Model Theoretic Phonology
James Rogers (Earlham)
Jeffrey Heinz (Delaware)

Course administration

- Slides with notes are posted on the ESSLLI WIKI:
 http://esslli2014.info/wiki/topics-in-model-theoretic-phonology/ and
 http://udel.edu/~heinz/esslli14/

- Questions? Please ask us in class, outside of class, or by email.
 - jrogers@cs.earlham.edu
 - heinz@udel.edu
Model-Theoretic Phonology

- Models define structures and model theory allows one to study theories of these structures. What kind of statement can the theory make and what kind can’t it make?
- Phonology is a linguistics subfield which studies the mental structures of speech sounds and the pronunciation of words. What kinds of statements do phonological theories need to make? What is the right theory of phonology?
- In this course, we study phonological words from a model-theoretic perspective.
What we cover in this course

Part 2 Patterns of stress and accent, Strictly Local languages, and learnability.

Part 3 Language families defined with Successor under Propositional, First-Order and Monadic Second-Order logic.

Part 4 Harmony, Language families defined with Precedence under Propositional, First-order and Second-order logic.
Model theory allows up to map the space of stringsets along two dimensions: the nature of the signature (the horizontal dimension) and the nature of the logic (the vertical dimension).

The lines illustrate which classes of stringsets properly contain the others (and is closed under transitivity). So for instance the Locally Threshold Testable class properly contains the Locally Testable class, which properly contains the Finite class. This is equivalent to saying that any stringset definable with Propositional Logic with Successor word models is definable with First Order Logic with Successor word models, but not vice versa.

By the end of this course, this diagram will be familiar to you.

- **Fin** Finite
- **SL** Strictly Local
- **SP** Strictly Piecewise
- **LT** Locally Testable
- **PT** Piecewise Testable
- **LTT** Locally Threshold Testable
- **TSL** Tier-based Strictly Local
- **SF** Star Free
- **Reg** Regular
What we do not cover in this course

- Modal logic [PP02, Gra10]

Both of the above cited works apply modal logic in a model-theoretic setting to the study of phonology and phonological theory.

Modal logic very much complements the logics we cover here, and constitutes the subject matter of other courses here at ESSLLI.
Prerequisite knowledge

We will assume you have some knowledge of:

- Basic set theory and mathematical notion for functions
 \(\cup, \cap, -, \times, \mathcal{P} \) (i.e., powerset), \(f : A \rightarrow B \)

- Inductive Definitions
- Formal Language Theory
 - Regular Expressions
 - Grammars, such as Context-Free Grammars
 - Automata, such as Finite-State Automata

- Some familiarity with propositional and first-order logic.

With the preliminaries out of the way, let’s get started!
Phonology

Three Aspects of Phonological Knowledge

1. *Phonotactic* knowledge
2. Knowledge of phonological *processes*
3. Knowledge of *contrast*

In this course, we will focus on (1) Phonotactics, and will not discuss (2) Processes or (3) contrast.
Phonotactic Knowledge - Knowledge of word well-formedness (1)

ptak thole hlad plast sram mgla vlas flitch dnom rtut

Phonotactic Knowledge - Knowledge of word well-formedness (2)

<table>
<thead>
<tr>
<th>possible English words</th>
<th>impossible English words</th>
</tr>
</thead>
<tbody>
<tr>
<td>thole</td>
<td>ptak</td>
</tr>
<tr>
<td>plast</td>
<td>hlad</td>
</tr>
<tr>
<td>flitch</td>
<td>sram</td>
</tr>
<tr>
<td></td>
<td>mglα</td>
</tr>
<tr>
<td></td>
<td>vlas</td>
</tr>
<tr>
<td></td>
<td>dnom</td>
</tr>
<tr>
<td></td>
<td>rtut</td>
</tr>
</tbody>
</table>

Exercise 1 *How do English speakers know which of these words belong to different columns?*

They have knowledge they have learned, but it is untaught. What is the nature of this knowledge?
Phonotactics – Samala Version (1)

ftojonowanowaʃ
stojonowanowaʃ
stojonowanowas
ftojonowanowas
pisotonosikiwat
pisotonofikiwat
asanisotonosikiwasi
afanipisotonofikiwasi
Exercise 2 How do Samala speakers know which of these words belong to different columns?

Solution: Different types of sibilant sounds $[$,s$]$ cannot co-occur in words.

By the way, $ftojononowonowaf$ means ‘it stood upright’ [App72]
Phonotactics – Language X

<table>
<thead>
<tr>
<th>possible words of Language X</th>
<th>impossible words of Language X</th>
</tr>
</thead>
<tbody>
<tr>
<td>fotkoʃ</td>
<td>sotkoʃ</td>
</tr>
<tr>
<td>foʃkoʃ</td>
<td>fotkos</td>
</tr>
<tr>
<td>foʃokos</td>
<td>foʃkos</td>
</tr>
<tr>
<td>soʃokos</td>
<td>soskoʃ</td>
</tr>
<tr>
<td>sokosos</td>
<td></td>
</tr>
<tr>
<td>pitkol</td>
<td></td>
</tr>
<tr>
<td>pisol</td>
<td></td>
</tr>
<tr>
<td>pijol</td>
<td></td>
</tr>
</tbody>
</table>

Exercise 3 *How do speakers of Language X know which of these words belong to different columns?*

Solution: Sibilant sounds which begin and end words must agree (but not ones word medially).
Phonotactics – Language Y

<table>
<thead>
<tr>
<th>possible words of Language Y</th>
<th>impossible words of Language Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>fotkof</td>
<td>jofkof</td>
</tr>
<tr>
<td>sotkof</td>
<td>joskof</td>
</tr>
<tr>
<td>fotkos</td>
<td>sofkos</td>
</tr>
<tr>
<td>pitkol</td>
<td>jofkos</td>
</tr>
<tr>
<td>sofkokostof</td>
<td>soskof</td>
</tr>
<tr>
<td></td>
<td>soksos</td>
</tr>
<tr>
<td></td>
<td>piskol</td>
</tr>
<tr>
<td></td>
<td>pijkol</td>
</tr>
</tbody>
</table>

Exercise 4 How do speakers of Language Y know which of these words belong to different columns?

Solution: Words must have an even number of sibilant sounds.
Typology

Attested Phonotactic Patterns
1. Words don’t begin with [mgl]. (English)
2. Words don’t contain both [ʃ] and [s]. (Samala)

Unattested Phonotactic Patterns
1. Words don’t begin and end with disagreeing sibilants.
 (Language X = First/Last Harmony)
2. Words don’t contain an even number of sibilants.
 (Language Y = Even-Sibilants)

Why are some logically possible patterns attested and others not?
Our Thesis

1. Phonology is constrained by computational complexity.
2. The model-theoretic perspective makes the levels of complexity clear.
3. The model-theoretic perspective helps make clear the cognitive functions at stake since the properties identified are independent of particular grammatical formalisms.

Wilhelm von Humboldt commented that in order to do typology, researchers need “an encyclopedia of categories” and “an encyclopedia of types.” In this research program, the “encyclopedia of categories” is given by the model-theoretic analysis of formal languages and the “encyclopedia of types” comes from centuries of phonological analysis of natural languages.

Additionally, the model-theoretic perspective developed here can be extended to look at different kinds of structures, like trees [Rog94, Pul07, Gra13]. Working with strings provides a firm foundation upon which more complex linguistic structures can be studied.

So now let’s turn to strings, languages, and grammars.
Strings and Stringsets

We assume a finite set of symbols, the alphabet Σ, and consider the monoid (Σ, \cdot) where \cdot is an associative, non-commutative operation called \textit{concatenation} with λ as the identity element.

Thus,

$$\forall u \in (\Sigma, \cdot) \left[\lambda \cdot u = u \cdot \lambda = u \right]$$

Elements of (Σ, \cdot) are defined inductively:

1. Base case: $\lambda \in (\Sigma, \cdot)$.
2. Inductive case: $u \in (\Sigma, \cdot) \land \sigma \in \Sigma \Rightarrow u \cdot \sigma \in (\Sigma, \cdot)$

We refer to elements of (Σ, \cdot) as \textit{strings}.

A \textit{stringset} (=formal language) is a (possibly infinite) subset of (Σ, \cdot).

The string λ itself is thus the unique string of length zero.
Concatenation and Kleene Star

We lift the definition of concatenation to stringsets. Following convention, we often leave out writing the operator · itself.

- If R and S are stringsets then $RS = \{uv \mid u \in R \land v \in S\}$.

Kleene star is another operation defined on stringsets.

- If S is a stringset then S^* is defined recursively:
 1. Base case: $\lambda \in S^*$.
 2. Recursive case: $w \in S^* \land v \in S \Rightarrow wv \in S^*$.

We observe $\Sigma^* = (\Sigma, \cdot)$, and so stringsets can also be said to be subsets of Σ^*.
Grammars and Languages

- Every grammar G we consider will be an object of finite size and will belong to a (possibly infinite) class of grammars G.
- Grammars are associated to languages via a naming function.

$$L : G \rightarrow \mathcal{P}(\Sigma^*)$$

We give some examples with regular expressions.
Regular Expressions as Grammars

An RE is defined inductively as follows.

1. The base cases:
 - \emptyset is an RE.
 - λ is an RE.
 - For all $\sigma \in \Sigma$, σ is an RE.

2. The inductive cases:
 - If R is an RE then so is (R^*).
 - If R and S are REs then so are $(R + S)$ and $(R \cdot S)$.

3. Nothing else is a regular expression.

Despite the choice of notation, the REs are just strings. As of yet they are ‘meaningless’ in the sense that they do not yet have any interpretation.
Regular Expressions - Stringsets

The naming function for REs $L_{\text{RE}}(\cdot)$ is inductively defined as follows:

1. The base cases:

 $L_{\text{RE}}(\emptyset)$ def \emptyset

 $L_{\text{RE}}(\lambda)$ def $\{\lambda\}$

 $(\forall \sigma \in \Sigma)[L_{\text{RE}}(\sigma)$ def $\{\sigma\}]$

2. The inductive cases:

 $L_{\text{RE}}(R^*)$ def $(L_{\text{RE}}(R))^*$

 $L_{\text{RE}}(RS)$ def $L_{\text{RE}}(R)L_{\text{RE}}(S)$

 $L_{\text{RE}}(R + S)$ def $L_{\text{RE}}(R) \cup L_{\text{RE}}(S)$

Definition 1 (Regular languages) Stringsets definable with REs are the regular languages (Reg).

The definition of REs gives the syntax of the objects in the class of grammars. The semantics is given by the definition of L_{RE}. We will follow this pattern throughout the course.

In the diagram, Reg stands at the top.
Generalized Regular Expressions — Grammars

GREs are REs extended with operators for intersection and complement

1. **Base cases**
 - If R is an RE then R is a GRE

2. **Inductive cases**
 - If R is a GRE then so is \(\overline{R} \).
 - If R and S are GREs then so is \(R \& S \).

3. Nothing else is a generalized regular expression.
Generalized Regular Expressions — Stringsets

1. The base cases:
 \[(\forall R \in RE) [L_{GRE}(R) \overset{\text{def}}{=} L_{RE}(R)] \]

2. The inductive cases:
 \[L_{GRE}(R) \overset{\text{def}}{=} \Sigma^* - L_{GRE}(R) \]
 \[L_{GRE}(R \& S) \overset{\text{def}}{=} L_{GRE}(R) \cap L_{GRE}(S) \]

Lemma 1 (Equivalence of GREs and REs) A stringset is definable with a GRE iff it is definable with an RE.

The class of regular languages is closed under intersection and complement, hence GREs are syntactic sugar.

Note, however, that “syntactic sugar” does not mean “superfluous crutch”. Generally expressions using \(\overline{\cdot} \) and \(\& \) (i.e., negative and conjunctive constraints) may be much easier to write and comprehend (well, for most of us) than equivalent expressions written without them.

There are several conventions to note. For instance, \(\cdot, +, \& \) are all associative so parentheses are often omitted. Often parentheses are omitted for \(\cdot \) too, but it is understood to have precedence: So \(RS^* \) is always understood as \((R \cdot (S^*)) \) and never as \((R \cdot S)^* \). We aren’t going to dwell on this.
Star Free Expressions - Grammars and Stringsets

- A Star Free Expression is a GRE containing no ‘And’ (&) or Kleene star (∗).

- The language of an SFE is defined using the same naming function we used for defining the language of GREs.

Definition 2 (Star Free stringsets) Stringsets definable with SFEs are the Star Free languages (SF).

Theorem 1 (McNaughton and Papert 1971) SF ⊆ Reg.

Closure under union and complement gives closure under intersection. Hence SFEs can be extended with & without extending the class of stringsets they define. Thus & is syntactic sugar for SFEs, and we will make use of & in SFEs.

That SF is subset of Reg is obvious from the definitions. That Reg is not a subset of SF is witnessed by Even-Sibilants. We will see a proof of this in a different form later.
Finite expressions - Grammars and languages

- A Finite Expression is an RE which contains no Kleene star.

- The language of a FE is defined using the same naming function we used for defining the language of REs.

Theorem 2 The class of finite languages (Fin) are exactly those stringsets with finite cardinality. Every stringset definable with a FE is in Fin, and for every stringset in Fin there is a FE for it.

Theorem 3 Fin ⊊ SF.

Exercise 5

1. For any finite expression E, L(E) has finite cardinality. Why?
2. Is Fin closed under intersection?
3. Is Fin closed under complement?

Regarding Theorem 3, that Fin is a subset of SF is clear from the definitions. That it is a proper subset is witnessed by many examples, for instance L(∅) = Σ* belongs to SF but not Fin.

In the diagram, Fin stands at the bottom.
Here is a summary.

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Operations</th>
<th>Language class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized Regular</td>
<td>∪, +, *</td>
<td>Reg</td>
</tr>
<tr>
<td>Regular expressions</td>
<td>∪, +, *</td>
<td>Reg</td>
</tr>
<tr>
<td>Star Free expressions</td>
<td>∪, +, −</td>
<td>SF</td>
</tr>
<tr>
<td>Finite expressions</td>
<td>∪, +</td>
<td>Fin</td>
</tr>
</tbody>
</table>

Note that:

- **Reg** is the closure of **Fin** under concatenation, union and Kleene star.
- **SF** is the closure of **Fin** under concatenation, union and complement.

These expressions vary in which kinds of operators are permitted, which has consequences for the generative capacity. We can ask: which operators are necessary to describe human phonotactics? Model theory is a similar exercise, but exhibits a finer degree of control.
Slide 25

Word Models

We use the word ‘word’ synonymously with ‘string.’

- A model of a word is a representation of it.
- A (Relational) Model contains two kinds of elements.

 A domain. This is a finite set of elements.

 Some relations over the domain elements.

- Guiding principles:
 1. Every word has some model.
 2. Different words must have different models.

Also, we are most interested in models which provide the minimum kind of information necessary to distinguish one word from another.

Note that relational models include only a domain and a finite number of relations, each of finite arity. In particular, there are no function symbols. We will accommodate (partial) n-ary functions (when necessary) as $(n + 1)$-ary relations that are functional in their first n arguments, i.e., for each n-tuple of elements of the domain there is (at most) a single element of domain that extends it to an element of the relation.

Generally models are given in terms of their signature, which is a tuple containing the domain of the model and the relations.

$$M = \langle D, R_1, R_2, \ldots, R_n \rangle$$
Three Word models

\[\mathcal{W}_{\triangleleft, \triangleleft} = \langle D^{\mathcal{W}}, \triangleleft^{\mathcal{W}}, \triangleleft^{+\mathcal{W}}, P^{\mathcal{W}}_{\sigma} \rangle_{\sigma \in \Sigma} \]

\[\mathcal{W}_{\triangleleft} = \langle D^{\mathcal{W}}, \triangleleft^{\mathcal{W}}, P^{\mathcal{W}}_{\sigma} \rangle_{\sigma \in \Sigma} \]

\[\mathcal{W}_{\triangleleft} = \langle D^{\mathcal{W}}, \triangleleft^{+\mathcal{W}}, P^{\mathcal{W}}_{\sigma} \rangle_{\sigma \in \Sigma} \]

\(D^{\mathcal{W}}\) — Finite set of elements (positions)

\(\triangleleft^{\mathcal{W}}\) — immediate linear precedence on \(D\)

\(\triangleleft^{+\mathcal{W}}\) — (arbitrary) linear precedence on \(D\)

\(P^{\mathcal{W}}_{\sigma}\) — Subset of \(D\) at which \(\sigma\) occurs

Properly \(\triangleleft, \text{ etc.}, \) are symbols and \(\triangleleft^{\mathcal{W}}, \text{ etc.}, \) are sets, but usually there is no ambiguity and we will drop the superscript.

Three distinct models for words are shown here. The ‘lower’ two have less structure than the one on top. What is different between the three models is how they represent the order of symbols in words:

- \(\triangleleft\) and \(\triangleleft^{+}\) are binary relations. \(\triangleleft\) represents the successor function on the domain, and \(\triangleleft^{+}\) represents the less-than relation. Both linearly order the domain.

- The relations \(P_{\sigma}\), one for each \(\sigma \in \Sigma\), are unary relations over the domain, each picking out the subset of positions at which the symbol \(\sigma\) occurs. Normally the \(P_{\sigma}\) partition \(D\), but this is not actually necessary.
Example: \mathbb{W}^q

Let $\Sigma = \{a, b\}$ and so $\mathbb{W}^q = \langle D, \preceq, P_a, P_b \rangle$.

Consider the string $abbab$.

The model of $abbab$ under the signature \mathbb{W}^q (denoted $\mathcal{M}_{\text{abbab}}^q$) looks like this.

$\mathcal{M}_{\text{abbab}}^q = \langle \{0, 1, 2, 3, 4\},$

$\{(0, 1), (1, 2), (2, 3), (3, 4)\},$

$\{0, 3\}$,

$\{1, 2, 4\} \rangle$

This says: There are five elements in the domain. Elements 0 and 1 stand in the (binary) successor relation. Elements 1 and 2 stand in the successor relation... Elements 0 stands in the (unary) relation P_a, as does element 3. Elements 1, 2, and 4 each stand in the unary relation P_b.

Exercise 6

1. If we only considered signatures with a domain and no relations, could we distinguish different words?
2. If we left out the P_a relations, could we distinguish different words?
3. If we left out the successor relation, could we distinguish different words?
Example: \mathbb{W}^Σ^+

Let $\Sigma = \{a, b\}$ and so $\mathbb{W}^\Sigma^+ = \langle D, \triangleright, P_a, P_b \rangle$.
A model for $abab$ under the signature \mathbb{W}^Σ^+ (denoted $\mathcal{M}_{abab}^{\Sigma^+}$) looks like this.

This says the same as before except the ordering is defined in terms the (arbitrary) linear precedence. Elements 0 and 1 stand in this relation. So do element 0 and 2. And elements 0 and 3. And so on.

How can we obtain models of strings? Here is a way for \mathbb{W}^Σ. Consider any $w \in \Sigma^*$.

1. $D \overset{\text{def}}{=} \{ i \mid 0 \leq i < |w| \}$.
2. $\triangleright \overset{\text{def}}{=} \{ (i, j) \mid i \in D \land j = i + 1 \}$.
3. For all $\sigma \in \Sigma$, $P_\sigma \overset{\text{def}}{=} \{ i \mid w_i = \sigma \}$.
(We let $|w|$ be the length of w and $|w|_i$ be the ith position in w. This notation can be defined more formally and recursively but we won’t dwell on that.)

Exercise 7 Write a way to obtain a model for strings with the signature \mathbb{W}^{Σ^+}. (Hint: only part of 1 line needs to change.)
As we will see, we can describe four properly nested classes of languages with four different logics of increasing power when using the word models with successor and precedence:

\[(+1): \text{SL} \rightarrow \text{LT} \rightarrow \text{LTT} \rightarrow \text{Reg}\]

\[(<): \text{SP} \rightarrow \text{PT} \rightarrow \text{SF} \rightarrow \text{Reg}\]

Also we will see the following when looking at this way:

1. The English-style phonotactics is **SL**.
2. Samala Harmony is **SP**.
3. First-Last Harmony (Language X) is not **SL**, but is **LT**.
4. Even-Sibilants (Language Y) is not **LTT, PT** nor even **SF**, but is **Reg**.
Session 1 Summary

- Phonotactic knowledge can be described with stringsets. What _kinds_ of stringsets are they?
- Generalized Regular Expressions, and restrictions thereof, can be used to define three classes of languages of decreasing generative capacity: **Reg**, **SF**, and **Fin**.
- Similarly, model theory allows us to study the nature of stringsets from two dimensions: the choice of signature and the power of the logic.
- One signature type uses the Successor relation to describe words.
Overview Session 2

Local Stringsets I

- Stress and accent patterns
- Strictly Local Stringsets
 - Grammar-theoretic definition
 - Automata-theoretic characterization
 - Abstract (set-theoretic) characterization
 - Model-theoretic characterization
- Language Identification in the Limit
What is stress and accent?

1. In many languages—but not all—certain syllables are more prominent than others. This prominence is referred to as stress and/or accent.

2. There are no universal phonetic correlates of stress, though common correlates involve pitch, duration, and loudness.

3. The presence of stress/accent is often detectable by its effects. In English, for example, unstressed vowels reduce (see notes).

Here are some examples of where stress falls in English words. Note how unstressed vowels often reduce to a schwa (from [Odd05, p. 89]).

<table>
<thead>
<tr>
<th>English</th>
<th>Stress</th>
<th>English</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>manotown</td>
<td>‘monotone’</td>
<td>manotany</td>
<td>‘monotony’</td>
</tr>
<tr>
<td>telograf</td>
<td>‘telegraph’</td>
<td>talografi</td>
<td>‘telegraphy’</td>
</tr>
<tr>
<td>epograf</td>
<td>‘epigraph’</td>
<td>apostifi</td>
<td>‘epigraphy’</td>
</tr>
<tr>
<td>relatuv</td>
<td>‘relative’</td>
<td>relatuv</td>
<td>‘relation’</td>
</tr>
<tr>
<td>skanamiy</td>
<td>‘economy’</td>
<td>ekonomik</td>
<td>‘economic’</td>
</tr>
<tr>
<td>diytsekt</td>
<td>‘defect [noun]’</td>
<td>defektiv</td>
<td>‘defective’</td>
</tr>
<tr>
<td>demokrat</td>
<td>‘democrat’</td>
<td>demokrasiy</td>
<td>‘democracy’</td>
</tr>
<tr>
<td>italiy</td>
<td>‘Italy’</td>
<td>atelyan</td>
<td>‘Italian’</td>
</tr>
<tr>
<td>hamomiy</td>
<td>‘homonym’</td>
<td>hamomimi</td>
<td>‘homonymy’</td>
</tr>
<tr>
<td>tanetsks</td>
<td>‘phonetics’</td>
<td>fonnetshan</td>
<td>‘phonetician’</td>
</tr>
<tr>
<td>statistik</td>
<td>‘statistics’</td>
<td>statostshan</td>
<td>‘statistician’</td>
</tr>
<tr>
<td>rasiprak</td>
<td>‘reciprocal’</td>
<td>rasiprasiati</td>
<td>‘recipocity’</td>
</tr>
<tr>
<td>fonaljij</td>
<td>‘phonology’</td>
<td>fonalajakj</td>
<td>‘phonological’</td>
</tr>
<tr>
<td>lajik</td>
<td>‘logic’</td>
<td>lajišn</td>
<td>‘logician’</td>
</tr>
<tr>
<td>sinami</td>
<td>‘synonym’</td>
<td>sanamami</td>
<td>‘synonymy’</td>
</tr>
<tr>
<td>aristokrat</td>
<td>‘aristocrat’</td>
<td>èrostakrosiy</td>
<td>‘aristocracy’</td>
</tr>
</tbody>
</table>
An Alphabet for Stress Patterns

<table>
<thead>
<tr>
<th>Syllable Weight</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L) = Light</td>
<td>(\sigma) = Unstressed Stress</td>
</tr>
<tr>
<td>(H) = Heavy</td>
<td>(\dot{\sigma}) = Primary Stress</td>
</tr>
<tr>
<td>(S) = Super Heavy</td>
<td>(\ddot{\sigma}) = Secondary Stress</td>
</tr>
<tr>
<td>(\sigma) = Arbitrary</td>
<td>(\dddot{\sigma}) = Some Stress</td>
</tr>
<tr>
<td></td>
<td>(\dddot{\sigma}) = Arbitrary Stress</td>
</tr>
</tbody>
</table>

The entire alphabet is thus given by any combination of a primary glyph (Syllable Weight column) and a diactric, or absence thereof (the Stress column).

For instance, \(\dot{H} \) is an alphabetic symbol, interpreted as a heavy syllable with primary stress. Similarly, \(\sigma \) indicates an unstressed, arbitrary syllable, and \(\ddot{\sigma} \) indicates any syllable with any level of stress (including unstressed).
Stress in Pintupi [HH69]

a. páŋa 'earth'
b. tʼúŋaya 'many'
c. máławàna 'through from behind'
d. púŋŋkāla†u 'we (sat) on the hill'
e. tʼámulimpatʻŋku 'our relation'
f. ŋũlirinlimpatʻu 'the fire for our benefit flared up'
g. kūran/ul limbpatʻuã 'the first one who is our relation'
h. yúmaŋkamàratʻuãka 'because of mother-in-law'
Pintupi – Linguistic generalization

a. \(\sigma \sigma \)
b. \(\sigma \sigma \sigma \)
c. \(\sigma \sigma \sigma \)
d. \(\sigma \sigma \sigma \sigma \)
e. \(\sigma \sigma \sigma \sigma \sigma \)
f. \(\sigma \sigma \sigma \sigma \sigma \sigma \)
g. \(\sigma \sigma \sigma \sigma \sigma \sigma \sigma \)
h. \(\sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \)

- Primary stress falls on the first syllable and secondary stress on all nonfinal odd syllables.

An important difference between the generalization and the words in (a)-(h) is that the generalization describes an infinite set of words, whereas the (a)-(h) only describes eight.
Pintupi with expressions. Let $\Sigma = \{\sigma, \bar{\sigma}, \sigma\}$.

- A generalized regular expression

 \[
 \sigma \left(\left(\left(\sigma \bar{\sigma}\right)^* \sigma(\sigma + \lambda)\right) + \lambda\right)
 \]

- A star free expression
 1. Let $R = (\sigma \bar{\sigma})^*$.
 2. Let $S = \lambda + \left(\begin{array}{c}
 \sigma \bar{\sigma} \\
 \& \quad \bar{\sigma} \sigma \\
 \& \quad \bar{\sigma} \sigma \bar{\sigma} \\
 \& \quad \bar{\sigma} \bar{\sigma} \bar{\sigma} \\
 \& \quad \bar{\sigma} \sigma \sigma \bar{\sigma}
 \end{array}\right)$
 3. Observe that $L_{GRE}(R) = L_{GRE}(S)$.

When we look at the definition of S, we can understand the star free expression in terms of its parts. These say “An admissible sequence is either λ or else it... must begin with σ and must end with $\bar{\sigma}$ and cannot contain any σ, and cannot contain any $\sigma \bar{\sigma}$, and cannot contain any $\sigma \sigma \sigma$.”
Substrings (also called *factors*)

1. For all $u, w \in \Sigma^*$, $u \preceq w$ ("u is a substring of w")

 $\Rightarrow (\exists x, y \in \Sigma^*)[xuy = w]$.

2. For all $w \in \Sigma^*$, $F_k(w) \overset{\text{def}}{=} \{ u \mid u \preceq w \land |u| = k \}$ if $k \leq |w|$ and

 $\{w\}$ otherwise.

3. For all $L \subseteq \Sigma^*$, $F_k(L) \overset{\text{def}}{=} \bigcup_{w \in L} F_k(w)$

Exercise 8 Calculate the following.

1. $F_2(aaa)$
2. $F_2(aaab)$
3. $F_{10}(aaab)$
4. $F_3(\sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma)$
Strictly Local Stringsets

We introduce two special symbols marking word boundaries:
\(\times, \circ \not\in \Sigma\).

Definition 3 (Strictly Local stringsets) A Strictly k-Local Grammar \(G = (\Sigma, T)\) where \(T\) is a subset of \(F_k(\{\times\} \Sigma^* \{\times\})\) and
\[
\mathbb{L}_{SL}(\Sigma, T) \overset{\text{def}}{=} \{ w | F_k(\times w \times) \subseteq T \}.
\]

A stringset \(L\) is strictly k-local if there exists a strictly k-local \(G\) such that \(\mathbb{L}_{SL}(G) = L\). Such stringsets form the exactly the Strictly k-Local stringsets (\(SL_k\)).

A stringset is strictly local if there exists a \(k\) such that it is strictly \(k\)-local. Such stringsets form exactly the Strictly Local stringsets (\(SL\)).

Exercise 9

1. Show that, given an alphabet, \(\Sigma\) and a \(k\), there are only finitely many Strictly \(k\)-local stringsets.
2. Show that \(\text{Fin} \not\subseteq SL_k\) for any \(k\).
3. Show that \(\text{Fin} \not\subseteq SL\).
4. Show that there are infinitely many \(SL\) stringsets.
Strictly Local stringsets as Tiling

• For $G = (\Sigma, T)$, the factors in T can be thought of as a set of tiles. Placing matching tiles generates words.

• In the above diagram, the tiles are 2-factors and generate the word $abab$.
Modeling Pintupi with a Strictly Local stringset

Pintupi is Strictly 3-local.

\[G = \{ \times \hat{\sigma} \times, \ \hat{\sigma} \hat{\sigma} \times, \ \sigma \times \times, \ \hat{\sigma} \hat{\sigma} \hat{\sigma}, \ \hat{\sigma} \times \times, \ \sigma \times \times, \ \hat{\sigma} \times \hat{\sigma} \times, \ \sigma \hat{\sigma} \times, \ \hat{\sigma} \hat{\sigma} \hat{\sigma} \} \]

Exercise 10

1. Generate some words with the above 3-factors.
2. Pintupi is not Strictly 2-local. Explain why not.
The tiling perspective naturally leads to a recognition strategy. Given a word, check the k-sized tiles in it one at a time from left to right against the grammar. The diagram describes such a scanner for the case when $T = \{ \times \kappa, \times a, ab, ba, b \kappa \}$.
SL stringsets - Abstract characterization

The theorem below establishes a set-based characterization of SL stringsets independent of any grammar, scanner, or automaton.

Theorem 4 (k-Local Suffix Substitution Closure) For all $L \subseteq \Sigma^*$, $L \in SL$ iff there exists k such that for all $u_1, v_1, u_2, v_2, x \in \Sigma^*$ it is the case that

$$u_1 xv_1, u_2 xv_2 \in L \text{ and } |x| = k - 1 \Rightarrow u_1 x v_2 \in L.$$

Exercise 11

1. Show that the class of SL_k stringsets is not closed under
 - Union
 - Complement
 - If $k > 2$, Kleene star.

2. Is SL closed under any of these operations?

3. (For thought) Show that SL_2 is closed under Kleene star.
Using Theorem 4

- The theorem provides a law which simultaneously
 - provides a basis for inference
 - provides a method for establishing non-SL_k stringsets.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>\sigma_1 \cdots \sigma_{k-1}</td>
<td>v_1 \in L</td>
</tr>
<tr>
<td>u_2</td>
<td>\sigma_1 \cdots \sigma_{k-1}</td>
<td>v_2 \in L</td>
</tr>
<tr>
<td>u_1</td>
<td>\sigma_1 \cdots \sigma_{k-1}</td>
<td>v_2 \in L</td>
</tr>
</tbody>
</table>

Exercise 12 Consider a Strictly 2-Local stringset L which contains the words aaa and aab. Using this theorem, explain what other words must be in L.
Showing what is *not* SL_k.

Pintupi is not Strictly 2-local because we can find a counterexample.

\[
\begin{array}{c|c|c}
\delta \sigma & \sigma & \in L \\
\hline
\delta & \sigma & \sigma & \in L \\
\hline
\delta \sigma & \sigma & \notin L
\end{array}
\]
Showing what is *not* SL.

Samala is not Strictly k-Local for any k.

<table>
<thead>
<tr>
<th>s</th>
<th>o^k</th>
<th>$s \in L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$</td>
<td>o^k</td>
<td>$\notin L$</td>
</tr>
</tbody>
</table>

Exercise 13

1. Using this theorem, explain why First/Last Harmony is not Strictly k-Local for any k.
2. Using this theorem, explain why Even-sibilants is not Strictly k-Local for any k.
Theorem 5 (SL-Hierarchy)

\[SL_1 \subsetneq SL_2 \subsetneq SL_3 \subsetneq \cdots \subsetneq SL_i \subsetneq SL_{i+1} \subsetneq \cdots \subsetneq SL \]

Every Finite stringset is \(SL_k \) for some \(k \): \(\text{Fin} \subsetneq SL \).

There is no \(k \) for which \(SL_k \) includes all Finite languages.
Earlier we introduced the above model to describe words.

Now we will introduce a logic based on a restricted form of propositional logic, along with a naming function, similar to what we did yesterday with regular expressions.

But first, to set the stage, we must discuss embeddings.
Embeddings

- An injective homomorphism between two models M_1 and M_2 with the same signature is a function h which maps every element in D_1, the domain of M_1, to elements in D_2, the domain of M_2, such that for all n-ary relations R and all n-tuples of elements of D_1,

$$R_1(x_1, \ldots, x_n) \Leftrightarrow R_2(h(x_1), \ldots, h(x_n)).$$

- Such homomorphisms are also called embeddings.

- If there exists an injective homomorphism from M_1 to M_2 we say that M_1 can be embedded in M_2, that M_1 is a submodel of M_2 ($M_1 \preceq M_2$) and M_2 is an extension of M_1.

Exercise 14

1. Assume $W \preceq$. Is there an embedding from M_{ba} to M_{ccka}? Explain.
2. Assume $W \preceq$. Is there an embedding from M_{ba} to M_{cabc}? Explain.

The following lemma is nearly immediate.

Lemma 2 Consider any words $w, v \in \Sigma^*$. Then M_w can be embedded in M_v iff w is a substring of v:

$$M_w \preceq M_v \iff w \preceq v.$$

Where the first ‘\preceq’ is a relation between models and the second a relation between strings. Thus any confusion between the two types of relations is harmless.

Note that these are strong homomorphisms; a weak homomorphism requires only that $R_1(x_1, \ldots, x_n) \Rightarrow R_2(h(x_1), \ldots, h(x_n))$
Restricted Propositional Logic (RPL)

A *sentence* of RPL is defined inductively as follows.

1. *The base cases:*
 - For all \(w \in \{\times, \lambda\} \Sigma^* \{\times, \lambda\} \), \((\neg w)\) is a sentence of RPL.
2. *The inductive case:*
 - If \(\phi \) and \(\psi \) are sentences of RPL then so is \((\phi \land \psi)\).
3. Nothing else is a sentence of RPL.

Essentially, all sentences will have the form

\[
(\neg w_0) \land (\neg w_1) \land \cdots \land (\neg w_n)
\]

In other words sentences of the restricted propositional logic considered here are simply conjunctions of negations of atomic propositions (negative literals).

(We omit many parentheses because the semantics of the naming function (next slide) are such that \(\land \) will be associative and commutative.)

This is not the only possible restricted propositional logic. We might limit it to disjunctions of positive literals, for example, which would allow definition of all and only the stringsets that are complements of stringsets definable with this RPL.
Restricted Propositional Logic - Stringsets

- To define the naming function, it is first necessary to say what it means for a word \(w \in \Sigma^* \) to model (\(\models \)) a sentence \(\phi \) in Restricted Propositional Logic.
- The idea is if \(M_w \models \phi \) then \(\phi \) is true of \(w \).
- Consider any \(v \in \{ \times \} \Sigma^* \{ \times \} \).
 1. **The base cases:**
 - For all \(w \in \{ \times, \lambda \} \Sigma^* \{ \times, \lambda \} \), \(M_v \models (\neg w) \iff M_w \not\models M_v \).
 2. **The inductive cases:**
 - For all \(\phi, \psi \) in RPL, \(v \models (\phi \land \psi) \iff v \models \phi \) and \(v \models \psi \).
- Then
 \[L_{\text{RPL}}(\phi) = \{ w \mid M_{\times w \times} \models \phi \} \]

The above definition is not signature-specific. (Although it does presume the presence of ‘\(\times \)’ and ‘\(\times \)’ in the alphabet, which will not always be the case.)

It follows that, under the \(W^\circ \) signature, stringsets are defined as exactly those words which do not contain any of the atomic propositions as substrings.

Exercise 15

1. Write a sentence of RPL that yields the Pintupi stress pattern.
2. How do the atomic elements of this sentence relate to the tiles (elements of \(T \) in the grammar-based definition) discussed earlier?
3. RPL differs from the traditional notion of propositional logic, in which the atomic formulae are propositional variables and a model is a valuation: an assignment of truth values to the propositional variables.
 (a) What, in RPL, corresponds to propositional variables?
 (b) What corresponds to a valuation?

While word models have internal structure, in the propositional semantics it only contributes to the definition of \(\not\models \). There is no way, in our propositional languages, to refer to the relations of the signature directly.

Two words are logically equivalent wrt RPL (\(w \equiv_{\text{RPL}} v \)) iff they share the same set of \(k \)-factors (\(F_k(w) = F_k(v) \)).
Cognitive complexity of SL

- Any cognitive mechanism that can distinguish member strings from non-members of a (properly) SL_k stringset must be sensitive, at least, to the length k blocks of consecutive events that occur in the presentation of the string.

- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to the immediately prior sequence of $k - 1$ events.

- Any cognitive mechanism that is not sensitive to the length k blocks of consecutive events that occur in the presentation of the string will be unable to recognize some SL_k stringsets.
Identification in the limit from text [Gol67]

- A positive presentation of a language L is a total, surjective function $t_L : \mathbb{N} \to L$. It is also called a text for L and can be thought of as an infinite sequence of elements drawn from L such that every element of L occurs at least once. The initial portion of a text up to its ith element is denoted $t_L[i]$.

- Let $\text{SEQ} \overset{\text{def}}{=} \{ t_L[i] \mid L \subseteq \Sigma^* \text{ and } i \in \mathbb{N} \}$.

- For some class of grammars \mathcal{G}, a learner is a function $\phi : \text{SEQ} \to \mathcal{G}$.

- Class L is identifiable in the limit from positive data if there exists a computable ϕ such that

 $$(\forall L \in L)(\forall t_L)(\exists i \in \mathbb{N})(\forall j > i)(\exists G \in \mathcal{G}) \left[\phi(t_L[j]) = G \text{ and } L(G) = L \right]$$

According to the above definition, there is no text for the empty language. This is usually accomodated by letting the codomain of t_L include an element ‘#’ called ‘pause’ which means a moment when no information is forthcoming. Then there would be exactly one text for the empty language: $(\forall i \in \mathbb{N})[t_{\emptyset}(i) = #]$.

The learning definition requires that for every language in the class, for every text for the language, that the learner converge to a single grammar and that this grammar be correct in the sense that it generates the target language exactly.

Surveys of different definitions of learning can be found in [OWS86, JORS99, LZZ08, ZZ08, Hei14].
Learning Fin

Theorem 6 (Gold 1967) \textbf{Fin} is identifiable in the limit from positive data.

- Consider grammars to be finite stringsets, and let L be the identity function. So $L(G) = G$.
- Let $\text{content}(t_L[i]) \overset{\text{def}}{=} \{ w \in \Sigma^* \mid (\exists i)[t_L(i) = w] \}$.
- Then consider this learner:
 $$\phi(t_L[i]) \overset{\text{def}}{=} \text{content}(t_L[i])$$

Essentially, the learning algorithm just memorizes the words it has observed so far. Since these are finite languages, in any presentation, there will be a point when every word in the language has been seen. Thus the learner will have converged to a correct grammar for the language.
Non-Learnability of ANY ‘superfinite’ class

A class of languages is superfinite if it includes every finite language and at least one infinite language.

Theorem 7 (Gold 1967) No superfinite class is identifiable in the limit from positive data.

• Therefore, none of SL, SF, and Reg is learnable in this sense.

• Gold suggested three ways to proceed: consider non-superfinite classes, allow for some negative evidence, constrain the texts (t_L) learners are required to succeed on.

Two ways (at least) to prove this. Gold’s original proof stands, but modern treatments are based on so-called ‘locking’ sequences [BB75, OWS86, JORS99]

• Show that if a learner can learn the infinite language on every text for it then there is a text for some finite language that the learner fails on.

• Show that if a learner identifies every finite language L then there is a text for the infinite language that the learner fails to identify the infinite language on.
Learning SL_k

Theorem 8 (Garcia et al. 1993) SL_k is identifiable in the limit for positive data.

Slide 55

- Let G and L be given by the grammar-theoretic definition earlier.
- Consider this learner:

$$\phi(t_L[i]) \overset{\text{def}}{=} F_k(\text{content}(t_L[i]))$$

Essentially, this learner just remembers the k-factors of words it has observed. Since there are only finitely many such k-factors at some point in any text for a SL_k language, they will all be observed.

You may observe that this learner essentially applies a function to the content of the observed text and that this function returns grammatical information. The consequences of this observation were explored by [Hei10, KK10, HKK12].
Stress Typology

Heinz’s Stress Pattern Database (ca. 2007)—109 patterns
9 are SL_2 Abun West, Afrikans, ... Cambodian,...
Maranungku
44 are SL_3 Alawa, Arabic (Bani-Hassan),...
24 are SL_4 Dutch,...
3 are SL_5 Asheninca, Bhojpuri, Hindi (Fairbanks)
1 is SL_6 Icua Tupi
28 are not SL Amele, Bhojpuri (Shukla Tiwari), Arabic (Classical), Hindi (Kelkar), Yidin,...

72% are SL, all $k \leq 6$. 49% are SL_3.

There is a polynomial time algorithm that, given a regular stringset (as a DFA) decides whether it is SL or not and, if it is, the minimum k for which it is SL_k [ELM+08].

Using this, a group of Earlham students has classified the patterns in [Hei07, Hei09] with respect to the SL hierarchy.

The results indicate that the majority of stress patterns are, in fact, quite simple and that the amount of context that is relevant is quite small.
Summary Session 2

- There are several natural definitions of \(SL \) and \(SL_k \) languages.
- \(SL_k \) is identifiable in the limit from positive data (but \(SL \) is not).
- Many phonotactic patterns and stress patterns are \(SL_k \) for small \(k \) (but not all are \(SL \)).
Overview Session 3

Local Stringsets II

• Some non-SL stress patterns
• Locally Testable Stringsets ($\text{FP}(+1)$)
• Locally Threshold Stringsets ($\text{FO}(+1)$)
• Regular Stringsets ($\text{MSO}(+1)$)
Overview of Part 3.1:

Locally Testable Stringsets (LT)

- Some non-SL stress patterns
- Locally Testable Stringsets (Full Propositional(+1))
 - Model-theoretic characterization
 - Grammatical characterization
 - Automata-theoretic characterization
 - Abstract (set-theoretic) characterization
 - Cognitive complexity of LT.
- A non-LT stress pattern
Yidin [Dix77, HV87, Hei07]

- Primary stress on the leftmost heavy syllable, else the initial syllable
- Secondary stress iteratively on every second syllable in both directions from primary stress
- No light monosyllables

Yidin is an Australian language, first described in 1971. The description is somewhat controversial, since there were very few surviving informants. In any case, it is the patterns that concern us here, not the question of whether they are linguistically accurate.
Yidin

- Primary stress on the leftmost heavy syllable, else the initial syllable
 - First H gets primary stress (No-H-before-\check{H})
 - \check{L} only if initial (Nothing-before-\check{L})
 - \check{L} implies no H (No-H-with-\check{L})

- Secondary stress iteratively on every second syllable in both directions from primary stress
 - σ and $\check{\sigma}$ alternate (Alt)

- No light monosyllables
 - No \check{L} monosyllables (No-$\times \check{L} \times$)

- At least one $\check{\sigma}$ (Some-$\check{\sigma}$) [Assumed]

- No more than one $\check{\sigma}$ (At-Most-One-$\check{\sigma}$) [Assumed]

We can extract a set of explicit constraints from the description.

These are not the only way of factoring the constraints and not fully independent. No-$\times \check{L} \times$, for example, can be reduced to No $\check{L} \times$ in the presence of Nothing-before-\check{L}. Which constraints are fundamental (which we refer to as primitive constraints) is a linguistic issue. Again, we are interested in these particular constraints, not in the issue of whether they are truly primitive.

We have factored the constraint that every word has exactly one syllable that gets primary stress, which is assumed in most cases, into two components: ≥ 1 (often called “obligatoriness”) and ≤ 1 (often called “culmanitivity”). These two components not only have distinct formal complexity, they seem to be phonotactically independent [Hym09].

Exercise 16 Which of these are SL? For those that are, what is k?
Determining Complexity of Factored Stress Patterns

- We will factor patterns into the co-occurrence (conjunction, intersection) of primitive constraints.
- Our complexity classes form a proper hierarchy.
- Each of the classes is closed under intersection.
- Hence, the complexity of a compound constraint is no more than the maximal complexity of its primitive factors.
Exercise 17

- Show that Some-σ is not SL.
- How, then, can any stress pattern be SL?

Because they are conjunctions only of negative literals, SL constraints can only forbid the occurrence of a factor, they cannot require an occurrence.

We could accommodate required factors by allowing positive literals, in which case we would have a conjunctive logic with the scope of negation limited to atomic formulae, but this gives a level of complexity that is not particularly interesting in itself. It is more useful to allow negation to have arbitrary scope, in which case we get a full Boolean logic, since disjunction can be reduced to conjunction and negation.
Full Propositional Logic for $\mathcal{W}^\varnothing (\text{Prop}(\bot))$

—Syntax

k-Expressions

k-expressions are defined inductively as follows.

1. The base cases:
 - For all $w \in F_k(\{\times\}^*\{\otimes\})$, w is a k-expression.

2. The inductive cases:
 - If ϕ is a k-expression then so is $(\neg\phi)$.
 - If ϕ and ψ are k-expressions then so is $(\phi \land \psi)$.

3. Nothing else is a k-expression.
Full Propositional Logic for $\mathcal{W}^a (\text{Prop}(+1))$
—Semantics

Consider any $v \in \{\times\}^*\{\times\}$ and any k-expression ϕ:

1. The base cases:
 - If $\phi = w \in \{\times, \lambda\}^*\{\times, \lambda\}$, $M_v \models \phi \iff M_w \preceq M_v$.

2. The recursive case:
 - If $\phi = (\neg \psi)$ then $M_v \models \phi \iff M_v \not\models \psi$.
 - If $\phi = \psi_1 \lor \psi_2$ then $M_v \models \phi \iff$ either $M_v \psi_1$ or $M_v \psi_2$

$$L(\varphi) \overset{\text{def}}{=} \{ w \in \Sigma^* | M_{\varphi w \times} \models \phi \}.$$

A stringset is k-locally definable iff it is $L(\varphi)$ for some k-expression φ. It is locally definable iff it is k-locally definable for some k.

We can, of course, now use any Boolean-definable connectives, for example:

$$\phi \rightarrow \psi \equiv \neg \phi \lor \psi$$
$$\phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$$

etc.

Implication (\rightarrow) is particularly useful in expressing linguistic constraints.
No-H-with-\hat{L} and Some-σ are Locally Definable

Some-$\sigma = \mathbb{L}(\hat{\sigma})$

No-σ-with-$\hat{L} = \mathbb{L}(\hat{L} \to \neg H)$

Exercise 18 For each of these, what is k?
k-Local Grammars

Definition 4 (k-Locally Testable Stringsets) A k-Local Grammar is a pair $\mathcal{G} = \langle \Sigma, T \rangle$ where T is a subset of $\mathcal{P}(F_k(\{ \top \}, \{ \top \})^* \{ \top \})$.

The stringset licensed by \mathcal{G} is

$\mathcal{L}_{LT}(\langle \Sigma, T \rangle) \overset{\text{def}}{=} \{ w \mid F_k(w) \in T \}$.

A stringset L is k-local if there exists a k-local \mathcal{G} such that $\mathcal{L}_{SL}(\mathcal{G}) = L$. Such stringsets form the exactly the k-Locally Testable stringsets (\mathcal{LT}_k).

A stringset is Locally Testable if there exists a k such that it is k-local. Such stringsets form exactly the Locally Testable stringsets (\mathcal{LT}).

Exercise 19 How does this definition differ from that of strictly k-local grammars?

We can get grammars for \mathcal{LT}_k stringsets by following the observation that, in the context of our propositional logics, words are, in essence, Boolean valuations of the atomic formulae, which are just the set of k-factors over the given alphabet.

So a word model just specifies which atomic formulae are to be interpreted as true (those that occur in the word) and which are false (those that do not).

An \mathcal{LT}_k grammar, then, just specifies which of these valuations (i.e., words) are acceptable.

It is immediate, then, that Local Grammars are equivalent in expressive power to k-expressions.
Membership in an \mathbf{LT}_k stringset depends only on the set of k-Factors which occur in the string.

Recognizing an \mathbf{LT}_k stringset requires only remembering which k-factors occur in the string.

Automata for \mathbf{LT} are scanners that keep track of which factors occur in the word. So the internal table embodies the valuation represented by the word.

The k-expression is implemented in Boolean network.
Character of Locally Testable sets

Theorem 9 (k-Test Invariance) A stringset L is Locally Testable iff

there is some k such that, for all strings x and y,

if $\times \cdot x \cdot \times$ and $\times \cdot y \cdot \times$ have exactly the same set of k-factors

then either both x and y are members of L or neither is.

Definition 5 (k-Local Equivalence)

\[
\begin{align*}
 w \equiv_k v & \iff F_k(\times w \times) = F_k(\times v \times).
\end{align*}
\]

It should be clear that LT definitions can’t distinguish strings that have same k-factors. So, with respect to LT definitions, strings with the same set of k-factors are equivalent.

This equivalence categorizes the set of all strings into classes based on their set of k-factors. LT definitions can’t break these classes—if one string in a class satisfies the definition then all strings in the class necessarily satisfy the definition as well.

In this way, a set of strings is LT iff it is the union of some LT$_k$ equivalence classes, for some k.

Exercise 20 Show that there are only finitely many LT$_k$ stringsets.
Using k-Local Equivalence

Inductive mode

Given some strings in an LT_k stringset, by considering the form of
the strings that are in their equivalence classes of the given strings
one can determine what other strings must be in the class.

Contradiction mode

To show that a stringset L is not LT_k it suffices to show any two
strings $w \in L$ and $v \not\in L$ which are in the same k-local equivalence
class: $w \equiv_k^L v$.
To establish that a stringset is not LT, it suffices to show that such
a counterexample exists for any k.

As with suffix-substitution closure, k-test invariance can be used inductively, to get a
sense of the strings that must be included (at least) in an LT_k the stringset given knowledge
of some of the strings it includes.

And, as with suffix-substitution closure, one can establish that a stringset is not LT by
exhibiting a class of counterexamples parameterized by k.

Exercise 21

1. Suppose that $L \in LT_2$ and that both of the strings aaba and bb are in L.
 - Give the sets of k-factors of aaba and of bb.
 - Using that, describe what other strings must be included in L (at least).

2. Let L_{2a} be the set of strings over $\{a, b\}$ which include at least two ‘a’s. (In notation we
 would say $\{w \in \Sigma^* | |w|_a \geq 2\}$.) Show that L_{2a} is not LT.
LT Hierarchy

Theorem 10 (LT-Hierarchy)

\[LT_1 \subset LT_2 \subset LT_3 \subset \cdots \subset LT_i \subset LT_{i+1} \subset \cdots \subset LT \]

Exercise 22 Prove it (them).
At-Most-One-σ is not LT
\[
\begin{align*}
\times \sigma \cdots \sigma' \sigma \cdots \sigma & \in L_{\text{One}-\sigma} \\
\times \sigma \cdots \sigma' \sigma \cdots \sigma & \not\in L_{\text{One}-\sigma}
\end{align*}
\]
But
\[
\begin{align*}
\times \sigma \cdots \sigma' \sigma \cdots \sigma & \equiv_k L_k \\
\times \sigma \cdots \sigma' \sigma \cdots \sigma & \not\in L_{\text{One}-\sigma}
\end{align*}
\]
At-Most-One-σ is not LT (hence not SL)
Cognitive interpretation of LT

- Any cognitive mechanism that can distinguish member strings from non-members of a (properly) LT_k language must be sensitive, at least, to the set of length k contiguous blocks of events that occur in the presentation of the string—both those that do occur and those that do not.

- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to the set of length k blocks of events that occurred at any prior point.

- Any cognitive mechanism that is sensitive only to the occurrence or non-occurrence of length k contiguous blocks of events in the presentation of a string will be able to recognize only LT_k languages.

Note that while negative judgments about SL constraints can be made as soon as an exception is encountered, in general judgments about properly LT constraints can’t be made until entire string has been processed. In particular, there is no way to determine that some required factor does not occur until all of the factors of the word have been scanned.
Summary of Part 3.1

- We introduced the stress pattern of Yidin which will provide us with a framework for exploring the complexity of naturally occurring constraints.
- We factored that stress pattern into a set of primitive constraints.
- The overall complexity of the full pattern will be the supremum of the complexity of those primitive constraints.
- You established that Alt and Nothing-before-\(\hat{L} \) are SL\(_2\), that (by itself) No-\(\kappa \) \(\hat{L} \) \(\kappa \) is SL\(_3\) but that its conjunction with Nothing-before-\(\hat{L} \) is just SL\(_2\).
- We established that No-\(H \)-with-\(\hat{L} \) and Some-\(\hat{\sigma} \) are not SL
Summary of Part 3.1 (cont.)

- We introduced k-expressions, the formulae of the full Propositional logic for \mathcal{W}^q.
- We established that No-H-with-\hat{L} and Some-σ are LT_1.
- We gave grammar- and automata-theoretic characterizations of LT.
- We gave an abstract characterization of LT in terms of Local Test Invariance and looked at how to use this to explore given LT stringsets and to show that a given stringset is not LT.
- We showed that At-most-one-σ is not LT.
- We gave a characterization of the cognitive complexity of LT constraints.
Overview of Part 3.2:

Locally Threshold Testable Stringsets (LTT)

- Model-theoretic characterization
- Abstract (set-theoretic) characterization
- Cognitive complexity of LTT.
- Some non-LTT stress pattern.
FO(+1)

Models: \(\langle D, \preceq, P_\sigma \rangle_{\sigma \in \Sigma} \)

First-order Quantification (over positions in the strings)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \approx y)</td>
<td>(w, [x \mapsto i, y \mapsto j] \models x \approx y \quad \text{def} \quad j = i)</td>
</tr>
<tr>
<td>(x \triangleleft y)</td>
<td>(w, [x \mapsto i, y \mapsto j] \models x \triangleleft y \quad \text{def} \quad j = i + 1)</td>
</tr>
<tr>
<td>(P_\sigma(x))</td>
<td>(w, [x \mapsto i] \models P_\sigma(x) \quad \text{def} \quad i \in P_\sigma)</td>
</tr>
<tr>
<td>(\varphi \land \psi)</td>
<td>:</td>
</tr>
<tr>
<td>(\neg \varphi)</td>
<td>:</td>
</tr>
</tbody>
</table>
| \((\exists x)[\varphi(x)] \) | \(w, s \models (\exists x)[\varphi(x)] \quad \text{def} \quad w, s[x \mapsto i] \models \varphi(x) \) for some \(i \in D \)

FO(+1)-Definable Stringsets: \(\mathbb{L}(\varphi) \quad \text{def} \quad \{ w \mid w \models \varphi \} \).

To be able to reason about multiple occurrences of the same symbol we will need to be able to talk about positions in the string. This is where the internal structure of the word models becomes essential.

FO(+1) is ordinary First-Order logic over the successor word models. The syntax of the logical formulae includes the predicate symbols for the successor relation \(\preceq \) (we use this as an infix binary relation), and for each of the alphabet symbols \(\{ P_\sigma \} \). There are no constants in this language, so the only way to refer to positions is via first-order variables, i.e., variables which range over individuals of the domain. We assume an infinite supply of these.

The semantics of the logic is defined in terms of the satisfaction relation, a relation between models and logical formulae, which asserts that the formula is true in the model, i.e., that the property that the string has the property that the formula encodes. When there are free variables in the formula (those that are not in the scope of a quantifier) this is contingent on which positions are assigned to each of those variables. When we say

\[w, [x \mapsto i, y \mapsto j] \models \varphi(x, y) \]

we are asserting that the formula \(\varphi \), in which \(x \) and \(y \) occur free, is true in the word \(w \) if \(x \) is bound to position \(i \) and \(y \) is bound to position \(j \). By convention, if \(s \) is an assignment of positions to variables (a partial function from the set of variables to the domain of the structure), \(s[x \mapsto i] \) denotes the assignment which is identical to \(s \) for all variables other than \(x \) and which binds \(x \) to \(i \).

If there are no free variables in a formula, it expresses a (non-contingent) property of strings. Formulae without free variables are called sentences. A stringset is **FO**(+1) definable iff there is a **FO**(+1) sentences that is satisfied by all and only the strings in the set.

We also include the familiar Boolean connectives and the existential quantifier. By convention, we enclose the quantifier along with the variables it binds in ordinary parentheses and enclose the formula it scopes over in square brackets. So

\[(\exists x, y)[\varphi(x) \land \psi(y)] \]
is true in a model iff there is some assignment of positions in the domain of the model to
the variables x in y which make the formulae φ (with x free) and ψ (with y free) true in
that model.

Note that the universal quantifier \forall (which asserts that all assignments to the variables
make the matrix formula true in the model) is definable from \exists:

$$(\forall x)[\varphi(x)] \equiv \neg(\exists x)[\neg\varphi(x)].$$
Some FO(+1) Definable Constraints

\[\varphi_{\text{One-}} = (\exists x)[\sigma(x) \land (\forall y)[\sigma(y) \to x \approx y]] \]

Lemma 3 Let \(f \) be any \(k \)-factor over \(\{\times, \times\} \cup \Sigma \). There is a FO(+1) sentence \(\varphi \) which is satisfied by a string \(w \) iff \(f \) occurs as a substring of \(w \).

With the ability to distinguish distinct occurrences of a symbol we can assert that there is exactly one occurrence of primary stress in a word by asserting that there is some position in which primary stress occurs \(((\exists x)[\sigma(x)] \ldots) \), and that there are no other positions in which primary stress occurs \((\land (\forall y)[\sigma(y) \to x \approx y]) \)

We no longer extend the alphabet with \(\times \) and \(\times \), as they are no longer necessary. We can assert that the position assigned to \(x \) is the initial position of the string with the formula:

\[\text{Initial}(x) \equiv \neg (\exists y)[y \triangleleft x] \]

We can define Final\((x)\) similarly.

Exercise 23

1. Write a FO(+1) sentence that is true of a string iff an unstressed syllable occurs somewhere in the string immediately before some syllable with secondary stress.

2. Prove Lemma 3. There are three (possibly four) cases to handle: when neither \(\times \) nor \(\times \) occur in the factor, when the factor starts with \(\times \) and when it ends with \(\times \). Depending on how you go about these, you may have to handle the case in which it both starts with \(\times \) and ends with \(\times \) separately.

3. Write an FO(+1) expression that asserts that the ante-penultimate (i.e., the syllable that precedes the syllable that precedes the final syllable) has no stress (neither primary nor secondary).

4. Write an FO(+1) expression that asserts that there are at least two distinct occurrences of light syllables in a word.

5. Argue that FO(+1) can express that there are at least, at most, or exactly \(n \) occurrences of a particular symbol for any natural number \(n \).
Character of the FO(+1) Definable Stringsets

Definition 6 (Locally Threshold Equivalent (≡_{k,t})) Two strings w and v are (k,t)-equivalent (w ≡_{k,t} v) iff
for all f ∈ F_k(∈ w · ∈) ∪ F_k(∈ v · ∈)
either |∈ w · ∈|_f = |∈ v · ∈|_f
or both |∈ w · ∈|_f ≥ t and |∈ v · ∈|_f ≥ t,

Definition 7 (Locally Threshold Testable) A set L is Locally Threshold Testable (LTT) iff there is some k and t such that, for all w, v ∈ Σ∗ if w ≡_{k,t} v then w ∈ L ⇐⇒ v ∈ L.

Theorem 11 (Thomas) A set of strings is First-order definable over ⟨D,≺,P_σ⟩_{σ∈Σ} iff it is Locally Threshold Testable.

LT_k = LTT_{k,1}, hence LT ⊆ LTT

LTT_{k,t} stringsets categorize strings on the basis of (k,t)-equivalence; a stringset is LTT_{k,t} iff it is the union of some set of equivalence classes of Σ∗ wrt ≡_{k,t}.
Membership in an $\textbf{FO}(+1)$ definable stringset depends only on the multiplicity of the k-factors, up to some fixed finite threshold, which occur in the string.
Cognitive interpretation of FO(+1)

- Any cognitive mechanism that can distinguish member strings from non-members of a (properly) FO(+1) stringset must be sensitive, at least, to the multiplicity of the length \(k \) blocks of events, for some fixed \(k \), that occur in the presentation of the string, distinguishing multiplicities only up to some fixed threshold \(t \).

- If the strings are presented as sequences of events in time, then this corresponds to being able count up to some fixed threshold.

- Any cognitive mechanism that is sensitive only to the multiplicity, up to some fixed threshold, (and, in particular, not to the order) of the length \(k \) blocks of events in the presentation of a string will be able to recognize only FO(+1) stringsets.
A non-FO(+1) Definable Constraint

No-H-before-\(\hat{H} \)

- Primary stress falls on the leftmost heavy syllable
- Yidin, Murik, Maori, Kashmiri, ...

\[
\ast \; H \ldots \hat{H}
\]

\[
\times \frac{2kt}{LL\ldots LL\; LL\; H\; \hat{L}\ldots \hat{L}\; \hat{L}\; H\; LL\ldots LL\times}
\]

\[
\equiv_{k,t} \frac{L}{L}
\]

\[
\ast \times \frac{2kt}{\hat{L}\; L\ldots \hat{L}\; LL\; \hat{L}\ldots \hat{L}\; \hat{L}\; LL\ldots LL\times}
\]

No-H-before-\(\hat{H} \) requires the ability to reason about the order of occurrences of symbols without being explicit about adjacency. There are two ways of doing this. One is to move to a signature including \(\triangleright^+ \), which we will do in the next class.

The other is to extend \(k \)-expressions with concatenation. Both Some-\(H \) and Some-\(\hat{H} \) are \(\mathsf{LT}_1 \) constraints, so No-H-before-\(\hat{H} \) is just the complement of the concatenation of two \(\mathsf{LT} \) stringsets. McNaughton and Papert [MP71] define \(\mathsf{LTO} \) to be the closure of \(\mathsf{LT} \) under concatenation and Boolean operations. They then show that \(\mathsf{LTO} \) is equivalent to both \(\mathsf{SF} \) and \(\mathsf{FO}(\langle \rangle) \) (just two of at least three truly remarkable results in this book). We will return to this class of stringsets tomorrow.
Summary of Part 3.2

- We introduced the syntax and semantics of First-Order logic over \mathcal{W}^∞ known generally as FO(+1).
- We showed that No-More-than-One-σ, and hence, One-σ is FO(+1) definable.
- We showed that the substring relation is FO(+1) definable.
- We gave Thomas’s characterization of FO(+1) in terms of Local Threshold Testability and introduced the dual hierarchy of classes $\mathsf{LTT}_{k,t}$.
- We introduced LTT automata
- We characterized the cognitive complexity of LTT constraints.
- We showed that No-H-before-\check{H} is not LTT.
Overview of Part 3.3:

Regular Stringsets (Reg)

- MSO(+1)
- FSA as tiling systems
- Projections (Alphabetic Homomorphisms)
- Cognitive complexity of Reg.
- Yidin revisited
Monadic Second-Order Logic over Strings
(MSO(+1))

\[\langle D, \triangleleft, P_\sigma \rangle_{\sigma \in \Sigma} \]

First-order Quantification (positions)
Monadic Second-order Quantification (sets of positions)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X(x))</td>
<td>(w, s \models X(x) \iff s(x) \in s(X))</td>
</tr>
<tr>
<td>((\exists X)[\varphi(X)])</td>
<td>(w, s \models (\exists X)[\varphi(X)] \iff w, [X \mapsto S] \models \varphi(x)) for some (S \subseteq D)</td>
</tr>
</tbody>
</table>

MSO(+1)-Definable Stringsets: \(L(\varphi) \) def= \(\{ w \mid w \models \varphi \} \).

\(\triangleleft^+ \) is MSO-definable from \(\triangleleft \), so there is no difference in terms of definability between MSO(+1) (for \(\mathbb{W}_\triangleleft \) models) and MSO(+1, \(< \)) (for \(\mathbb{W}_{\triangleleft, \triangleleft^+} \) models).

Monadic Second-Order adds quantification over subsets of the domain. We use capital letters for set variables to distinguish them from individual variables (lower case). Again, there are no constants in this language so the only way to refer to specific sets is via these variables. We treat them as if they were monadic relation symbols: \(X(x) \) asserts that the individual that is assigned to \(x \) is included in the set assigned to \(X \).

To show that MSO(+1, \(< \)) \(\equiv \) MSO(+1), it suffices to show that the \(\triangleleft^+ \) relation can be defined in MSO using only \(\triangleleft \):

\[
x \triangleleft^+ y \iff (\forall X) \left[((\forall z_0, z_1)[(X(z_0) \land z_1 \triangleleft z_0) \rightarrow X(z_1)] \land X(y)) \rightarrow X(x) \right]
\]

This says that every downward closed set (i.e., every set that includes the predecessors of all elements in the set) that includes \(y \) also includes \(x \).

Exercise 24

- **Give an MSO(+1, \(< \)) formula that is satisfied by all and only those strings that satisfy No-H-before-H.**
- **Give an MSO(+1) formula (that does not use the MSO(+1) definition of \(\triangleleft^+ \)) that does the same thing. (Hint, use an MSO variable to mark positions in the string. Then use \(\exists X \) to erase the marks.)**
Finite State Automata can be thought of as scanners with a single symbol window and a state that stores arbitrary (but finitely bounded) information about the string that has been scanned so far in an internal state.
Finite State Automata (cont.)

We can think of the FSA as a categorizer of strings; when it scans a string the state that it ends up in is the category of that string from the perspective of the FSA. The FSA places every string in Σ^* in at least one category. It is deterministic (a DFA) if it places each string in Σ^* in exactly one category; it is non-deterministic (an NFA) if it may place some strings in more than one. The information represented by a state is the set of properties of strings that are common to all of the strings that end up in that state.

When we say (on the previous slide) that the amount of information must be bounded, what we meant (precisely) is that there is a fixed finite bound on the number of categories, that is, the FSA has a fixed number of states. In particular, this means that the amount of information we are tracking can’t depend on the length of the string.

When we say that it must be information about the string that has been scanned so far, we imply that it must be possible to keep track of that information as we scan the string one symbol at a time. What this means is that it must be possible to properly define a relation that tells how to update the state as the FSA scans a symbol. This is the transition relation of the FSA. It relates a pair of states with a symbol of the alphabet, e.g., $\langle q_i, q_j, \sigma \rangle$ which says that if the FSA is in state q_i and it is scanning the symbol σ it may go to state q_j. For a DFA, this relation is functional in the first and third component; for each q_i and σ there is exactly one q_j; if the DFA is in state q_i and is scanning σ it must go to state q_j.

Some set of states are designated to be accepting, strings that are described by the information encoded in that state are strings that belong in the stringset the FSA defines. That stringset is the union of the sets of strings associated with those accepting states; we say that the FSA recognizes that set.

Exercise 25

- Give a DFA that recognizes No-\(\hat{H} \)-before-\(\hat{H} \).
- So No-\(\hat{H} \)-before-\(\hat{H} \) is at most Reg. Show that it is actually only SF.
Alternatively, we can interpret the triples of the transition relation as L-shaped tiles. The tiling is constrained by the states. This gives a tiling system that generates two strings in parallel: one a sequence of states and the other a sequence of symbols. The sequence of states is the sequence of states the FSA visits as it scans the sequence of symbols.

We can expand the tiles to square tiles by adding new tile types for each of the original tiles, a new type for each symbol of the alphabet in which the fourth corner has been filled in with that symbol.

We can think of these tiles as being pairs of pairs of a state and a symbol. This just gives us a new alphabet, one in which each “symbol” pairs a state and a symbol. The tiling, then, generates strings of these pairs.

With that perspective, the tiles are just an SL_2 tiling system and the set of strings of pairs that it generates is just an SL_2 stringset, one that happens to be strings of state/symbol pairs.

The key thing about this stringset is that, because of the way we constructed the generator out of the FSA tiling system, if we erase the state from each of the pairs in a string it generates, we are left with a string that is accepted by the FSA; if we do that for each of the strings in the SL_2 stringset, we are left with the original stringset, which, of course, is a Reg stringset.

This is a remarkable connection between one of the weakest classes with one that, for our purposes, is the strongest.
Projections of Stringsets

A *Projection* is an alphabetic homomorphism, a mapping of one alphabet into another: $h : \Gamma \to \Sigma$.

The image of a string under a projection is the result of applying that mapping to each symbol in the string in turn.

The image of a stringset under a projection is the set of images of the strings in the set.

Since the projection is functional, it can never gain information. The number of distinct symbols in the image of a string can never be more than the number of distinct symbols in the string itself.

In general projections may be many to one; they may lose information. We can think of them as striping away some of the distinctions that are made by the first alphabet.
Theorem 12 (Medvedev’64(’56) [Med64]) Every regular stringset is a projection (the image under an alphabetic homomorphism) of a strictly 2-local stringset.

Slide 90

Let \(\Gamma = Q \times \Sigma \) where \(Q \) is the set of states of an FSA. We’ve established that the set of strings over \(\Gamma \) which represent accepting runs of that automaton is SL\(_2\).

Let \(h(\langle q, \sigma \rangle) = \sigma \). Then the image of the set of accepting runs under \(h \) is the set of strings that are accepted by the automaton.
Characterization of MSO(\(+1\))

Definition 8 (Nerode equivalence)

\[w \equiv_L v \overset{\text{def}}{\iff} (\forall u)[wu \in L \iff vu \in L]. \]

\[[w]_L \overset{\text{def}}{=} \{ v \in \Sigma^* \mid w \equiv_L v \} \]

Theorem 13 A stringset \(L \) is recognizable iff

\[\text{card}(\{[w]_L \mid w \in \Sigma^*\}) \text{ is finite.} \ (\equiv_L \text{ has finite index.}) \]

Nerode classes correspond to the minimal information that must be retained about a string in order to make a judgment about whether its continuations are members of the given stringset. As long as there are finitely many of these classes, these can be represented by a DFA.
MSO and Reg

\[
\begin{align*}
&(\exists X_0, X_1)[(\forall x, y)[x \triangleleft y \land X_0(x) \land P_a(x) \to X_1(y)] \land \\
&(\forall x, y)[x \triangleleft y \land X_0(x) \land P_b(x) \to X_0(y)] \land \\
&(\forall x, y)[x \triangleleft y \land X_1(x) \land P_a(x) \to X_0(y)] \land \\
&(\forall x, y)[x \triangleleft y \land X_1(x) \land P_b(x) \to X_1(y)] \land \\
&(\forall x)[\neg(\exists y)[y \triangleleft x] \to X_0(x)] \land \\
&(\forall x)[\neg(\exists y)[x \triangleleft y] \to X_0(x)]
\end{align*}
\]

MSO satisfaction is relative to the assignment of sets to MSO variables (as well as assignment of points to FO variables, but we can take these to be MSO variables with assignments restricted to be singleton sets).

Note that MSO variables pick out sets of points in same way that \(P_\sigma\) do.

In order to capture a FSA with an MSO sentence, we can use these auxiliary labels to represent the state, as we did in capturing runs of the FSA in SL_2. We require each position to be labeled with some state and each transition of the DFA can then be captured with an MSO sentence, as can the requirements that the initial position is labeled with a start state and the final position with a final state. The conjunction of these defines a set of strings corresponding to the runs of the DFA.

We can then project away the extra labels by existentially binding them.
In building an automaton that recognizes the set of strings satisfying a given MSO sentence, the key requirement is, in essence, to invert the construction of the previous slide. Where we had used MSO variables to represent the states of the automaton, we will use the states of the automaton to encode the assignments of the MSO variables. Each state represents a subset of the free variables in the MSO formula. (WLOG we assume that all free variables are MSO). A string will end up in a given state iff the last position of the string is a member of each of the sets of positions assigned to the MSO variables encoded by the state.

The actual construction is done recursively on the structure of the formula. We start with automata for the atomic formulae and then construct automata for the compound formulae using these. For the most part, this involves standard automata construction techniques: union, determinization and complement, in particular. The construction for existential quantification is more complicated in that it involves a change in the alphabet—the number of free variables in the matrix of the formula is one more than that of the formula itself.
Cognitive Complexity of Reg

- Any cognitive mechanism that can distinguish member strings from non-members of a finite-state stringset must be capable of classifying the events in the input into a finite set of abstract categories and are sensitive to the sequence of those categories.

- Subsumes any recognition mechanism in which the amount of information inferred or retained is limited by a fixed finite bound.

- Any cognitive mechanism that has a fixed finite bound on the amount of information inferred or retained in processing sequences of events will be able to recognize only finite-state stringsets.

This does not imply that such a mechanism actually requires unbounded resources. It could employ a mechanism that, in principle, requires unbounded storage which fails on sufficiently long or sufficiently complicated inputs.

Or would if it ever encountered such.
Yidin Reprise

- One-\(\sigma\)
 \((\exists x)[\sigma(x)]\)
 (LT\(_{1,2}\))

- No-\(H\)-before-\(\bar{H}\)
 \(\neg(\exists x,y)[x < y \land H(x) \land \bar{H}(y)]\)
 (SF)

- No-\(H\)-with-\(\bar{L}\)
 \(\neg(H \land \bar{L})\)
 (LT\(_1\))

- Nothing-before-\(\bar{L}\)
 \(\neg \sigma \bar{L}\)
 (SL\(_2\))

- Alt
 \(\neg \sigma \land \neg \bar{\sigma} \land \neg \bar{\sigma} \land \neg \bar{\sigma} \land \neg \sigma \land \neg \bar{\sigma}\)
 (SL\(_2\))

- No \(\not\bowtie \bar{L} \not\bowtie\)
 \(\neg \not\bowtie \bar{L} \not\bowtie\)
 (SL\(_4\))

Yidin is SF

Exercise 26 The FO\((+1)\) formula establishes that No-\(H\)-before-\(\bar{H}\) is Reg, not that it is SF. Show that it is SF (without using the Day 4 results).
Summary of Part 3.3

- We introduced the syntax and semantics of Monadic Second-Order logic for \(\mathbb{W}^2 \): MSO(+1).

- We introduced Finite State Automata, focusing on them as classifiers of strings. A stringset is \(\text{Reg} \) iff it is recognizable by an FSA.

- You showed that No-\(H \)-before-\(\dot{H} \) is an MSO(+1) definable constraint. You also showed that it is SF, so we still don’t have a good bound on its complexity.

- We introduced a tiling system for FSAs.

- We introduced projections of stringsets and used this, along with the tiling, to show that every \(\text{Reg} \) stringset is actually a projection of an \(\text{SL}_2 \) stringset.
Summary of Part 3.3

- We have observed that MSO(+1) and \textbf{Reg} are equivalent.
- We gave Nerode's characterization of the \textbf{Reg} stringsets.
- We considered the cognitive complexity of \textbf{Reg} constraints.
- We showed that the complexity of No-H-before-\ddot{H} determines the overall complexity of the stress pattern of Yidin. Which is \textbf{SF} when viewed from the local perspective.

We have been busy little beavers.
Overview Session 4

- Harmony
- Subsequences
- Strictly Piecewise Languages/Restricted Propositional(<)
- Piecewise Testable Languages/Propositional(<)
- Star-Free Languages/FO(<)
- Co-occurrence classes: Local+Piecewise/Propositional(+1,<)
Long-Distance Dependencies

Samala (Chumash) sibilant harmony:
s does not occur in the same word as \(f \)

\[
[\text{tojonowanowaf}] \text{ ‘it stood upright’} \quad *[\text{tojonowanowas}]
\]

\[
(\Sigma^* \cdot s \cdot \Sigma^* \cdot f \cdot \Sigma^*) + (\Sigma^* \cdot f \cdot \Sigma^* \cdot s \cdot \Sigma^*)
\]

Sarcee sibilant harmony:
s does not occur before \(f \)

a. /si-tʃiz-a?/ \(\rightarrow \) \(f\text{ʃ}t\text{idzə} \) ‘my duck’
b. /na-s-yaʃɬ/ \(\rightarrow \) \(näʃyəʃ \) ‘I killed them again’
c. cf. \(*s\text{ʃ}t\text{idzə} \)

\[
\Sigma^* \cdot s \cdot \Sigma^* \cdot f \cdot \Sigma^*
\]

Two kinds of sibilant harmony:

- Samala—symmetric
 - s does not occur with \(f \) (either order).
- Sarcee—asymmetric
 - s does not occur before \(f \) (but may come after).
Complexity of Sibilant Harmony

Symmetric sibilant harmony (Samala) is LT

\[-(f \land s) \]

Asymmetric sibilant harmony (Sarcee) is not FO(+1)

\[\times w \int w s w \equiv L \]

\[\equiv_{k,t} \]

\[* \times w \int w s w \int w \]
Precedence—Subsequences

Definition 9 (Subsequences)

\[v \sqsubseteq w \iff v = \sigma_1 \cdots \sigma_n \quad \text{and} \quad w \in \Sigma^* \cdot \sigma_1 \cdot \Sigma^* \cdots \Sigma^* \cdot \sigma_n \cdot \Sigma^* \]

\[P_k(w) \overset{\text{def}}{=} \{ v \in \Sigma^k \mid v \sqsubseteq w \} \]

\[P_{\leq k}(w) \overset{\text{def}}{=} \{ v \in \Sigma^{\leq k} \mid v \sqsubseteq w \} \]

Redo same sequence of classes but with arbitrary (\(\sqsubseteq^+\)) rather than immediate (\(\sqsubseteq\)) precedence.

Technical reasons: subsequences of length \(\leq k\): \(P_{\leq k}\)
Word Models for Subsequences

\[W^{\alpha^+} = \langle D, \triangleleft^+, P_\sigma \rangle_{\sigma \in \Sigma} \]

Lemma 4 If \(M_w^{\alpha^+} \) and \(M_v^{\alpha^+} \) are precedence models for the strings \(w \) and \(v \), respectively, then

\[M_w^{\alpha^+} \preceq M_v^{\alpha^+} \iff w \sqsubseteq v \]

To parallel the local side of the hierarchy completely, we could have used \(\preceq \) for subsequence as well as substring (since they are both submodels). But since we will eventually want to talk about both relations at the same time we will distinguish them.
Restricted Propositional Logic (RPL)

A sentence of RPL is defined recursively as follows.

1. The base cases:
 - For all $w \in \Sigma^*$, $(\neg w)$ is a sentence of RPL.

2. The inductive case:
 - If ϕ and ψ are sentences of RPL then so is $(\phi \land \psi)$.

3. Nothing else is a sentence of RPL.

We repeat here the almost exactly the same definitions for syntax and semantics of RPL. The only difference in the syntax is that we can no longer use the endmarkers $\{\&, \}$. This is because the ends of the strings are local phenomena and we want to restrict the languages on the piecewise side of the hierarchy to phenomena with arbitrary radius.
Restricted Propositional Logic - Stringsets

• Consider any $v \in \Sigma^*$.
 1. The base cases:
 - For all $w \in \Sigma^*$, $M_w \models (\neg w) \iff M_w \not\geq M_v$.
 2. The inductive case:
 - For all ϕ, ψ in RPL, $v \models (\phi \land \psi) \iff v \models \phi$ and $v \models \psi$.

• Then
 $$L_{RPL}(\phi) = \{ w \mid M_w \models \phi \}$$
Strictly Piecewise Stringsets—SP \([RHB^{+10}]\)

Definition 10 (Strictly Piecewise Stringsets) A stringset is **Strictly Piecewise** iff the \(M^{\ast}\) models of its member strings is \(L_{RPL}(\phi)\) for some RPL sentence \(\phi\).

Definition 11 (Strictly Piecewise Grammars) A **Strictly \(k\)-Piecewise Grammar** \(G = (\Sigma, T)\) where \(T\) is a subset of \(\Sigma^{\leq k}\) and

\[
L_{SP}^{k}(\langle \Sigma, T \rangle) \overset{\text{def}}{=} \{ w \in \Sigma^{*} \mid P_{\leq k}(w) \subseteq T \}.
\]

Membership in an \(SP_{k}\) stringset depends only on the individual \((\leq k)\)-subsequences which do and do not occur in the string.

Again, the only distinction is the interpretation of the elements of \(T\). Heinz [Hei07] defined an equivalent class as Precedence Languages.
Character of the Strictly k-Piecewise Sets

[Rankin et al. 2010]

Theorem 14 A stringset L is Strictly k-Piecewise Testable iff it is closed under subsequence:

$$wσv ∈ L \Rightarrow wv ∈ L$$

Every naturally occurring stress pattern requires Primary Stress

$⇒$

No naturally occurring stress pattern is SP.

But SP can forbid multiple primary stress: $\negσσ$
Yidin constraints wrt SP

- One-σ is not SP

- No-H-before-\(\hat{H} \) is SP\(_2\)

- No-H-with-\(\hat{L} \) is SP\(_2\)

- Nothing-before-\(\hat{L} \) is SP\(_2\)

- Alt is not SP

- No \(\times \hat{L} \times \) is not SP

\[* \sigma \sigma \subseteq \sigma \sigma \sigma \]
\[\neg \hat{H} \hat{H} \]
\[\neg \hat{H} \hat{L} \land \neg \hat{L} H \]
\[\neg \sigma \hat{L} \]
\[* \sigma \sigma \sigma \subseteq \sigma \sigma \sigma \sigma \]
\[* \hat{L} \subseteq \hat{L} L \]
Cognitive interpretation of SP

- Any cognitive mechanism that can distinguish member strings from non-members of a (properly) SP_k stringset must be sensitive, at least, to the length k (not necessarily consecutive) sequences of events that occur in the presentation of the string.

- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to up to $k - 1$ events distributed arbitrarily among the prior events.

- Any cognitive mechanism that is sensitive only to the length k sequences of events in the presentation of a string will be able to recognize only SP_k stringsets.
Full Propositional Logic for $\mathcal{W}^{\omega^+} (\text{Prop}(\prec))$

—Syntax

k-Piecewise-Expressions

k-Piecewise-expressions are defined inductively as follows.

1. The base cases:
 - For all $w \in \Sigma^\leq_k$, w is a k-Piecewise-expression.

2. The inductive cases:
 - If ϕ is a k-Piecewise-expression then so is $(\neg \phi)$.
 - If ϕ and ψ are k-Piecewise-expressions then so is $(\phi \land \psi)$.

3. Nothing else is a k-Piecewise-expression.

Again, the only change in the syntax is the loss of the endmarkers...
Full Propositional Logic for \mathcal{W}^{σ^+} (Prop($<$))

—Semantics

Consider any $v \in \Sigma^*$ and any k-Piecewise-expression ϕ:

1. *The base cases:*
 - If $\phi = w \in \Sigma^{\leq k}$, $M_v \models \phi \iff M_w \subseteq M_v$.

2. *The recursive case:*
 - If $\phi = (\neg \psi)$ then $M_v \models \phi \iff M_v \nmid \psi$.
 - If $\phi = \psi_1 \lor \psi_2$ then $M_v \models \phi \iff$ either $M_v \psi_1$ or $M_v \psi_2$

$$L(\varphi) \overset{\text{def}}{=} \{w \in \Sigma^* \mid M_w \models \phi\}.$$

A stringset is *piecewise definable* iff it is $L(\varphi)$ for some k-piecewise-expression φ. It is *piecewise definable* iff it is k-piecewise definable for some k.

...and the type of the models.

Imre Simon [Sim75] first introduced this class.
k-Piecewise Grammars

Definition 12 *(k-Piecewise Testable Stringsets)* A *k*-Piecewise Grammar is a pair \(G = \langle \Sigma, T \rangle \) where \(T \) is a subset of \(\mathcal{P}(\Sigma^{\leq k}) \).

The stringset licensed by \(G \) is

\[L_{PT}(\langle \Sigma, T \rangle) \overset{\text{def}}{=} \{ w | P_{\leq k}(w) \in T \}. \]

A stringset \(L \) is *k-piecewise* if there exists a *k-piecewise* \(G \) such that \(L_{PT}(G) = L \). Such stringsets form the exactly the *k*-Piecewise Testable stringsets \((PT_k)\).

A stringset is Piecewise Testable if there exists a \(k \) such that it is *k-piecewise*. Such stringsets form exactly the Locally Testable stringsets \((PT)\).
Character of Piecewise Testable sets

Theorem 15 (k-Subsequence Invariance) A stringset L is Piecewise Testable iff

there is some k such that, for all strings x and y,

if x and y have exactly the same set of $(\leq k)$-subsequences

then either both x and y are members of L or neither is.

$$w \equiv_k^P v \iff P_{\leq k}(w) = P_{\leq k}(v).$$
Yidin constraints wrt SP

- One-ĥ is \mathbf{PT}_2
 \[\sigma \land \neg \sigma \hat{\sigma} \]
- No-\(H\)-before-\(\hat{H}\) is \mathbf{SP}_2
 \[\neg H \hat{H} \]
- No-\(H\)-with-\(\hat{L}\) is \mathbf{SP}_2
 \[\neg H \hat{L} \land \neg L \hat{H} \]
- Nothing-before-\(\hat{L}\) is \mathbf{SP}_2
 \[\neg \sigma \hat{L} \]
- Alt is not \mathbf{PT}
 \[\ast \overset{2k}{\sigma \hat{\sigma} \cdots \sigma \hat{\sigma}} \equiv \overset{P}{\sigma \hat{\sigma} \cdots \sigma \hat{\sigma}} \]
- No $\times \hat{L} \times$ is \mathbf{PT}_2
 \[\hat{L} \rightarrow (\sigma \hat{L} \lor \hat{L} \sigma) \]
Cognitive interpretation of PT

• Any cognitive mechanism that can distinguish member strings from non-members of a (properly) \mathbf{PT}_k stringset must be sensitive, at least, to the set of length k subsequences of events that occur in the presentation of the string—both those that do occur and those that do not.

• If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to the set of all length k subsequences of the sequence of prior events.

• Any cognitive mechanism that is sensitive only to the set of length k subsequences of events in the presentation of a string will be able to recognize only \mathbf{PT}_k stringsets.
\[\text{FO}(\prec) \]

Models: \(\langle D, \prec^+, P_\sigma \rangle_{\sigma \in \Sigma} \)

First-order Quantification (over positions in the strings)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \approx y)</td>
<td>(w, [x \mapsto i, y \mapsto j] \models x \approx y \quad \text{def} \quad j = i)</td>
</tr>
<tr>
<td>(x \prec^+ y)</td>
<td>(w, [x \mapsto i, y \mapsto j] \models x \prec^+ y \quad \text{def} \quad i < j)</td>
</tr>
<tr>
<td>(P_\sigma(x))</td>
<td>(w, [x \mapsto i] \models P_\sigma(x) \quad \text{def} \quad i \in P_\sigma)</td>
</tr>
<tr>
<td>(\varphi \wedge \psi)</td>
<td>..</td>
</tr>
<tr>
<td>(\neg \varphi)</td>
<td>..</td>
</tr>
<tr>
<td>((\exists x)[\varphi(x)])</td>
<td>(w, s \models (\exists x)[\varphi(x)] \quad \text{def} \quad w, s[x \mapsto i] \models \varphi(x)) for some (i \in D)</td>
</tr>
</tbody>
</table>

FO(\prec)-Definable Stringsets: \(L(\varphi) \overset{\text{def}}{=} \{ w \mid w \models \varphi \} \)
FO(\prec) Definability

\prec is \textit{FO}(\prec) definable

\[R_\prec(x, y) \equiv x \prec^+ y \land (\forall z)[x \prec^+ z \rightarrow \neg z \prec^+ y] \]

Hence FO(+1) ⊊ FO(<). No-\textit{H}-before-\textit{H} \textit{witnesses that the inclusion is proper.}

\textit{Alt} is \textit{FO}(\prec)

\[(\forall x, y)[\sigma(x) \leftrightarrow \sigma(y)]]\]
Star Free Expressions - Grammars and Stringsets

- A Star Free Expression is a GRE containing no ‘And’ (&) or Kleene star (‘*’).

\[\cdot, +, - \]

\textbf{SF} is the closure of \textbf{Fin} under concatenation, union and complement.
FO(<) and SF

To show that SF ⊆ FO(<)

- Fin ⊆ SL ⊆ FO(+1) ⊆ FO(<).
- FO(<) is closed under disjunction by definition.
- Concatenation:

 If φ is a FO formula, let φ|(l, r)(l, r) be the relativization of φ to the interval [l, r], where φ|(l, r)(l, r) is syntactically identical to φ except that each ‘(∃x)[ψ(x)]’ is replaced by ‘(∃x)[l ⪯ x ∧ x ⪯ r ∧ ψ(x)]’

 Let $L_1 = L(\phi_1)$ and $L_2 = L(\phi_2)$. Then $L_1 \cdot L_2$ is $L(\phi_{1\cdot2})$ where

 $$\phi_{1\cdot2} \overset{\text{def}}{=} (\exists x_1, x_2, x_3)[\phi_1|(l, r)(x_1, x_2) \land \phi_2|(l, r)(x_2, x_3)]$$

FO(<) and SF

Theorem 16 (McNaughton & Papert [MP71]) A set of strings is First-order definable over \mathbb{N}_+ iff it is Star-Free.
Yidin wrt Local and Piecewise Constraints

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Local Constraint</th>
<th>Piecewise Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-(\sigma)</td>
<td>(\text{LTT}_{1,2})</td>
<td>(\text{PT}_2)</td>
</tr>
<tr>
<td>Some-(\sigma)</td>
<td>(\text{LT}_1)</td>
<td>(\text{PT}_1)</td>
</tr>
<tr>
<td>At-Most-One-(\sigma)</td>
<td>(\text{LTT}_{1,2})</td>
<td>(\text{SP}_2)</td>
</tr>
<tr>
<td>No-(H)-before-(\dot{H})</td>
<td>(\text{SF})</td>
<td>(\text{SP}_2)</td>
</tr>
<tr>
<td>No-(H)-with-(\dot{L})</td>
<td>(\text{LT}_1)</td>
<td>(\text{SP}_2)</td>
</tr>
<tr>
<td>Nothing-before-(\dot{L})</td>
<td>(\text{SL}_2)</td>
<td>(\text{SP}_2)</td>
</tr>
<tr>
<td>Alt</td>
<td>(\text{SL}_2)</td>
<td>(\text{SF})</td>
</tr>
<tr>
<td>No (\ast) (\dot{L}) (\ast)</td>
<td>(\text{SL}_3)</td>
<td>(\text{PT}_2)</td>
</tr>
</tbody>
</table>

Yidin is \(\text{SF}\) with either local or piecewise constraints.
Yidin wrt Local and Piecewise Constraints

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Symbol</th>
<th>1 (\sigma)</th>
<th>2 (\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-(\sigma)</td>
<td>LTT(_{1,2})</td>
<td>PT(_2)</td>
<td></td>
</tr>
<tr>
<td>Some-(\sigma)</td>
<td>LT(_1)</td>
<td>PT(_1)</td>
<td></td>
</tr>
<tr>
<td>At-Most-One-(\sigma)</td>
<td>LTT(_{1,2})</td>
<td>SP(_2)</td>
<td></td>
</tr>
<tr>
<td>No-(H)-before-(\hat{H})</td>
<td>SF</td>
<td>SP(_2)</td>
<td></td>
</tr>
<tr>
<td>No-(H)-with-(\hat{L})</td>
<td>LT(_1)</td>
<td>SP(_2)</td>
<td></td>
</tr>
<tr>
<td>Nothing-before-(\hat{L})</td>
<td>SL(_2)</td>
<td>SP(_2)</td>
<td></td>
</tr>
<tr>
<td>Alt</td>
<td>SL(_2)</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>No (\times \ \hat{L} \times)</td>
<td>SL(_3)</td>
<td>PT(_2)</td>
<td></td>
</tr>
</tbody>
</table>

Yidin is co-occurrence of SL and PT constraints or of LT and SP constraints.
Stress Patterns wrt Local Constraints

- **SL** — 89 of 109 patterns
- **LT**
 - None
- **LTT**
 - Alawa, Bulgarian, Murik
- **SF**
 - Amele, Arabic (Classical), Buriat, Cheremis (East), Cheremis (Meadow), Chuvash, Golin, Komi, Kuuku Yau, Lithuanian, Mam, Maori, K. Mongolian (Street), K. Mongolian (Stuart), K. Mongolian (Bosson), Nubian, Yidin
- **Reg**
 - Arabic (Cairene), Arabic (Negev Bedouin), Arabic (Cyrenaican Bedouin)
Stress Patterns wrt Piecewise Constraints

- **SP**
 None

- **PT**
 Amele, Bulgarian, Chuvash, Golin, Lithuanian, Maori K. Mongolian (Street), Murik,

- **SF**
 Alawa, Arabic (Classical), Buriat, Cheremis (East), Cheremis (Meadow), Komi, Kuuku Lau, Mam, K. Mongolian (Bosson), K. Mongolian (Stuart), Nubian, Yidin

- **Reg**
 Arabic (Cairene), Arabic (Negev Bedouin), Arabic (Cyrenaican Bedouin)

Don’t know where the **SL** patterns fall
Stress Patterns wrt Co-occurrence of Local and Piecewise Constraints

- **SL + SP** — 89 of 109 patterns
- **SL + PT** — Komi, Kuuku Lau, Yidin
- **LT + SP**
 - Alawa Amele, Arabic (Classical), Bulgarian, Buriat, Cheremis (East), Cheremis (Meadow), Chuvash, Golin, Komi, Kuuku Lau, Lithuanian, Mam, Maori K. Mongolian (Bosson), K. Mongolian (Street), K. Mongolian (Stuart), Murik, Nubian, Yidin
- **SF** — None
- **Reg**
 - Arabic (Cairene), Arabic (Negev Bedouin), Arabic (Cyrenaican Bedouin)

Those in **SL + PT** constraints are subset of those in **LT + SP** constraints.
Arabic (Negev Bedouin)

- In sequences of light syllables, secondary stress falls on the even numbered syllables, counting from the left edge of the sequence.
- This pattern is used only for the sake of defining main stress. Secondary stress is absent on the surface.

Without reference to secondary stress

- Odd number of unstressed light syllables precedes a light syllable with primary stress

Without LH state

No \(\hat{L} \) out of LH state
Arabic (Negev Bedouin) with explicit secondary stress

\[\phi_{\text{Lalt}} = \neg LL \land \neg \hat{L} \hat{L} \land \neg \hat{L} \hat{L} \land \neg \hat{H} \hat{L} \land \neg \hat{S} \hat{L} \]

If secondary stress is explicit, then Arabic (Negev Bedouin) is LT
Some Constraints

- Forbidden syllables (SL_1, SP_1)
 - No heavy syllables
- Required syllables (LT_1, PT_1)
 - Some primary stress
- Forbidden initial/final syllables (SL_2, SF)
 - Cannot start with unstressed light
 - Cannot start with unstressed heavy
 - Cannot end with stressed light
- Forbidden adjacent pairs (SL_2, SF)
 - No adjacent unstressed
 - No adjacent secondary stress
 - No heavy immediately following a stressed light

$L \land \neg \sigma L \iff \not \times L$
Properly Regular Constraints

- Alternation (Reg)
 - Arabic (Negev Bedouin), …
 - This class of constraints accounts for all properly regular stress patterns (that are known to us).
Thanks for your excellent participation!

Apart from the notes Jim will send around, here are some references for further reading [MP71, RHB+10, RHF+13],
References

