Manufacturing Project

Requirements

• Component Requirements
 • One part machined on the mill
 • One other part machined on the lathe
 • Can also use the band saw, belt sander, etc.
 • Can include a 3rd machined component, but no more
 • Variety of hardware from the student shop also available
 • Machine screws & nuts
 • Flat washers, lock washers, etc.
 • Check with Steve for other hardware (eg. O-Rings, Snap Rings)

• Assembly Requirements
 • Must include one interference fit
 • Use reamers in the shop (0.249, 0.3115, 0.374, 0.4365)
 • Goal is an interference of 0.001" (i.e. one-thousandths)
 • If needed, you can also use threads and fasteners for additional assembly requirements

• Complexity:
 • Two additional features required
 • Plate: Squaring sides, chamfering, drilling, threading
 • Round: Facing, turning, chamfering, drilling, threading, creating shoulder, grooves

• Material
 • Aluminum
 • Use available stock
 • Up to 5” of 5” wide plate (0.25” or 0.50” thick)
 • Up to 6” of 0.25”, 0.38” or 0.5” diameter round

• Hand-Drawn Sketch due on Wednesday @5p
 • Illustrate the assembled part as well as basic dimensions of each component
 • Briefly explain how each part will be made (from raw stock to finished part)
 • Use the title block template on the web
Manufacturing Project

Timeline

• Hand Sketches Due 2/14
• Hand Sketch Feedback 2/15
• CAD Drawings Due 2/19
• CAD Drawings Feedback 2/21
• Final CAD Drawings & Time Estimate 2/26
• Fabrication

 • Can begin as soon as CAD Drawings are approved and you have scored at least 80% on the General Shop Knowledge Quiz at the Engineering Student Shop WebCT site.
 • Sign up for a 2-hour lathe or mill session. Everyone must be finished by the end of March

Manufacturing Project

Deliverables

• Report
 • Audience: To your boss explaining a potential new product
 • Format: a typical technical report
 • Required Content:
 • Manufacturing processes
 • Final drawings
 • Comparison of drawings to actual prototype including dimensions
 • Time accounting and comparison to prediction
 • Recommendations for next generation prototype

• Prototype
Examples

• CD Holder
• Cup Holder
• IPod Holder