum

sustainable rate, but at a lesser rate with a correspondingly smaller delay.

Which cycle length to use is of course determined more by the needs of the

system than by protocol performance. The results obtained show clear tradeoffs of

using a short versus a long one. Whether the differences in performance between

the two are viewed as good or bad depend solely on the real-time system being

implemented on the network.

5.9 Summary

Relatively little research has been conducted in the area of real-time wireless

networks, and what does exist mostly deals with one or two types of coexisting real-

time traffic streams. We have presented the HSN protocol, the first fully distributed

MAC protocol that, assuming good channel state, can offer guarantees to hard real-

time traffic, probabilistic guarantees to soft real-time traffic, and provide best effort

service to non real-time traffic in ad hoc wireless networks. All three subsystems use

similar splitting protocols that rely on binary and preemption feedback. Because

feedback has traditionally been assumed to be provided by a central source, some-

thing unavailable in the environment we consider, we have also presented a simple

algorithm providing feedback in a fully distributed manner. The real-time MAC and

the distributed feedback algorithms are, however, fully independent of each other.
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Both the MAC protocol and the distributed feedback protocol appear to be the first

of their kind.

The assumption of good channel state in a wireless system clearly does not

hold up for long in practical implementations. Any system built upon this or any

other wireless protocol will necessarily require some sort of fault tolerance. Like-

wise, the hard real-time data flowing in these systems will not be of the same critical

nature as data in wire-based hard real-time systems in, say, power plants or weapon

systems. But in situations where wireless nets are the only option, the best possible

service should still be made available to applications. Furthermore, the three sub-

protocols should all make identical use of the feedback and preemption minislots.

Since one can assume with certainty that synchronization will occasionally be lost

in actual implementations, the protocol must be able to resynchronize without an

explicit awareness of doing so. That is, even in a worst case preemption error where

several stations think they are resolving hard, several think they resolving soft, and

still others think they are resolving non real-time collisions, the protocol should

allow each station to return to a renewal point. In all cases, two consecutive noncol-

lisions allow this. Similarly, correct preemption minislots further speed resolutions

and returns to renewal points.

While probably not ideal for such applications as digitized voice transmission,

where long term resource allocation is needed, the HSN protocol is singularly suited

to networks where each node is a part of a larger, cooperating real-time system and

transmits relatively short messages. The protocol’s performance is readily predicted

for reasonable ranges of operation, and there is no added channel complexity beyond

the preemption feedback. That is, the cycle length is an implicit property of the

algorithm; there are no channel markers indicating when various real-time streams

may contend for the channel. Not requiring physical channel markers not only

reduces complexity of implementation, but reduces average packet delay per stream
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as well. Similarly, because all three streams, hard, soft, and non, may contend in

a fully random access manner, the gains in channel utilization due to statistical

multiplexing are available that are not present in TDMA or polling type systems.

The HSN protocol offers easy implementation, predictability, and most im-

portantly, provides the foundation of the protocol stack, the MAC layer, with the

ability to offer general real-time services to higher layers.
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Chapter 6

A REAL-TIME DATA LINK LAYER ON A NON-IDEAL

CHANNEL

6.1 Introduction

In this chapter, we focus on design issues and protocol performance when

moving from the purely theoretical realms of previous chapters into environments

more typical of those found in actual implementations. Studies involving ideal mod-

els were needed because there has been little work in the literature regarding such

protocols. A basic understanding was needed answering questions of what worked

and what did not. Recall, for instance, that the blocked access Fully Recursive

MAC layer protocol performed worse than a non real-time protocol. Additionally,

a theoretical understanding was necessary so that performance could be predicted.

Without that ability, designing a system to make the fullest use of available resources

is impossible. After building a simple mathematical model and then extending it

several times, we were ultimately able to design the HSN MAC protocol supporting

hard, soft, and non real-time traffic. That protocol is used in the following studies

as a base for a simple LLC layer. Together, they yield a full data link layer. Services

provided are simple because the goal is to learn about core functionality. When that

is incorporated in the data link layer, more elaborate services are easily added.

6.2 Model

Augmenting the ideal theoretical predictions with simulations of realistic,

non-ideal environments is vital to understand how the algorithms perform when
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things go wrong. Simulations described in the previous chapters modeled the arrival

process in an ideal manner, where typically an infinite number of users on an ideal

channel were simulated. Additionally, traffic was made up of only new arrivals; there

were no retransmissions of failed packets. In real wireless systems, though, errors

are quite common. Errors decrease throughput both by causing retransmission

of destroyed data and by causing loss of synchronization between stations when

feedback information is lost. This chapter addresses two topics: studying MAC

layer performance on non-ideal channels, and adding a basic LLC layer to study

how a complete data link layer performs.

6.3 Modeling of the Physical and MAC Layers

The physical wireless link modeled is typical of many systems in most re-

spects. An 800 MHz carrier is used with a bandwidth of 30 kHz. For most modu-

lation methods, this yields about 10 kb/s. To study the effects of channel degrada-

tion, we additionally assign a bit error rate (BER) probability. Doing this effectively

means that the modulation model is impervious to noise. Following this ideal stage,

the data, bit by bit, is run through individual BER Bernoulli trials.

The channel structure is composed of slots that are 10 kb long, including the

three minislots. A forward error correction code (ECC) is used that can correct up

to any 10 bit errors. Such an ECC is reasonable considering that wireless channels

often experience bit error rates in the area of 10−4. For a noisier than average

channel with a BER of about 10−3, it is easy to calculate that that is about the

limit of what this ECC can correct. Therefore, the data is generated on channels

with three different BERs: 0, 10−4, and 10−3.

All radios have 1 W transmitters and are randomly placed, though always

positioned within range of every other radio. While the capture effect takes place,

it is ignored. That is, the distributed feedback protocol indicates whether or not a

collision was sensed in the data slot. Even if the destination node correctly received
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the packet due to the capture effect, but another node observed a collision, then

the packet is discarded. While not making use of a correctly received packet leaves

room for improvements to the protocol, basing MAC algorithmic decisions only on

the feedback offers an advantage. Using just the feedback more fully uncouples the

splitting algorithm from physical properties of the channel and makes it easier for

the stations to remain synchronized. A better alternative would be for the station

to pass the captured packet up the protocol stack but still take part in the splitting

to maintain synchronization. The LLC would then ignore duplicates.

The MAC layer then only needs the ability to receive the physical layer’s

channel sensing results to implement the splitting. At the physical layer, a signal

level below a threshold is considered a non-collision, and a level above the threshold

is considered a collision. Within the MAC layer, the resource requirements are

minimal though a bit more than in traditional MACs. Usually, the MAC layer

has one queue of length one. However, to implement this protocol, three queues of

length one are needed, one each for hard, soft, and non real-time packets, so that

preempted packets are not lost. MAC/LLC signaling is also straightforward. The

MAC layer is informed by the LLC that it has a packet of a given class to transmit.

The MAC responds by either accepting, rejecting, or, in the case of hard real-time,

possibly offering to accept the packet but without a guarantee. The latter response

is possible when the MAC is free yet the packet’s H-RT deadline cannot be met

should a worst case collision occur, i.e., the deadline is less than one cycle length

away.

Figure 6.1 shows how the hard real-time performance degrades as channel

noise increases. In the worst scenario, the graph shows that the hard real-time data

reaches only a 96% success rate rather than the ideal of 100% indicating that a

fault tolerance subsystem will be a necessary and important part of any wireless

real-time system. The graph is also somewhat conservative in that a minimum hard
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Figure 6.1: MAC H-RT performance as channel degrades.

real-time cycle length, as described in Chapter 5, is used. If it is known that the

target environment will be noisy, a longer cycle length can be used to accommodate

the expected increase in retransmissions.

Figure 6.2 shows, with no hard real-time traffic, how increasing bit error

rates degrades soft real-time success rates. Figures 6.3 through 6.5 show similar

results, except that for a given bit error rate in each graph, results show the added

effect of increasing hard real-time traffic loads. As expected, soft real-time traffic

experiences lower success rates as it is preempted by an increasing amount of hard

real-time traffic. The graphs show the effect of increasing hard real-time traffic rates

from none, to 0.05 packets/slot, and finally to a load of 0.1 packets/slot when there

are six real-time nodes.

Also, as BER increases, the results appear to show the MAC protocol with-

standing channel degradation surprisingly well. In fact, though, the results are

optimistic. At the MAC layer, success and failure are determined completely by the

collision/noncollision feedback minislot. Even with a BER of 10−3, we can expect
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Figure 6.2: MAC S-RT performance with no H-RT load as channel degrades.

incorrect feedback only once every 1,000 slots. As a result, the MAC layer sees very

nearly the same success rate in these examples, though the higher layers will not.

Most errors will be in the data itself. So while the nodes remain synchronized, the

MAC layer is unaware of the increased rate of retransmitted higher layer data.

6.4 LLC Layer Modeled

Most real-time LLC schedulers in the literature are studied with the simpli-

fying assumption that once a packet is deemed best for transmission, the packet is

submitted to the MAC layer and transmitted in one time unit. For certain wire-

or fiber-based networks this is a valid assumption. But for the finite node wireless

networks we study, incorporating the wide variation of transmission times into the

model is desirable. Due to the nature of the splitting algorithm, there is a large

range in the number of slots needed to transmit a packet. Additionally, by studying

an LLC on a fully detailed MAC layer, realistic results are obtained showing more

concretely what can be achieved.
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Figure 6.3: MAC S-RT performance as H-RT load increases, ideal channel.
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Figure 6.4: MAC S-RT performance as H-RT load increases, BER = 10−4.
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Figure 6.5: MAC S-RT performance as H-RT load increases, BER = 10−3.

While the MAC layer is distributed in nature with each node cooperatively

taking part in the algorithm, the LLC layer is concerned only with the traffic in a

given node. The LLC contains three queues for the hard, soft and non real-time

traffic arriving from the network layer, as well as queues for reassembling arriving

MAC packets addressed to the node. For every packet submitted to the MAC layer,

the LLC receives a response indicating that the packet was transmitted before its

deadline or else was discarded because its deadline expired.

Recall, too, that the MAC layer has a queue of length one for each of the

three real-time streams. The LLC, since it receives success/failure information for

each packet submitted, is aware of which of its node’s MAC queues are empty or

full. The general rule is that a lower priority packet is never submitted when a

higher priority MAC queue is full. However, since preemption occurs within a node

as well as between nodes, higher priority packets can always be submitted. In an

extreme case, a non real-time CRI can be preempted by a soft real-time CRI, which

in turn is preempted by a hard real-time CRI resulting in three packets at one or
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more nodes’ MAC layers.

6.4.1 Mapping Deadlines between LLC and MAC Layers

Based on packet deadlines and queue lengths, as well as the MAC layer

success/failure responses, the LLC layer uses a scheduling algorithm to decide which

of the layer’s potentially many packets is the best one to submit to the MAC for

transmission. Heuristics must be used since scheduling under resource constraints

has been shown to be an NP-complete problem [GJ75] and thus computationally

intractable. (The popular rate-monotonic scheduling method [LL73] is suitable only

when all deadlines are known before-hand, and arrivals occur with known periods.

We study a more general system and cannot use this method.)

Also, the MAC and LLC operate using different units of time. At the MAC

layer everything is done based on slot lengths since that is how long a transmission

takes and is also the interval at which feedback arrives. But the LLC receives

packets whose deadlines are in units of seconds. We previously showed that real-

time splitting algorithms reach a performance plateau when the range of initial

laxities is about [2, 30). However, the LLC can potentially deal with packets whose

deadlines are much further in the future than that. Before submission to the MAC

layer, the LLC maps the time units of seconds into those of slots and must decide

how to handle packets whose deadlines are greater than 30 slots.

6.4.2 Opportunities Presented by Deadline Mapping

The conversion of deadline time units allows for possibilities beyond the scope

of this research. For instance, a message to be transmitted that has a distant hard

deadline, might be initially assigned by the LLC to the non or soft real-time queue

with an artificially short deadline. If the message expires in the queue, the LLC

scheduler can assign a new deadline and now put the packet in the hard real-time

queue. In a similar manner, firm real-time can be implemented. If a certain type of
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Table 6.1: LLC algorithms studied.

FCFS

MLF

Priority
LLC

message must be transmitted successfully at least once every n times, for the first

n− 1 times the message can be put in the soft or non real-time queues. If all n− 1

attempts are unsuccessful, then the message can be put in the hard real-time queue.

These sorts of scheduling techniques allow QoS guarantees to be met using the least

amount possible of system resources.

In addition to making the LLC itself more capable, the LLC/Network layer in-

terface can further expand on the basic real-time services available at the MAC/LLC

layer interface. The ability to accept or reject connection-oriented real-time data

can be added, a choice of schedulers to accommodate peculiar traffic patterns at

particular nodes, detailed reasons for packet failure, ability to permit or deny late

arrivals, acknowledgements, and so on.

At this early stage in the research, we are less interested in the more elaborate

services that can be built with a strong real-time data link layer—though that is

exactly what the end user is ultimately concerned with—than we are with studying

the relative performances of different schedulers. The core of the real-time LLC

is the scheduling algorithm because the heuristics used have a huge impact on the

maximum supportable loads for given QoS guarantees. Additional details added to

the LLC make it more useful and appealing to the user, but the scheduler used is

what most affects maximum throughput.
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6.4.3 Scheduling Algorithms

The three scheduling algorithms studied for use in a real-time LLC layer are

shown in Table 6.1, which is the LLC portion of Table 1.2. All three schedulers

treat hard real-time packets similarly. If a hard real-time packet’s deadline will

arrive within the upcoming system cycle, the packet will always be submitted to

the MAC layer. When a hard deadline is not imminent, however, the scheduling

algorithms act differently.

The FCFS scheduler is the first algorithm considered. It is not, however,

purely first-come-first-served. The difference between it and pure FCFS is that hard

real-time deadlines are always met as described in the previous paragraph. Beyond

that, the algorithm makes no distinction regarding real-time stream and behaves

in a pure FCFS manner. The algorithm is simple to implement and interesting to

study in light of the fact that the MAC already transmits data based on real-time

properties.

The MLF, or Minimum Laxity First, scheduler is studied next. Each of the

data queues is looked at, and among them all, the packet with the most pressing

deadline is chosen for submission to the MAC layer.

Finally, the Priority scheduler is considered. It places a very high priority on

hard real-time data. In most systems, hard real-time data makes up a very small

fraction of the transmitted data. Accordingly, considering an algorithm that puts

a high priority on transmitting hard real-time data seems reasonable. Each node

simply cycles through its LLC layer queues. If anything exists in the hard real-time

queue and the MAC is able to accept a hard real-time packet, then the most pressing

hard real-time packet is submitted. If the hard real-time queue is empty, then the

soft real-time queue is serviced in the same manner as the hard. Similarly, if the

soft queue is empty, then the non real-time queue is used.

None of the three algorithms are overly difficult to implement. Details of
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implementation are important to consider because the LLC, near the base of the

protocol stack, must operate quickly, efficiently, and with little overhead.

6.4.4 Scheduling Results

All scheduling results were obtained through simulation using eight nodes

where six could transmit hard real-time data and all eight could transmit soft and

non real-time data. Each simulation was run with 95% confidence intervals that the

fraction of successful transmissions was ±0.005 of the steady state value. While the

protocol supports only connectionless communication, coupled acknowledgements

(acks) were implemented. A single bit, when acknowledged service was requested,

following the data packet is used as the ack. In these simulations, 50% of transmitted

packets used acks. While not presented, results from simulations using 0% or 100%

acks did not differ significantly because it is rare for the single ack bit to be destroyed

by channel noise. Also, while we implemented segmentation and reassembly at the

LLC layer, we ultimately decided to use LLC packets that are the same length as

MAC packets. Since packet length in a real-time system is closely tied to the data

being transmitted, we wanted to make as few assumptions as possible. Therefore,

results based on the MAC packet unit length seemed most useful.

Comparing the LLC performance results, hard real-time performance is not

graphed since hard real-time packets are treated the same by all schedulers: re-

gardless of what is waiting in the queues, a hard real-time packet will always be

submitted to the MAC when the deadline is imminent. As a result, there are no sig-

nificant relative differences. Performances of each scheduler for soft real-time data

are compared in Figures 6.6 through 6.8, where the same trend can be seen among

the graphs. MLF always performs better than FCFS, which performs better than

Priority. What is more interesting is not the ranking but the relative differences as

the hard real-time loads increase.
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Figure 6.6: LLC schedulers for S-RT with no H-RT traffic.
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Figure 6.7: LLC schedulers for S-RT with 0.05 pks/slot H-RT load.
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Even with no real-time traffic load, the MLF technique performs noticeably

better than the others. As seen in Figure 6.6, FCFS and the Priority algorithms

have a similar performance. However, in Figure 6.7, the differences become apparent

when the hard real-time load increases to a moderate level. While the MLF success

rate at a load of 0.3 packets/slot drops from about 0.95 to 0.92, the FCFS scheme

drops from about 0.92 to 0.80. Suffering even more drastically, the Priority scheduler

success rate goes from about 0.91 when there is no hard real-time traffic, down to

only slightly more than 0.50 when the hard real-time load increases. In all cases,

this is somewhat worse performance than typical because, as mentioned previously,

the MAC layer for these results uses a minimum length hard real-time system cycle.

But in general, Priority scheduled soft real-time traffic will never perform well in the

presence of hard real-time traffic. Whenever any node has a hard real-time packet,

that node will set the hard preemption minislot. As a result, as soon as there is

more than minimal hard real-time traffic, soft and non real-time streams have little

opportunity to contend for the channel. Hard real-time delay is decreased, but at

the expense of greatly decreased throughput for the other real-time streams.

When the hard real-time load is increased to its maximum in Figure 6.8 to

handle the worst case high multiplicity collision, while FCFS and especially Priority

scheduling suffer markedly, MLF still performs quite well. We can see, for example,

that in Figure 6.9 where only FCFS results are graphed, the success rate drop is

severe as the hard real-time load becomes heavier. But Figure 6.10 shows that MLF,

while of course suffering some success rate decrease, is much more resilient in the

face of high preemption rates.

Figure 6.11 graphs non real-time LLC results for MLF when there is no

hard real-time traffic and when the soft real-time load increases. Since non real-

time success rate is ideally 100%, the data is plotted with the more traditional

delay versus throughput curves. The throughput for finite delay is what one would
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Figure 6.8: LLC schedulers for S-RT with 0.1 pks/slot H-RT load.
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Figure 6.10: MLF S-RT performance for increasing H-RT load.

expect, considering that the theoretical throughput maximum for the non real-time

protocol is 0.43 packets/slot when there is no other traffic. For all three streams

combined, simulations show a total maximum throughput of approximately 0.52

packets/slot; this is higher than the theoretical 0.5 packet/slot cutoff for splitting

protocols because the protocol is able to drop packets [Gon92].

6.5 Data link Layer Performance Evaluation

An increase in channel noise will clearly result in a decrease in real-time suc-

cess rates. However, the MAC results show that even on a much noisier than typical

channel, hard real-time data still reaches 96% success at heaviest load and with a

minimum hard real-time cycle. For all but the most critical of data, a fault tolerance

system should be able to easily handle this amount of loss. For soft and non real-

time data, managing the success rate decrease is easier to manage. In these cases,

the success rate on non-ideal channels is simply used as part of calculations in QoS

negotiations. Similarly, reduced non real-time throughputs (or the corresponding
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Figure 6.11: MLF N-RT performance for no H-RT load, increasing S-RT load.

increased delay) would be used in QoS negotiations for that stream.

The schedulers show dramatically different performance results especially at

high hard real-time loads. However, each can be appropriate depending on system

requirements. The Priority heuristic quickly prevents all lower Priority real-time

traffic from even contending for the channel. But for a system whose traffic is

mainly non real-time with occasional hard or soft real-time traffic, this very simple

scheduler can be sufficient. FCFS does much better for mixed traffic and is only

slightly more involved than Priority to implement. Since the MAC layer is already

dealing with deadlines, this scheduler can be used especially when hard real-time

traffic is infrequent. MLF, though, is unquestionably the best of the schedulers

studied. Though it might be the most difficult to implement since each queue entry

has to be searched prior to every MAC submission, MLF is the best candidate for

a fully general real-time data link layer.
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6.6 Conclusions

The model and results presented in this chapter represent moving the proto-

cols from a purely theoretical realm to an environment simulating more closely what

would be experienced in a real implementation: non-ideal channel, non-ideal arrival

process with retransmissions, and loss of station synchronization. For real-time ad

hoc wireless networks, this is the first published study of schedulers used in a simple

LLC coupled with a realistic MAC layer. The usefulness of these results lies in the

fact that they go beyond showing proof of concept. They can be used as limits in

the application layer design of real-time systems. If system requirements can be

met, then a real implementation can be developed.
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Chapter 7

CONCLUSIONS

A real-time system meets its functional requirements not only by generat-

ing correct results, but by also generating timely results. Deadlines can be most

fully supported if an awareness of time exists in all layers of the protocol stack.

Incorporating the concept of time into random access protocols, however, has been

traditionally difficult to do, because packet delays are potentially unbounded due

to collisions. Higher layers have therefore been forced to accept lower performance

than possible simply because the foundation of the protocol stack offers no support

for deadlines. We have shown that at the MAC layer, splitting protocols can be

modified to work successfully in soft real-time environments, and that at the LLC

layer, schedulers can be designed to make use of MAC layer results in real-time

decision making.

7.1 MAC Layer Contributions

Initially, we designed straightforward real-time protocols that were conceptu-

ally similar to non real-time splitting algorithms. After analyzing several, learning

what works well and what does not in such a setting, we then tested the algorithms

within the two major classes of splitting algorithms: blocked access and free ac-

cess. In non real-time systems, free access algorithms have been shown to offer

less throughput than blocked access. Due to the more involved departure process

of a real-time system, though, we wanted to see if the same holds in the real-time

environment. But even with departures from deadline expiration decreasing the
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load somewhat, real-time free access algorithms still offer less throughput than their

blocked access counterparts.

Following this, we expanded on our initial results by developing a fully dis-

tributed MAC protocol, the HSN protocol, that allows for the coexistence of hard,

soft, and non real-time data while still offering quality of service guarantees. The

protocol supports preemption both within a node and in a distributed fashion be-

tween all nodes. To support the protocol and avoid the need for a centralized station

providing collision/non-collision feedback, we developed a simple protocol where all

stations are involved with the generation of the feedback minislot data. Parameter

values can be adjusted for use in military environments where minimizing the num-

ber of nodes transmitting feedback is desirable, or for use in general settings where

frequent transmissions are not a concern. While splitting algorithms require such

feedback to operate, the splitting algorithms and feedback algorithm are completely

independent of each other; other feedback algorithms can be used with the HSN

protocol and vice-versa if desired.

In addition to the algorithms, we have presented analytic models of them that

can be used to determine operational parameter values when given quality of service

requirements. Supporting the analytic techniques, simulations of the algorithmic

actions yield results nearly identical, within the given tolerance, with the numerical

solutions. Results indicate that for general use, the blocked access sliding partition

algorithm, a new algorithm designed by us, offers the best performance.

Addressing the practicality of the protocols studied, we mentioned that the

Fully Recursive algorithm, while interesting to study, cannot be implemented since

it requires an error free channel and that all nodes must monitor the channel from

system start up. Both the Two Cell and Sliding Partition algorithms, however,

have the desirable property that CRIs are always complete when two consecutive

non-collisions are observed. Stations can use this property to easily join the net by
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simply waiting for two non-collisions before their first transmissions.

7.2 LLC Layer Contributions

In most published work involving the analysis of real-time schedulers, the

MAC layer is ignored and assumed to offer a normalized unit transmission time.

While this assumption is fine for straightforward comparisons of scheduling algo-

rithms, this did not meet our requirements. We not only wished to determine a

suitable scheduling heuristic but to use it in the design of a complete real-time data

link layer. The important differences between the standard idealized assumption

and an initial protocol design are that in an implemented system, the arrival pro-

cess at the LLC layer includes retransmissions and the mapping of deadlines from

units of seconds to units of slots. By simulating schedulers that have these addi-

tional functionalities, performance results representative of those of a real system

can be obtained.

We compared the success rates of three scheduling techniques: Priority, where

the existence of a hard real-time packet anywhere in the network preempts all other

packets, and existence of a soft real-time packet anywhere in the system preempts

any non real-time packets; FCFS (first-come-first-served), operating as its name

implies; and MLF (minimum laxity first), also operating as one would expect. Each

of the schedulers was further modified, though, so that hard real-time packets always

met their deadlines. MLF performed best by far, FCFS behind that, and the Priority

scheduler performing worst.

Each scheduler mapped deadlines into slot units. When a MAC layer packet

was not transmitted by its deadline, the LLC scheduler directly made use of the per

packet MAC layer results so that, if the real world deadline allowed, a new MAC layer

deadline could be assigned and the packet resubmitted for transmission. While only

connectionless service was provided for, acknowledgements were supported. The

MAC layer per-packet success/failure indications were expanded upon so that more
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Table 7.1: Best performing data link layer algorithms studied.
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B
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O
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E

D

information was available at the LLC/network layer interface. Failures could be

ascribed to MAC layer expiration, LLC queue timeout, missing acknowledgement,

etc. An LLC response with this level of detail allows a real-time network layer to

make better decisions for resource allocation to meet peer to peer quality of service

guarantees when at least some links are on ad hoc wireless networks.

7.3 Evaluation of Data Link Layer Algorithms

Table 1.2 was used to indicate which algorithms would be studied and within

which layer of the protocol stack. After studying each algorithm in turn, the in-

formation is updated slightly in Table 7.1. The newly shaded boxes in the table

indicate the best performing MAC and LLC algorithms.

To support wireless hard and soft real-time data at the MAC layer, there

appears to be no reason to use anything other than the blocked access Sliding
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Partition CRA. It outperforms others in nearly all situations and is no more difficult

than the other MAC algorithms to implement. Deciding which LLC scheduling

algorithm to use requires a little more thought. As discussed in Section 6.5 of

Chapter 6, each can be useful is different situations. When both hard and soft

real-time traffic rates are low, the Priority scheduler is easiest to implement and

would work well. When hard real-time traffic is infrequent, FCFS can also perform

well. But for the general case, the best scheduler is MLF. The only reasons to

consider the other schedulers are if it is too time consuming for MLF to study all

queues before submitting a packet to the MAC layer (unlikely when the speed of

computers is compared to the speed of low bandwidth wireless links), or if it is

known with certainty that the traffic will be made up mostly of non real-time data.

But even then, performance will not be decreased by using MLF. Accordingly, the

recommendation to handle general real-time situations is to use the HSN protocol,

made up of two Sliding Partition CRAs and one Two Cell CRA, at the MAC layer,

and the MLF scheduler at the LLC layer.

An HSN/MLF wireless real-time data link layer would be able to offer ap-

propriate quality of service guarantees to hard, soft and non real-time data. The

battlefield, forestry service, and search and rescue examples described in Chapter 1,

as well as any similar real-time systems, could be fully supported, something not

possible with current data link layer protocols.

7.4 Future Work

While splitting protocols can operate well in wireless networks where short

messages are passed between nodes that are cooperating as parts of a larger soft

real-time system, splitting protocols are not well suited for the transmission of high

bandwidth streaming data. Data of this sort is best handled by connection-oriented

service. That is not to say, however, that the two connection types cannot coexist.

In our MAC protocol, note that only three bit patterns are used of the four available
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with two minislots. At the MAC layer, an easy extension is to use the fourth bit

combination to indicate the highest level of preemption, even higher than hard

real-time. That pattern would indicate arriving connection-oriented traffic. The

extension is easy here because heavy burden is added to the LLC layer. It would

be expected to submit a packet only when safe to do so. And the LLC would now

have the duty of determining if, on the local single hop network, enough resources

exist to admit an additional connection while still maintaining already agreed upon

QoS levels.

Alternatives could be as simple as adding more slots to the system cycle

length to provide bandwidth for a given number of connections, or as complex as

determining dynamically if new connections can be admitted. Similarly, recall that

in our MAC protocols, performance is based on λ, the aggregate traffic rate. A

decision needs to made regarding where this λ is controlled. The most likely place

is again at the LLC layer. Only it is fully aware of the extent of current QoS

guarantees.

But perhaps more importantly, protocol characteristics desirable to end users

must be added. While the MAC layer might guarantee, say, a 96% success rate for

the current aggregate traffic rate, a given LLC stream might need only an 80%

success rate. To better utilize resources, the LLC should modify its scheduling

behavior to meet this lower rate. To combat the relatively high incidence of errors

on a wireless channel, another option is to have an error correction code on both

the header and data portions of the MAC packets. That way, when an error occurs,

it is more likely to damage the long data packet and leave the header information

intact. Even without the data, the intact header can still be passed to the LLC to

aid in its decision making. For instance, if communication with a particular node

is observed to suffer for a length of time, transmissions to it could be temporarily

suspended, reduced, or addressed in some other way.
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While these are important additions for a real implementation, the work de-

scribed in this dissertation represents the core requirements of a real-time data link

layer. The addition of new services will make the protocol more useful and flexible,

but are not expected to change the relative performances of the MAC layer algo-

rithms or the LLC scheduling algorithms. Providing a strong foundation for true

real-time support with these algorithms now makes possible further developments

and enhancements for actual implementation. But most importantly, this disserta-

tion research takes the first step of offering theoretical and simulation support for

what is possible.
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