Movement vs. tree-size as predictor of difficulty for agrammatics: Evidence from Northern Norwegian aphasics

4th Science of Aphasia Conference Trieste, Italy, 26 August 2003

Kjetil Berntzen¹ & Arild Hestvik^{1,2,3}

¹Department of Social Psychology, University of Bergen ²Department of Linguistics, University of Bergen ³Ph.D. Program in Speech and Hearing Sciences, CUNY Graduate Center

Thanks to

Naama Friedmann

Tree-size

- Friedmann (2000, 2002) and Friedmann & Grodzinsky (1997, 2000):
 - Broca's agrammatics' have difficulties with certain sentence types because they fail to represent the higher part of the tree
 - Their trees are "pruned" above agreement projections
 - No CP or TP-projections
- This hypothesis concerns the "size" of the tree that the agrammatic speaker is able to project

Sentences that want large trees

- [_{AgrP} I ate ice cream]
 - *That ice cream*, [_{AgrP} I ate (it)]
 - What have [AgrP you eaten]?
 - *Did* [_{AgrP} you eat ice cream]?

Sentences that want large trees

Evidence

Wh-question:
Ma Miri mecayeret t_i?
What Miri paints
"What does Miri paint?"

Yes/no-question (intonation): Miri mecayeret kivsa? Miri paints sheep "Does Miri paint sheep?"

Correct: 13/100

Correct: 81/84

χ²=127.16; p<<0.0001

(Friedmann, 2002)

Alternative: Number of movements

- Verb movement in combination with XPmovement to SpecCP is harder than just XPmovement to SpecCP
- Bastiaanse & Thompson (2002):
 - Compared English vs. Dutch agrammatic production
 - Found that sentences which required verb-movement were significantly more impaired than sentences not requiring verb movement
 - Tree-size was not a factor

Two general alternatives

- Tree-size (generalization of Tree-Pruning)
 - Size of the tree matters and predicts production difficulties
 - E.g. sentences requiring CP harder than sentences requiring just TP, etc
- Movements
 - The number of movements required matters and predicts production difficulties
 - E.g. sentences requiring verb movement in addition to Whmovement harder than just verb-movement sentences, etc

A test of the two theories

- Wh-questions in Northern Norwegian
 - differ along <u>both</u> tree size <u>and</u> the number-ofmovements dimensions
 - 3 types: CP + V-movement; CP w/o V-movement, and
 C' w/o V-movement
- The two theories can therefore be compared within-subject (within-language)
 - greater statistical power than group comparisons (between-language)
 - better experimental control

A. Large tree, 2 movements

• Adjunct questions and object questions with "heavy" Wh-phrases: "When did you arrive?"

B. Large tree, 1 movement

• Subject Wh-question: "Who arrived?"

C. Small tree, 1 movement

• Morphologically simple object question: "What did you say?"

• Special construction: Wh-word undergoes head movement to C^0 (Taraldsen, 1986)

The (small) size difference

Predictions

- Tree-size theory predicts
 - A: 2 movements and a <u>CP</u>
 - Adjunct questions and object questions with V2
 - B: 1 movement and a <u>CP</u>
 - subject questions with overt complementizer
 - should be harder than:
 - C: 1 movement and a <u>C'</u>
 - object questions without V2

Predictions

- Movements theory predicts
 - A: 2 movements and a CP
 - Adjunct questions and object questions with V2 $\,$
 - should be harder than:
 - B: $\underline{1}$ movement and a CP
 - subject questions with overt complementizer
 - C: $\underline{1}$ movement and a C'
 - object questions without V2

Experiment

- Subjects
 - 7 patients from rehabilitation center in Tromsø, Norway
 - classified as Broca's by "Norsk Grunntest for Afasi" (Reinvang & Engvik)
 - agrammatic speech
 - under 75 years

<u>subject</u>	sex	diagnosed	experiment	time diag> exp	age at experiment
1	Male	Nov-87	May-Aug 2001, Jan 2002	13 years	52
2	Male	Mar-86	May-Aug 2001, Jan 2002	14 years	54
3	Male	Mar-82	May-Aug 2001, Jan 2002	16 years	70
4	Male	May-96	May-Aug 2001	5 years	50
5	Male	1986	May-Aug 2001, Jan 2002	14 years	56
6	Male	Oct-80	May-Aug 2001, Jan 2002	22 years	58
7	Male	1996	May-Aug 2001, Jan 2002	5 years	60

Method

[Adapted from Friedmann (2000, 2002)]

- Elicitation task
 - Experimenter: "You want to ask what John had for dinner, so you ask:"
 - Subject: "What did John have for dinner?"
- Repetition task
 - simple repetition of target sentence
- Dependent measure
 - success or failure on individual trials
 - % correct calculated for repeated measures conditions

Materials

A: 2 movements and a CP

- 12 elicitation/17 repetition trials of adjunct questions with V2
- 10/18 trials object questions with V2
- B: 1 movement and a CP
 - 20/18 trials of subject questions with overt complementizer
- C: 1 movement and a C'
 - 20/18 trials of object questions without V2

Inferential statistics

- For ANOVA:
 - Data contains near-ceiling/floor effects for some conditions/subjects
 - percent correct data were transformed to "continuous" data scale
 - log-odds: take the natural logarithm of the odds of the percentages
 - Odds = percentage/(1-percentage)

Results

• ANOVA

- Main effect of CONDITION
- Main effect of TASK
- Interaction TASK + CONDITION

Main effect CONDITION

ANOVA: F(2,10)=5.3, p = .026

Main effect CONDITION

ANOVA: F(2,10)=5.3, p = .026

Main effect of TASK

ANOVA: F(1,5)=7.85, p<.037

Main effect of TASK

ANOVA: F(1,5)=7.85, p<.037

Main effect of TASK

- Discussion
 - increased performance in repetition task probably means that subjects repeat a *string*
 - elicitation is probably a better test of their "creative" *syntactic* abilities
 - Is there is interaction between task and condition?

TASK x CONDITION

F(2,10)=4,5, p=.039

Discussion

• Given the interaction between task and condition, it is justifiable to analyze the two data sets separately.

Testing predictions

- A: 2 movements (Wh + V-mvt) and a CP
 - Adjunct questions and object questions with V2
- B: 1 (XP-) Wh-movement and a CP
 - subject questions without V2
- C: 1 (X⁰-) Wh-movement and a C'
 - object questions without V2
- Hypotheses expressed as orthogonal contrasts:
 - $H_{A-treesize}$: (A+B)/2 < C
 - $H_{A-movements}$: A < (B+C)/2

Tree-size?

 Is performance on CP-questions (A + B) worse than on C'-questions ("what you said")?

Tree-size?

• Both tasks together:

- F(1,5)=4.37, p=0.09

Number-of-movements?

• Is performance on questions with two movements (A) worse than questions with one movement (B & C)?

Number-of-movements?

- both tasks together:
 - F(1,5)=6.96, p=0.045

Discussion

- verb movement (in combination with Whmovement) seems to have greater negative impact on production than mere tree size
- <u>Caveat</u>: statistical effects probably too dependent on individual subject effects
- Larger N?
 - More in-depth analysis of each subject (logistic regression models and HLM)

Further orthogonal contrasts

- 1. Vary just verb movement: Are CP+V2 harder than CP-V2?
 - Heavy object question vs subject questions
 - treesize: predicts no difference
 - movements: predicts a difference

1. Tree-size constant, vary V-mvt

CP subject questions without V2 vs. CP adj/obj questions with V2

Further orthogonal contrasts

- 2. Vary just tree-size: Are CPs without V2 harder than C' without V2?
 - Subject questions vs light object questions
 - treesize: predicts a difference
 - movements: predicts no difference

2. V2 constant, vary tree-size

- subject (CP) vs light object questions (C')
- No significant difference

2. Alternative interpretation

- tree size is in fact identical; Taraldsen-analysis of light object questions wrong (cf. Åfarli, 2000)
 - but this analysis is not allowed by e.g. Optimality theory

Conclusions

- For Wh-questions
 - tree-size matters less for predicting agrammatic speakers production problems
 - But both properties could be relevant—results here could be related to low power
 - but verb movement, in particular in combination with XP-movement, is a significant factor

Declaratives

• Declaratives in Scandinavian: CP+V2!?

Declaratives

- Declaratives should be just as hard as the hardest Wh-questions
- However:
 - OT-like theories would postulate smaller structure for declaratives (Grimshaw)

Declaratives

Two different size declaratives?

• Big declarative

Small declarative

• Same size string/types of words

Movement in nominals

- NPs in Scandinavian:
 - Definite article is a suffix, N moves
 - Indefinite article is a word, no movement

```
jent+a
"girl+DEF" = "the girl"
```

ei jente "a girl"

Movement in nominals

• DP+movement:

