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Geographic variation in allele frequencies may result 
from direct selection of alleles at a locus; from indirect 
selection involving loci in gametic disequilibrium with 
the observed locus; or from random drift in isolated 
populations. Drift may be ruled out if repeated geo- 
graphic patterns in allele frequency are associated with 
repeated environmental gradients (McDonald, 1987) 
or if differentiation occurs over distances that are small 
compared with the dispersal distance of the organism 
(Koehn et al., 1976). Distinguishing between direct se- 
lection and selection resulting from loci in gametic dis- 
equilibrium is difficult, but direct selection is the most 
likely explanation when two species that are polymor- 
phic for the same alleles exhibit similar associations 
of allele frequency with the environment (Clarke, 1975). 
There are a number of examples of similar geographic 
patterns in pairs of species (Johnson, 1974; Harrison, 
1977; Gill, 1981; Anderson and Oakeshott, 1984; Ro- 
mano et al., 1987). These all consist of observations 
that allele frequencies in one species are correlated with 
frequencies in sympatric populations ofa second species. 

Here, we use a somewhat different approach, com- 
paring patterns of allele frequencies in allopatric pop- 
ulations of the mussels Mytilus trossulus and M. edulis. 

The Lap locus has been extensively studied in M. edulis 
(Koehn and Hilbish, 1987), and the allozymes pro- 
duced by the Lap locus in M. trossulus are electro- 
phoretically indistinguishable from those of M. edulis. 
We report that, when estuarine and marine samples 
are compared, the Lap94 allele in M. trossulus is less 
common inside estuaries in Oregon, just as the Lap94 
allele in M. edulis is less common inside estuaries in 
the northeastern United States. This is evidence that 
there is direct selection of alleles at the Lap locus. 

MATERIALS AND METHODS 

The locations sampled are shown in Figure 1. The 
Yaquina Bay samples (including site 2m, which was 
the closest marine sample to Yaquina Bay we could 
find) were collected in August 1984, and the remaining 
samples were collected in March 1987. For each of the 
four estuaries, one marine sample was collected outside 
the estuary. A single sample was collected inside three 
of the estuaries; five samples were collected inside Ya- 
quina Bay, but they were pooled for the data analysis 
after being found not significantly heterogeneous (G 
test [Sokal and Rohlf, 1981 pp. 737-738], G = 1.48, 
P = 0.83). Electrophoretic methods are given in 
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FIG. 1. Locations of M. trossulus samples. The map on the left shows the locations on the Oregon coast of 
the estuaries sampled. The four estuarine maps are drawn to the scale given on the Umpqua River map. 

McDonald and Koehn (1988). Each individual was 
scored for the enzyme coded by the Lap locus, which 
was originally called leucine aminopeptidase but more 
recently has been designated aminopeptidase-I (E.C. 
3.4.1.-; Young et al., 1979). In both 1984 and 1987, 
electrophoresis was performed on M. trossulus from 
Oregon alongside M. edulis from New York. Each LAP 
allozyme in M. trossulus was electrophoretically in- 
distinguishable from an allozyme in M. edulis. The Lap 
alleles in M. trossulus were therefore given the same 
names as the alleles in M. edulis; this only implies the 
electrophoretic similarity of their allozyme products, 
not identity by descent. In M. edulis of the northeastern 
United States, alleles other than Lap94 maintain rough- 
ly constant proportions relative to each other; there- 
fore, geographic variation has usually been summa- 
rized as variation in Lap94 frequency (e.g., Hilbish, 
1985). The purpose of this study was to compare the 
pattern of geographic variation in M. trossulus with 
that in M. edulis, so alleles other than Lap94 were also 
pooled here. 

Significance of the difference in allele frequency be- 
tween estuarine and marine locations was tested using 
the Cochran-Mantel-Haenszel test (Snedecor and 
Cochran, 1980 pp. 210 -213). Wright's inbreeding coef- 
ficient (FIS) was calculated for each sample, with the 
expected number of heterozygotes corrected for small 
sample sizes (Levene, 1949) and all non-Lap94 alleles 
pooled. The mean FIS was calculated using equation 
(6) of Kirby (1975), which corrects for differences in 
allele frequency among samples. Significance was tested 
using FIS2N, which is distributed as chi-square with 
one degree of freedom (Li and Horvitz, 1953). The 
mean FIS was also calculated without pooling alleles 
using the method of Nei and Chesser (1983). 

Because M. galloprovincialis is present in California 
(McDonald and Koehn, 1988), most individuals were 
also scored for peptidase-I1 (AAP; E.C. 3.4.11.-) and 
mannose-6-phosphate isomerase (MPI; E.C. 5.3.1.8), 
which would have revealed any M. galloprovincialis 
individuals or hybrids between M. galloprovincialis and 
M. trossulus. Only "pure" M. trossulus were found in 
Oregon. 

RESULTS 

At each of the four Oregon estuaries, the Lap94 allele 
in M. trossulus was less common inside the estuary 
than at the corresponding marine location (Table 1). 
The mean difference in Lap94 frequency between ma- 
rine and estuarine sites was 0.07, which is significantly 
different from 0 (Z = 2.29, P = 0.02). Mussels have a 

planktonic larval stage lasting several weeks (Bayne, 
1976), and entrainment of larvae is unlikely in the 
small, well-mixed estuaries of Oregon (Johnson and 
Gonor, 1982). Thus the differentiation in allele fre- 
quency found here on a scale of a few kilometers cannot 
be explained by random drift of isolated populations. 

There was a deficit of heterozygotes at the Lap locus 
in M. trossulus. With all non-Lap94 alleles pooled, the 
mean F1swas 0.165, which is significantly different from 
0 (FIS2N = 19.47, P < 0.001). Without pooling alleles, 
the mean F1s was 0.154; this value would be difficult 
to test statistically, since many genotypes have small 
expected numbers. Fourteen individuals had bands that 
were too faint or smeared to be scored for Lap, but 
even if all were heterozygotes, the heterozygote deficit 
would remain highly significant (F,S2N = 14.84, P < 
0.001). 

DISCUSSION 

Estuarine samples of M. edulis in the northeastem 
United States also exhibit lower frequencies of Lap94, 
when compared with marine locations, at Mill Creek 
and Scorton Creek, Massachusetts (Boyer, 1974; Koehn 

TABLE 1. Lap allele frequencies in samples of Mytilus 
trossulus from Oregon. For each estuary, m indicates 
the marine sample, from outside the estuary, and e 
indicates the estuarine sample. The Yaquina Bay es- 
tuarine sample (2e) is the sum of the five samples from 
within Yaquina Bay; FIS for this sample is the weighted 
mean of the individual FIS values. The rare alleles 
Lap90 and Lap0 were pooled with Lap92 and Lap98, 
respectively. All non-Lap94 alleles were pooled for cal- 
culation of Wright's inbreeding coefficient, FIS. Aster- 
isks indicate values of FIS that are significantly different 
from 0 (0.05 > P > 0.01). 

Sample Lap92 Lap94 Lap96 Lap98 N FIs 

lm 0.02 0.58 0.32 0.07 48 0.15 
le 0.08 0.47 0.35 0.10 73 0.15 

2m 0.09 0.52 0.31 0.08 59 0.23 
2e 0.08 0.46 0.37 0.09 279 0.15* 

3m 0.10 0.51 0.31 0.09 72 0.09 
3e 0.06 0.45 0.42 0.06 72 0.25* 

4m 0.08 0.56 0.32 0.04 63 0.20 
4e 0.12 0.50 0.29 0.08 48 0.18 
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et al., 1976) and at Lagoon Pond, Massachusetts; Pe- 
conic Bay, New York; and Long Island Sound (Koehn 
et al., 1976). (Other apparent examples of estuarine 
differentiation in "M. edulis" [Theisen, 1978; Gartner- 
Kepkay et al., 1983] now appear to result from inad- 
vertent sampling of M. trossulus along with M. edulis 
[Koehn et al., 1984; Varvio et al., 1988].) Explaining 
the similar patterns in the two species without invoking 
direct selection of alleles at the Lap locus would require 
that the Lap locus be in gametic disequilibrium with 
a selected locus in both species. Additionally, in both 
species, Lap94 would have to be associated with an 
allele at the selected locus that was selected against 
inside estuaries. The simpler and more plausible ex- 
planation is that the selection involves the Lap locus 
itself. 

Several possible selective factors differ between es- 
tuarine and marine habitats. Compared to marine en- 
vironments, estuaries are likely to exhibit lower and 
more variable salinity, warmer summer temperatures, 
cooler winter temperatures, more variable tempera- 
tures, and perhaps differences in food quantity and 
type. In Long Island Sound, where Lap94 frequency 
differs by 0.43 between estuarine and marine popula- 
tions, it has been suggested that selection results from 
a delicate interaction among timing of settlement, sea- 
sonal variation in food supply, temperature, and short- 
term variation in salinity (Hilbish and Koehn, 1985; 
Koehn and Hilbish, 1987). It seems unlikely that the 
particular combination of these factors present in Long 
Island Sound is repeated in each of the many estuaries 
where selection on Lap has been observed. Instead, it 
may be that a simpler selective factor that is generally 
associated with estuaries is sufficient to produce some 
selection of alleles of the Lap locus, while the condi- 
tions at Long Island Sound interact to produce the 
especially dramatic selection seen there. 

Wahlund effects are not a plausible explanation for 
the heterozygote deficit in M. trossulus. The mean FIS 
of 0.165 would require a variance in allele frequency 
of the source populations of 0.04, corresponding to 
mixing of two populations differing in allele frequency 
by 0.40. The observed variance in Lap94 frequency is 
0.002, far too small to explain the observed deficit. 

Heterozygote deficits are a common observation in 
marine bivalves, one for which no satisfactory expla- 
nation is apparent (Singh and Green, 1984; Zouros and 
Foltz, 1984). Repeated differences in Lap allele fre- 
quency associated with estuaries occur in the bivalve 
Geukensia demissa (Garthwaite, 1986), in addition to 
M. trossulus and M. edulis. There may be a relationship 
between the selection that produces estuarine differ- 
entiation and the process that produces heterozygote 
deficits, but the nature of any such relationship remains 
to be discovered. 
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There are more than 1,000 described species of Aca- 
cia, of which about 650 occur in Australia, the rest 
occurring largely in Africa and tropical America (Bo- 
land et al., 1984). Only nine of the Australian species 
in this genus extend northward into either Papua New 
Guinea or Indonesia (Skelton, 1987). One of these, A. 
mangium Willd., has emerged in the last decade as a 
major forest plantation species for tropical moist en- 
vironments, (National Academy of Sciences, 1983; 
Tumbull, 1986) particularly in Sabah, Malaysia, on 
degraded soils colonized by Imperata cylindrica L. 
Partly for this reason, we undertook a study of the 
genetic diversity in natural populations ofA. mangium. 
As a result we are able to report the first study of the 
distribution of genetic variability of any plant species 
co-occurring in the South-East Asian and Australian 
floras. Also preliminary estimates of genetic diversity 
are presented for eight other species of Acacia. 

The last land bridges to the Australian mainland 
were with Tasmania and New Guinea. The Torres Strait 
between Australia and New Guinea was last formed 
less than 10,000 years ago (Walker, 1972; Galloway 
and Kemp, 1980). It apparently first came into exis- 
tence some time in the Pleistocene (Doutch, 1972), but 
the land bridge has come and gone several times sub- 
sequently as a result of retreating sea levels during pe- 
riods of glaciation. Originally, the Torres Strait was 
considered a major floristic demarcation zone between 
the Malesian and Australian floras, but currently it is 
thought of more as an ecological boundary than as a 
geographical one (Barlow, 1981). It might be predicted 
that species now occurring in the plant communities 

occupying the coastal lowlands around the strait would 
have recolonized these areas from small scattered ref- 
uges where they survived during the interglacial pe- 
riods of high sea levels. 

MATERIALS AND METHODS 

Acacia mangium occurs in northem Queensland, the 
Westem Province of Papua New Guinea, and the In- 
donesian provinces of Irian Jaya and Maluku (Fig. 1; 
Doran and Skelton, 1982; National Academy of Sci- 
ences, 1983; Tumbull, 1986). Over this geographic 
range, A. mangium grows primarily in coastal tropical 
lowlands on margins of closed forest, and in open forest 
and woodland. The species appears to be a strong col- 
onizer of areas disturbed either by fire or man (Tum- 
bull, 1986; Skelton, 1987). 

Seed collections (Fig. 1, Table 1) were made by the 
CSIRO Tree Seed Centre (Doran and Skelton, 1982; 
Tumbull et al., 1983). For each population, seeds were 
collected from 5-30 field trees. Where possible the 
number of seedlings assayed per population (see Table 
1) was divided equally between the number of parental 
trees sampled. 

Starch-gel electrophoresis was used to determine al- 
lozyme genotypes in germinating open-pollinated seed. 
Each seedling was assayed for 18 enzyme systems and 
scored for electrophoretic variants at 30 loci. Details 
of enzyme systems, electrophoretic procedures, and en- 
zyme stains are given in Moran et al. (1989). To get 
estimates of genetic variability for other acacias a small 
number of plants were assayed isozymically from one 
population for each of eight species. For each of these 
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