Contents

Contributors

Acknowledgements

Introduction: aims and content

Paul de Lacy

1 Themes in phonology

Paul de Lacy

Part I Conceptual issues

2 The pursuit of theory

Alan Prince

3 Functionalism in phonology

Matthew Gordon

4 Markedness in phonology

Keren Rice

5 Derivations and levels of representation

John J. McCarthy

6 Representation

John Harris

7 Contrast

Donca Steriade

Part II Prosody

8 The syllable

Draga Zec

9 Feet and metrical stress

René Kager

10 Tone

Moira Yip

11 Intonation

Carlos Gussenhoven

12 The interaction of tone, sonority, and prosodic structure

Paul de Lacy

Part III Segmental phenomena

13 Segmental features

T. A. Hall

14 Local assimilation and constraint interaction

Eric Baković

15 Harmony

Diana Archangeli and Douglas Pulleyblank

16 Dissimilation in grammar and the lexicon

John D. Alderete and Stefan A. Frisch

page vii

ix

1

5

31

33

61

79

99

119

139

159

161

195

229

253

281

309

311

335

353

379
or as coalescence, as in de Lacy's (2002a) detailed account. The consonant that survives is generally less sonorous than its competitor, as in /lag-no/ yielding [lagga] ([l]a-ga-ti) 'to attach', or /ki-ta/ yielding [kina] ([k]i-r-i-ta) 'to strew'. Although the surviving consonant is a geminate, its selection seems to be driven by the preference for low sonority onsets. Yet simplex onsets do not exhibit a comparable tendency towards low sonority.

19 This case has further complexities. Another repair strategy is assimilation: the input sequence /ful-nemmo/ becomes [ful.len.mo] 'we go out' and /mar-nonni/ becomes [mar.ron.ni] 'they went.' For details, see Gouskova (2004).

9

Feet and metrical stress

René Kager

9.1 Metrical stress: introduction

9.1.1 What are stress languages?

In stress languages, one or more syllables in each word or phrase is said to be 'more prominent' than others. Prominence is not an intrinsic property of stressed syllables, but a matter of relative strength between 'stronger' and 'weaker' syllables. Most stress languages distinguish only two degrees of stress: stressed and unstressed. Yet a further distinction among stressed syllables into primary and secondary stress is common, while some languages even display a three-way distinction into primary, secondary, and tertiary stress. Here we will use the IPA conventions for stress notation. Primary stress is indicated by a superscript vertical bar before the syllable carrying it, secondary stress by a subscript vertical bar. Consider, for example, the transcription for 'designate': ['de.zeg.net].

There is no unique phonetic property corresponding to stress, although it is cross-linguistically highly common for stressed syllables to have higher pitch levels, longer duration, and greater loudness than unstressed syllables. Tones tend to be attracted to stressed syllables (see Gussenhoven Ch.11, Yip Ch.10, and de Lacy Ch.12). Yet, stress is clearly different from tone in the sense that stress does not assimilate, neither locally between adjacent syllables, nor across longer distances. Cross-linguistically, relations between segmental properties and stress are common. The vowels of stressed syllables are prone to lengthen, while those of unstressed syllables may undergo reduction. Stressed syllables tend to license a larger set of vowels than unstressed syllables.

In 'free stress' languages, word stress is lexically contrastive, resulting in minimal pairs that differ in terms of stress alone (e.g. Russian ['baŋrɪt'] 'to spear fish' and [baŋ'ɡɪt] 'to paint crimson'). In 'fixed stress' languages, stress is phonologically predictable, but a word's morphological structure may affect the location of stress. For example, suffixes may attract stress,
repel it, or be stress-neutral. Also, prefixes may be included in the word stress domain or fall outside it. This chapter will focus on fixed-stress languages, and mostly ignore contrastive stress and morphological effects.

9.1.2 Cross-linguistic properties of stress
A number of properties of stress languages have been identified, some of which are universal. Among these properties, the following four are well-established.

9.1.2.1 Culminative stress
'Culminativity' means that there is one and only one maximally prominent peak within a stress domain. It is characteristic of stress languages for grammatical units (stems, words, or phrases) to have minimally one stressed syllable. This stress peak, the most prominent syllable in its grammatical domain, typically serves as the anchoring point for intonational contours (see Gussenhoven Ch.11). At the word level, culminativity amounts to a stressability requirement, which many languages impose on content words (nouns, verbs, adjectives, or adverbs) but relax it for function words (articles, pronouns, prepositions, etc.), which are prosodically dependent on content words (McCarthy & Prince 1986).

9.1.2.2 Demarcative stress
Stress can have a demarcative function: it signals the beginning and/or end of morphological boundaries. Cross-linguistically, stress tends to be attracted to syllables located near the edges of grammatical units, especially the initial syllable. Since final syllables are exempted from stress in many languages, initial and prefinal syllables are, by far, the most favored locations of stress, followed by stress on the second and final syllable. Examples from Diyari (Austin 1981, Poser 1989) illustrate how stress may serve to highlight morphological structure. All morphemes, stems or suffixes, of length two or more syllables, are stressed on their initial syllable.

(1) Diyari: initial stress on all polysyllabic morphemes
 (a) 'kana-ni,mata 'man' (loc, iden.)
 (b) 'kana,-wara-ngu 'man' (pl. loc.)
 (c) 'kana,-wara,-ngundu 'man' (pl. abl.)
 (d) 'jakalka,-jirpa,-mali-na 'to ask' (ben. recip. part.)

Observe how the minimal binarity requirement on stressfulness serves to avoid stress on final syllables, as well as on adjacent syllables. This naturally leads us to the next property.

9.1.2.3 Rhythm
Stress languages show a preference for well-formed rhythmic patterns, where strong and weak syllables are spaced apart at regular intervals. This is manifested by avoidance of adjacent stressed syllables ('clash'), or by avoidance of strings of unstressed syllables ('lapse'). Nevertheless, stress languages vary in degree of rhythmicity. On one end of the spectrum, bounded languages occur, with perfectly alternating rhythms, oriented toward the left or right edge of the word. For example, Pintupi (Hansen & Hansen 1969) has stress on the initial syllable and following alternate nonfinal syllables, while Warao (Osborn 1966) stresses the prefinal syllable and alternate preceding syllables.

(2) Pintupi: stress on initial syllable and following alternate nonfinal syllables
 (a) t'e,li,pi,ri,gu,lam,pa,t'u 'the fire for our benefit flared up'
 (b) j'u,ma,sa,ing,ka,ma,ra,t'a,ga,ka 'because of mother-in-law'

(3) Warao: stress on penultimate syllable and preceding alternate syllables
 (a) ja,pu,ru,ki,ta,ne,ha,se 'verily to climb'
 (b) e,na,ho,ro,a,ha,ku,ta,i 'the one who caused him to eat'

At the opposite end of the rhythmic spectrum we find unbounded languages which have one stress per word and no alternating rhythm, allowing long strings of unstressed syllables. Unbounded stress patterns are exemplified in (4)-(5) by Selkup and Western Cheremis. Selkup (Kuzneceva et al. 1980, Walker 1997) stresses the rightmost heavy syllable (heavy syllables have long vowels in this language), and otherwise the initial syllable in forms lacking heavy syllables. Selkup is a so-called 'default-to-opposite-edge' system.

(4) Selkup: stress on rightmost heavy syllable, otherwise initial syllable
 (a) L H L H qu,mo,qi,li,n 'your two friends'
 (b) H H L u,co,m,pi,'ti 'we work'
 (c) L L H L py,na,ki,so, 'giant'
 (d) 'L L L L qol,ci,ma,pa,ti 'found'

A 'default-to-same-edge' system occurs in Western Cheremis (Itohnen 1955, Walker 1997), where stress falls on the rightmost nonfinal strong (i.e. full-vowelled) syllable and otherwise, in forms lacking nonfinal strong syllables, on the rightmost nonfinal syllable.

(5) Western Cheremis: stress on rightmost nonfinal strong syllable, otherwise penult
 (a) H L H H 'ba,ta,lam 'I laugh'
 (b) H L L H o,s'ma,t,ta 'sand' (iness.)
 (c) L L L L po,ri,jam 'I went in'
 (d) L L H a,mel,tem 'I throw my shade on'
9.1.2.4 Quantity-sensitivity

Stress prefers to lodge on syllables which have a certain degree of intrinsic prominence. Usually, the relevant property is syllable weight (moraic quantity, see Zec Ch.8). Long vowels and vocalic diphthongs are always bimoraic; coda consonants are mora-bearing on a language-specific basis, so (CVC) syllables may count as heavy in one language and light in another. Occasionally, stress is attracted by syllables which carry a high tone, or contain a vowel of high sonority (see de Lacy Ch.12). Stress attraction by heavy syllables was exemplified for unbounded languages by Selkup and Western Cheremis (4–5).

A striking case of a bounded quantity-sensitive pattern is found in Yidiŋ (Dixon 1977). In words containing an even number of syllables which lack long vowels, stress falls on all odd-numbered syllables (6a). When a long vowel occurs in an even-numbered syllable, stress falls on even-numbered syllables (6b). In words containing an odd number of syllables, the penultimate syllable is lengthened, and stress falls on even-numbered syllables (6c–d).

(6) Yidiŋ: mutual dependence of stress and vowel length

(a) /gudaga-nil/ 'gu-da.'gai-nil 'dog' (gen.)
(b) /durgu-nil-la/ dur.'gu-nil.'la 'mopoke owl' (gen./loc.)
(c) /gudaga/ gu.'da-ga 'dog' (abs.)
(d) /gudaga-gudaga/ gu.'da-gu.'da-ga 'dog' (red.)

This example shows how the presence of stress depends on quantity, as well as how quantity can depend on stress. Yidiŋ lengthens the vowel of a stressed penultimate syllable, increasing its quantity. Another related cross-linguistically common strategy is consonant gemination in stressed syllables. Conversely, vowels in unstressed syllables tend to shorten, reduce, or even delete, thus decreasing their syllable weight, as in English /ætəm/ 'atom' surfaced as /ætəm/ and /ɑːtəm/ 'atomic'. In sum, quantity-sensitivity amounts to an agreement between quantitative structure (patterns of light and heavy syllables) and metrical structure (groupings into weak and strong syllables).

Although usually a strict division into quantity-sensitive and quantity-insensitive systems is assumed, stress systems actually fall into finer-grained classes, showing various degrees of quantity-sensitivity, with a range of intermediate positions (Kager 1992a, b; Alber 1997).

9.2 The formal representation of stress

Our representational basis is metrical phonology, a theory whose central assumption is that stress is a relational property, represented by prominence relations between constituents in hierarchical structures (Liberman 1975; Liberman & Prince 1977; Hayes 1980). We use the metrical representation known as constituentized grid or bracketed grid (Hammond 1984; Halle & Vergnaud 1987; Hayes 1995), which combines the metrical grid with constituency.

9.2.1 The grid

The metrical grid forms a hierarchical representation of rhythm (Liberman 1975; Liberman & Prince 1977; Prince 1983; Selkirk 1984b), a succession of columns of grid elements of different height. Height of columns represents a syllable's relative prominence. Horizontally, the arrangement of grid elements represents rhythm, from which alternation, stress clash, and stress lapse can be read. As an example, consider the alternating stress pattern of Apalachecola /əpe,laetʃˈksəla/. Its grid analysis (7) contains six columns, each standing over a syllable. The first, third and fifth columns are taller than the second, fourth and sixth. The fifth column, indicating the grid's culminating peak, is taller than the first and third.

(7) PrWd-level x
Foot-level x x x
Syllable-level x x x x x x
æ. po. ,e. tfi. 'ko. la

This particular grid shows a perfect rhythmic alternation, since all strong foot-level beats are separated by a weak syllable-level beat.

The grid, as a representation of rhythm, is essential in the description of word stress patterns. Languages strive towards a rhythmic alternation of strong and weak syllables, avoiding dis-rhythmic situations, known as 'stress clash' and 'lapse'. We define 'clash' as a situation of adjacent strong beats without an intervening weak beat at the next-lower level (Liberman 1975; Liberman & Prince 1977; Prince 1983; Selkirk 1984b).

(8) Clash n+1 x x
n x x

'Lapse' is defined as the adjacency of two grid elements at level n, without either having a level n+1 counterpart.

(9) Lapse n+1
n x x

'Rhythmic alternation' is defined as the absence of clash and lapse. Every two grid elements which are adjacent at level n+1 must be separated by precisely one element at level n.

(10) Alternation n+1 x x x
n ... x x x x x ...

Pure-grid variants of metrical theory, which involve no metrical constituency, were proposed by Prince (1983), Selkirk (1984b), and Gordon (2002a).

9.2.2 Metrical constituency

Metrical constituency refers to groupings of grid elements at low levels into higher-order elements. Constituency is formally represented by bracketing
grid elements by pairs of parentheses (Hammond 1984, Halle & Vergnaud 1987, Halle & Idsardi 1995, Hayes 1995). Each constituent has an obligatory head, represented by a grid element at the next-higher level, plus an optional non-head, which has no corresponding mark at the next-higher level. By adding constituency to the grid in (7), we obtain a bracketed representation in (11).

\[
\begin{array}{c}
\text{PrWd-level} \\
& x \\
\text{Foot-level} \\
& (x & x & x) \\
\text{Syllable-level} \\
& (x & x) & (x & x) & (x & x) \\
& \text{œ. pa.} & \text{læ. tʃi.} & \text{’ko. lɔ} \\
\end{array}
\]

At the syllable level, pairs of grid elements are bracketed together by parentheses into threemetrical feet: (œ. pa.), (læ. tʃi.), (’ko. lɔ). Rhythmically strong syllables are called 'heads'. Strong-initial feet, as in (11), are called trochees. Each foot projects its head by a gridmark at the foot level. Elements at the foot level are similarly bracketed together in a single constituent, whose head is final in English. This projects a grid element at the Prosodic Word level, the culminating peak of the word.

Hayes (1995) uses a flattened bracketed grid representation, which collapses three layers into two. Within each constituent, the head is represented by an asterisk, the non-head by a dot.

\[
\begin{array}{c}
(& * &) \\
(’ & * &) & (’ & * &) \\
\text{œ. pa.} & \text{læ. tʃi.} & \text{’ko. lɔ} \\
\end{array}
\]

Throughout this chapter, we will use even flatter representations, as exemplified in (13). Dots denote syllable boundaries; parentheses, foot boundaries; and square brackets, PrWd boundaries. Relative prominence is marked by IPA-style stress marks before syllables:

\[
[[\text{œ. pa.}, \text{læ. tʃi.}, ’\text{ko. lɔ}]]
\]

These informal representations are notationally equivalent with bracketed grids in (11) and (12).

9.2.3 An inventory of metrical feet

A central hypothesis of metrical theory is that there is a small universal inventory of foot types, and languages can only select types from this inventory. The particular foot inventory which we focus on (Hayes 1985, 1987, 1995; McCarthy & Prince 1986; Prince 1990) is based on converging evidence from a range of phenomena found in natural languages, including stress patterns, rhythmic lengthening and shortening, word minima, and templates in prosodic morphology. It contains three basic foot types, two of which are trochaic (head-initial), and one iambic (head-final). The quantity-insensitive syllabic trochee requires two syllables of indiscriminate weight. The quantity-sensitive moraic trochee has two light syllables, or a single heavy syllable. Finally, the quantity-sensitive iamb has three forms: two light syllables, a single heavy, or a light syllable plus a heavy syllable (14).

\[
\begin{array}{c|c|c}
\text{licit forms} & \text{degenerate forms} \\
\hline
\text{Syllabic trochee} & (’.) & (’.) \\
& σ σ & σ \\
\hline
\text{Moraic trochee} & (’.) & (’.) & (’.) \\
& σ σ & σ & σ \\
\hline
\text{iamb} & (’.) & (’.) & (’.) & (’.) \\
& σ σ & σ & σ & σ \\
\end{array}
\]

This foot inventory is asymmetrical in the sense that it imposes a sharp rhythmic distinction between iams, whose preferred expansion (light-plus-heavy) is quantitatively uneven, and trochees, which are quantitatively even at the level of the syllable or mora. Another major element of the foot inventory is its distinguishing licit expansions, which meet the requirement of binarity at the level of the syllable or the mora, from degenerate expansions, which fall below the binary threshold. Many languages avoid degenerate feet altogether, while other languages allow them only in absolutely peripheral positions or under main stress (Kager 1989, 1993, 1995a; Kiparsky 1991; Hayes 1995, cf. Halle & Idsardi 1995).

We will use an informal notation for feet, where a syllable of indiscriminate weight is denoted by 'o', a light syllable by 'L', and a heavy syllable by 'H'. The head of the foot is underlined (15).

\[
\begin{array}{c|c|c}
\text{licit expansions} & \text{degenerate expansion} \\
\hline
\text{Syllabic trochee} & (gɔ) & (g) \\
\text{Moraic trochee} & (LL) & (L) & (L) \\
\text{iamb} & (LH) & (LH) & (LH) & (LH) \\
\end{array}
\]

We now turn to a brief discussion of these foot types. For fuller exemplification of stress systems, see typological studies such as Hyman (1977), Hayes (1980, 1995), Halle & Vergnaud (1987), Elenbaas & Kager (1999), Gordon (2002a), and the papers in Goedemans, van der Hulst & Visch (1996).

9.2.3.1 Syllabic trochees

The syllabic trochee is exemplified in its most canonical, strictly binary form by languages which lack a syllable weight contrast altogether, such as Pintupi (16) and Warao (17), where the direction of metrification is rightward and leftward, respectively.
16. Pintupi (Hansen & Hansen 1969): syllabic trochees from left to right

- Primary stress is initial.
- Secondary stresses fall on every odd-numbered non-final syllable.

(a) 'onoi 'pa.na 'earth'
(b) 'onoi 'gu.nu.i 'mother'
(c) 'onoi,ono 'ma.la.,wa.na 'through (from) behind'
(d) 'onoi,ono 'pu.lij,ka.la,tu 'we (sat) on the hill'
(e) 'onoi,ono 'yu.mu.lim,pa,tu 'our relation'
(f) 'onoi,ono 'ti.li,ri.gu,lam,pa.tu 'the fire for our benefit (flared up)

17. Warao (Osborn 1966): syllabic trochees from right to left

- Primary stress is penultimrate.
- Secondary stress falls on alternate syllables counting back from the primary stress.

(a) 'onoi 'ti.ra 'woman'
(b) o 'onoi ko.'ra.nu 'drink it!'
(c) 'onoi 'ru.hu.'na.e 'he sat down'
(d) o 'onoi 'jo 'he finished it'
(e) 'onoi,ono 'ja.pu.,ru.ki,ta.ne 'ra.se 'to verily to climb'
(f) 'onoi,ono 'e,na.ho.,ro.a,ha.ku.ta 'the one who caused him to eat'

The syllabic trochee also serves to analyse languages which possess a syllable weight contrast, but fully or partially ignore it in stress assignment. Languages of this type are rare (Kager 1992a,b), a case being Finnish (Carlson 1978, Hanson & Kiparsky 1996, Elenbaas & Kager 1999). Unstressed heavy syllables occur, so as to avoid clash, as well as (optionally) to avoid final stress. As shown by (18ii) and (18cii), optional alternative metrifications of (18iii) and (18i)ii, the syllabic trochee allows for a monosyllabic foot consisting of a single heavy syllable.

- Primary stress is initial.
- Secondary stress is variable, partly depending on syllable quantity, where closed syllables count as heavy.

(a) 'onoi L 'pe.rj.o 'inheritor' (nom.)
(b) i 'onoi H 'ku.ni.ni.gos 'king' (nom.)
(ii) 'onoi,ono 'ku.ni.gos 'the king'
(c) i 'onoi,ono 'ra.vi.nio.tu 'restaurants' (nom.)
(ii) 'onoi L,ono 'ra.vi.nio.tu

Taking into account similar foot minima in other syllabic trochee languages, Hayes (1995) proposes to redefine the licit forms of the syllabic trochee as (σ o) or (H), the so-called generalized trochee. As a result, all three foot types share a definition of the degenerate foot as a single light syllable (L).

9.2.3.2 Moraic trochees

The moraic trochee captures the idea that a single heavy syllable is quantitatively and metrically equivalent to two light syllables (Allen 1973; Halle & Vergnaud 1978; McCarthy 1979a; Prince 1983). It is exemplified by the pattern of Cairene Arabic (19), in particular the stressing of classical Arabic words in this dialect (Mitchell 1960). The foot bracketing is due to Hayes (1995).

19. Cairene Arabic (Mitchell 1960): moraic trochees from left to right

- Stress falls on the penult or antepenult, whichever is separated by an even number of syllables from the rightmost nonfinal heavy syllable or, if there is no heavy syllable, from the left edge of the word.
- Secondary stresses are phonetically covert.

(a) (LL)(LL) L ,a,fa.ru.ta 'his tree'
(b) (LL)(LL) L ,a,ha.ru.ta 'their dual tree'
(c) (H)(LL) (LL) ?a,wa.ja.ta 'his drugs'
(d) (H)(LL) (LL) L ,a,wa.ja.ta 'their dual drugs'

The analysis brackets together pairs of moras into feet, going from left to right through the word. Note that heavy syllables cannot be split between feet. Also note that a licit bimoraic trochee cannot consist entirely of a single light syllable – hence the lack of final stress in (19a) and (19d). The theory restricts quantity-sensitive trochees to (LL) quantitatively balanced 'even' trochees, ruling out (HL) 'uneven' trochees.

Hayes (1995) observes that crucial distributional rhythmic evidence for the even trochee comes from rightward metrification, in particular from the parsing of a heavy syllable which is immediately followed by a string of light syllables. Even bimoraic trochees (H), (LL) predict the parsing in (20a), with a clash, while 'uneven' trochees (H), (HL), (LL) predict the rhythmically alternating (20b).

20. left-right parsing

(a) even trochee \rightarrow (H)(LL)(LL) ?a,wa.ja.ta;'tu.ta 'his drugs'
(b) uneven trochees \rightarrow (HL)(LL) L ?a,wa.ja.ta;'tu.ta

This context thus allows differentiation between an 'even' and 'uneven' parsing mode. On the basis of examples such as (20) from Cairene Arabic, Hayes rejects uneven trochees in favour of even trochees. Leftward moraic trochees could not, however, offer direct distributional evidence for the even trochee, since the even trochaic parsing \rightarrow (H) L (LL) (LL) is, qua stress distribution, indistinguishable from the uneven parsing \rightarrow (HL) L (LL). Unambiguous examples of right-to-left moraic trochees are rather difficult to obtain. Hayes (1995) analyzes languages such as Maithili (21) in this way.

(a) (LL)(H) L ,a,da.ha 'laha 'bad'
(b) (LL)(LL) ,a,na.ni.ha 'no gloss'
(c) (H)(LL) ,a,da.ta.hi 'thin'
Hayes’ argument for the even trochee in Maithili is indirect, and depends on the placement of primary stress in (21e–f). This involves foot extrametricality, a device rendering the final foot ineligible for primary stress placement. In Hayes’ analysis, foot extrametricality is triggered by a clash between the final foot’s head syllable and the preceding syllable. Moreover, only absolutely final feet can ever be extrametrical, due to the Peripherality Condition on extrametricality (Harris 1983). If [H(L)] were a licit foot, forms such as (21d) would be wrongly predicted to undergo foot extrametricality, resulting in an initial primary stress [‘H(‘HL)]. Assuming the even parsing [‘H(‘HL)], the Peripherality Condition correctly blocks extrametricality.

9.2.3.3 Iambics

Iambics are exemplified by Hixkaryana, where foot structure is apparent from the lengthening of vowels in alternating open syllables. Word-final syllables are never lengthened, and can be assumed to remain unfooted. Hixkaryana (22) matches Cairene Arabic in having a rightward metricalisation. No primary-secondary stress difference is reported, so all stresses are marked with the primary stress symbol.

(22) Hixkaryana (Derbyshire 1979): iambics from left to right

- Stress falls on heavy syllables and on even-numbered non-final syllables in strings of open syllables. Stressed open syllables are rhythmically lengthened.

(a) (L)(L) → (‘H)(L) L to‘roc.no ‘small bird’
(b) (L)L→ (‘H)(L) L L a‘t.o.wo,wo ‘wind’
(c) (L)L→ (‘H)(L) L L ne‘a.m.s.ko,t.o,no ‘it fell’
(d) (L)L→ (‘H)(L) L ‘k.a.na.ni:m.ho.no ‘I taught you’
(e) (L)L→ (‘H)(L) L ‘a.k.ma.t:a.r.i ‘branch’
(f) (L)L→ (‘H)(L) L ‘t.o.h.ku.r:ah.o,na ‘Tohkuruye’
(g) (L)L→ (‘H)(L) L ‘t.o.h.ku,r:ah.o,na:ha‘f:ah.ha ‘finally to Tohkuruye’

The analysis features extrametricality of final syllables, which is highly common in iambic languages.

Iamb is not restricted to languages that have a weight distinction, as Araucanian shows (23).

(23) Araucanian (Echeverria & Contreras 1965): iambics from left to right

(a) (σ) wu‘le ‘tomorrow’
(b) (σ) σ tl‘pan.to ‘year’
(c) (σ)(σ) e‘lu.mu.ju ‘give us’
(d) (σ)(σ) σ e‘lu.a,e.new ‘he will give me’
(e) (σ)(σ)(σ)(σ) ki‘mu.fa,lu.wu,la‘j ‘he pretended not to know’

Hayes (1995) maintains that languages of this type, which have no syllable weight contrast, nor iambic lengthening, do not counter-exemplify the foot inventory. See Kager (1993) for further discussion.

Hixkaryana and Araucanian exemplify rightward metricalisation. The uneven parsing → (L)(L)(L)(L) suits the uneven iamb, though not exclusively, since even iamb would predict the same stress distribution → (L)(L’)(L’)(L’). To test the prediction about the iamb’s uneven shape, a quantity-sensitive case is needed with leftward metricalisation. Unfortunately, the leftward quantity-sensitive iamb is notoriously rare, the best known case being TubaTabulaL (24).

(24) TubaTabulaL (Voegelin 1935): leftward iambics, degenerate feet allowed

(a) (L)L(L)L wi’ta:.ha,‘tal ‘the Tejon Indians’
(b) (L)L(L)L wi’ta:.ha,‘ta.la:ba,‘cu ‘away from the Tejon Indians’
(c) (L)L(L) ha‘ni‘la ‘the house’ (obj.)
(d) (L)L(L) ‘ta’.ha,wi,la: ‘in the summer’
(e) (L)L(L) ‘a.na.na:‘ni,ni:μ ‘he is crying wherever he goes’ (distr.)

The parsing has degenerate feet, just like leftward quantity-insensitive iambic languages, such as Weri (25). (L) is described as a ‘vibrant alveolar’ by Boxwell & Boxwell (1966).

(25) Weri (Boxwell & Boxwell 1966): leftward iambics, degenerate feet allowed

(a) (L)L gi‘n.trp ‘bee’
(b) (L)L ko‘l:po ‘hair of arm’
(c) (L)L o‘.lu.a’m ‘mist’
(d) (L)L ko,ne.te‘pa1 ‘times’
(e) (L,L)(L,L) li,le,we,li‘a1 ‘two ladders’
(f) (L,L)(L,L)(L,L) mol.mol,la,men,ti‘a1 ‘two tomatoes’

That is, no languages are attested which have the same stress patterns as TubaTabulaL and Weri, except that degenerate feet are disallowed. Here, the initial stress would be missing in odd-numbered forms, resulting in an initial lapse. The strong correlation between direction of parsing and minimum foot size in right-to-left iambic languages goes unexplained by current foot-based metrical theories. The iambic asymmetry is among the major theoretical issues in metrical phonology.

9.2.3.4 Alternative foot inventories

Alternative foot inventories have been proposed, which depart from asymmetric foot theory in more or less radical ways. Kager (1993), remaining otherwise close to the rhythmic assumptions of asymmetric theory, assumes a strictly binary foot inventory, including a bimoraic iamb. Arguments for the uneven trochees occur in Jacobs (1990, 2000), Rice (1992), van der Hulst & Klamer (1996), and Mellander (2001, 2004). Halle & Vergnaud (1987), Halle (1990), Halle & Kenstowicz (1991), Idsardi (1992), and Halle & Idsardi (1995) assume a
symmetrical foot inventory in which grid elements and metrical brackets can be independently manipulated. 'Resolved' feet with branching heads are proposed by Dresher & Lahiri (1991) and Lahiri & Dresher (1999). Some theories allow overlapping foot constituents (Crowhurst & Hewitt 1995; Hyde 2002).

9.3 Metrification in Optimality Theory

This section presents an Optimality-Theoretic analysis (Prince & Smolensky 2004, McCarthy & Prince 1993a, b) of the preliminary metrical typology developed in Section 9.2. The discussion proceeds from binary quantity-insensitive systems to ternary systems, quantity-sensitive systems, and unbounded systems.

9.3.1 Binary quantity-insensitive systems

A binary system is one in which stressed and unstressed syllables alternate by binary intervals, so that all odd-numbered or even-numbered syllables, counting from the left edge or right edge of the word, are stressed. We start our survey with rhythmic patterns which involve light syllables only. Examples come from languages which lack syllable weight distinctions, as well as, occasionally, from languages which have such a distinction. In the typologically most common case, feet must be strictly binary and fall into a single sweep of metrification: such uni-directional patterns start from one edge, usually the left, and run to the opposite edge (9.3.1). The main departure from strict binarity concerns systems in which feet are allowed to be unary under duress (9.3.2); a departure from uni-directionality concerns systems in which metrification is bi-directional, being oriented toward both word edges (9.3.3).

We start by observing that foot type (trochee or iambe) will be selected by the relative ranking of two constraints, \(\text{FtType} = \text{TROCHEE} \) and \(\text{FtType} = \text{IAMBE} \), which determine the side of the head within a foot. Their ranking with respect to other stress constraints is of little importance, and for this reason, we leave these constraints out of consideration. Binary rhythm is enforced by two constraints. The first requires all syllables in a Prosodic Word to be parsed by feet, while the second imposes binarity on feet, excluding feet falling below the threshold (unary, degenerate feet) or above it (unbounded feet).

(26) \text{PARSE-SYL}

Syllables are parsed by feet.

(27) \text{Ft-BIN}

Feet are binary under moraic or syllabic analysis.

While in words composed of an even number of syllables both constraints can be naturally met by an exhaustive parse, these constraints conflict in words that contain an odd number of syllables. In strictly binary patterns, such as Pintupi (28), unary feet are disallowed by top-ranked Ft-Bin. However, this is achieved at the expense of exhaustive parsing, since any word with an odd number of syllables will contain an unfooted syllable, even when parsing is otherwise maximally tight.

(28) Strictly binary feet (Pintupi): Ft-BIN \(\rightarrow \) PARSE-SYL

<table>
<thead>
<tr>
<th>/σ σ σ σ σ σ/</th>
<th>Ft-BIN</th>
<th>PARSE-SYL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (σ σ) (σ σ)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(b) (σ σ) (σ σ)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(c) (σ σ) (σ σ)</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

In alternating patterns which allow degenerate feet, as in candidate (28a), the ranking is reversed, as shown in Section 9.3.2.

Although the relative ranking of Ft-Bin and PARSE-SYL determines whether feet are binary, the direction of parsing still needs to be settled. The classical OT analysis of directional metrification is based on a pair of foot alignment constraints, \(\text{AllFt-Left} \) and \(\text{AllFt-Right} \) (McCarty & Prince 1993a). For every foot, these constraints calculate the distance, gradiently expressed in syllables, between its left (right) edge and the left (right) edge of the word.

(29) \text{ALLFt-LEFT}

Align (Ft, L, PrWd, L) “Every foot stands at the left edge of the PrWd.”

(30) \text{ALLFt-RIGHT}

Align (Ft, R, PrWd, R) “Every foot stands at the right edge of the PrWd.”

The total number of violation marks equals the sum of all individual violations by feet. Consequently, when \(\text{AllFt-L} \) or \(\text{AllFt-R} \) is undominated, only one foot, standing at the absolute edge of the word, is allowed. The reverse ranking, with \(\text{PARSE-SYL} \) dominating \(\text{AllFt-X} \) (where X stands for either 'left' or 'right'), is required for alternating systems such as Pintupi and Murinbata.

(31) Mini-typology: single foot versus multiple feet

(a) single foot systems: Ft-BIN, ALLFt-X \(\rightarrow \) PARSE-SYL

(b) alternating systems: Ft-BIN \(\rightarrow \) PARSE-SYL \(\rightarrow \) ALLFt-X

The analysis of Pintupi (32), with alternating stresses on non-final odd-numbered syllables, shows minimal violation effects of foot alignment, and the resulting left-to-right foot distribution:

(32) Left-to-right binary feet in Pintupi

PrFt-Bin \(\rightarrow \) PARSE-SYL \(\rightarrow \) AllFt-L \(\rightarrow \) AllFt-R

<table>
<thead>
<tr>
<th>/pulŋkalat(^{t})u/</th>
<th>Ft-Bin</th>
<th>PARSE-SYL</th>
<th>AllFtL</th>
<th>AllFtR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) ((\text{pu}.\text{liŋ},.[,ka,.la,.]t)u)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(b) ((\text{pu}.\text{liŋ},[.ka,.]t)u)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(c) (\text{pu}.[liŋ,.][,ka,.]t)u</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(d) ((\text{pu}.\text{liŋ},[.ka,.]t)u</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>(e) ((\text{pu}.\text{liŋ},[,ka,.],t)u</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Violation of All-PrL is assessed gradually: a violation mark is incurred for every syllable occurring between the left edge of a foot and the left edge of the word; for each candidate, violation marks for individual feet are summed. Violations are separated by commas above to make it easier to see which feet are responsible for which violations. The same syllable can be the cause of several violations — one for every foot it appears before. Candidate (32a) incurs a smaller number of marks than its closest competitor (32b), reflecting the minimal difference in the position of the rightmost feet. Since All-PrL pulls all feet towards the left edge of the word, the unparsed syllable ends up in word-final position.

9.3.2 Mixed binary + unary systems
A departure from strict foot binarity resides in systems which allow degenerate feet (33).

(33) Murinbata (Street & Mollinjin 1981): rightward trochees, degenerate feet allowed
(a) (σσ) `mampe `i/hr/she said/did to her`
(b) (σσ),σ `la.la,ma` 'shoulder'
(c) (σσ),σ ,σ `wa.lo,mo,ma` 'blue-tongue lizard'
(d) (σσ,σσ),σ `p`e.re,we.re, `t`e.n `season just before the "dry"
(e) (σσ,σσ),σ `h`a.ram,ka.ro, `ji.me `we (excl,pc.f) arrived`

By reversing the ranking of (28), exhaustive parsing is achieved at the expense of binarity, making (34a) the winning candidate.

(34) Binary plus unary feet [Murinbata]: Pr-Bin + Parse-Syl

<table>
<thead>
<tr>
<th>/σσσσσσ/</th>
<th>Parse-Syl</th>
<th>Pr-Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (σσ) (σσ) (σσ)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(b) (σσ) (σσ) (σσ)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(c) (σσ) (σσ) (σσ)</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Turning to the direction of metrification, we meet with a slight surprise. Both Pintupi and Murinbata have rightward metrification; however, as compared to Pintupi, Murinbata (35) requires the reverse ranking All-Pr-R > All-Pr-L (Green & Kenstowicz 1995).

(35) Left-to-right mixed binary-plus-unary feet in Murinbata

<table>
<thead>
<tr>
<th>/p<code>e.re,we.re, </code>t`e.n/</th>
<th>Parse-Syl</th>
<th>Pr-Bin</th>
<th>All-Pr-R</th>
<th>All-Pr-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (p<code>e.re),(we.re),(</code>t`e.n)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(b) (p<code>e.re),(we),(re. </code>t`e.n)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(c) (p<code>e), (re. </code>t`e.n)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

The leftward trochaic counterpart of Murinbata, with clash between the first two feet (35c), occurs in Biangai (Dubert & Dubert 1973). Iambic systems which allow degenerate feet also occur. The leftward iambic pattern was already exemplified by Weri (25). A case of rightward iambics, with a clash in odd-numbered forms, is exemplified by Ojibwa (36).

(36) Ojibwa (Kaye 1973, Piggott 1980): rightward iambics, degenerate feet allowed
(a) (σσ) (σσ) `na.ga,mo `he sings`
(b) (σσ) (σσ) `ni.bi.moo,se `I walk`
(c) (σσ) (σσ) (σσ) `ni.na.gaan,mo, `we sing`

By varying three factors, namely foot type (trochee versus iamb), directionality (rightward versus leftward), and tolerance of degenerate feet, gradient foot alignment theory, like Hayes’ (1995) rule-based framework, predicts eight uni-directional systems, which are tabulated below. The numbers of languages are taken from Gordon’s (2002a) survey of quantity-insensitive stress languages.

(37) Overview of uni-directional systems

<table>
<thead>
<tr>
<th></th>
<th>Trochees (45 languages)</th>
<th>Iambics (9 languages)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left-to-right (32 lgs)</td>
<td>Right-to-left (13 lgs)</td>
</tr>
<tr>
<td>Strictly binary feet</td>
<td>(σσ) (σσ)</td>
<td>(σσ) (σσ)</td>
</tr>
<tr>
<td>Pintupi (final lapse)</td>
<td>Warao (perfect grid)</td>
<td>Araucanian (perfect grid)</td>
</tr>
<tr>
<td>(29 lgs)</td>
<td>14 languages</td>
<td>12 languages</td>
</tr>
<tr>
<td>Mixed binary + unary feet</td>
<td>(σσ) (σσ)</td>
<td>(σσ) (σσ)</td>
</tr>
<tr>
<td>Murinbata (perfect grid)</td>
<td>Biangai (initial clash)</td>
<td>Ojibwa (final clash)</td>
</tr>
<tr>
<td>(25 lgs)</td>
<td>18 languages</td>
<td>1 language</td>
</tr>
</tbody>
</table>

Considered from a purely rhythmic viewpoint, this set of uni-directional patterns displays interesting properties. Exactly four patterns (38 languages) display perfect rhythmic alternation, allowing neither clash nor lapse. These ‘perfect-grid’ (PG) patterns are seen in Murinbata, Warao, Araucanian and Weri. The remaining patterns (16 languages) minimally deviate from rhythmic perfection, allowing small deviations in peripheral contexts, in particular a lapse in final position (Pintupi), or a clash between two secondary stresses at the left edge (Biangai) or at the right edge (Ojibwa). One predicted system, with strictly binary iambics going from right to left, remains unattested. This would involve a lapse on the initial syllables of odd-numbered forms, e.g. [σσ(σσ)](σσσσ). Apparently, no languages occur that minimally deviate from the Perfect Grid by initial lapse. (See Section 9.3.5 for further discussion.)
All systems analysed thus far placed the primary stress on the foot at the edge where the iteration started. The position of the primary stress is governed by a pair of antagonistic alignment constraints, ALIGN-HEAD-L and ALIGN-HEAD-R.

(38) ALIGN-HEAD-L
Align (PrWd, L, Head/PrWd, L) “The PrWd begins with the primary stress foot.”

(39) ALIGN-HEAD-R
Align (PrWd, R, Head/PrWd, R) “The PrWd ends with the primary stress foot.”

When undominated, ALIGN-HEAD produces primary stress on a foot which is strictly initial or final in PrWd. More interesting are its effects under domination by a foot alignment constraint favouring the opposite edge, when the primary stress comes to lodge on the first or last of a sequence of feet. This places the primary stress on the foot at the opposite edge from where the iteration started. This occurs in languages such as Cairen Arabic (40), where word stress falls on the rightmost foot of a sequence that is laid down by a left-to-right metrification.

(40) Word-stress-at-opposite-edge in Cairen Arabic
Pr-Bin > Parse-Syl > All-Pr-L > All-Pr-R

<table>
<thead>
<tr>
<th>/a,ja,ra,ra,tu,hu/</th>
<th>Pr-Bin</th>
<th>Parse-Syl</th>
<th>All-Pr-L</th>
<th>ALIGN-HEAD-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (.,ja,ja,.,ra,ra,.,tu,.,hu,)</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(b) (.,ja,ja,.,ra,.,ra,tu,.,hu,)</td>
<td>*</td>
<td>***</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

An iambic counterpart of Cairen Arabic is Creek (Haas 1977, Hayes 1995).

9.3.3 Bidirectional systems
Thus far we have seen patterns that are laid down by a single sweep of metrification. Another, more complex kind of alternating pattern has a single foot fixed at one edge while remaining feet depart from the opposite edge. For strictly binary trochees, bi-directional patterns occur in Garawa (41) and Piro (42).

(41) Garawa (Farbly 1974): binary trochees; fixed foot at left edge plus alternating feet left to right

(a) (') 'ja.mi
(b) (') 'pun.ja,la
(c) (') 'wa.cim,pa,gu
(d) (') 'ka,ma,la,.,ri,ni
(e) (') 'ja,ka,la,ka,.,lam,pa
(f) (') 'gan,ki,ri,ki,rim,pa,ji
(g) (') (') 'na,ri,ni,n,.,mu,ku,.,ni,na,.,ma,ra ‘at your own many

(42) Piro (Matteson 1965): binary trochees; fixed foot at right edge plus alternating feet left to right

(a) (') 'wa,lo
(b) (') ru,'ti,txa
(c) (') 'j,ja,ha,ta
(d) (') 'sa,.,ka,wa,je,h,ka,kna
(e) (') 'pe.,.,.,.,,t,.,,ma,.,,.,,tlo,na
(f) (') 'ru,.,si,lu,.,,.,,no,.,ti,ni,.,,.,,tka,na
(g) (') (') (') 'sa,.,ple,whi,ma,.,,.,,mta,na,.,,.,,tka,na
(h) (') (') (') 'ka,.,xru,.,.,,ka,.,,k,.,ni,ma,.,,.,,mnta,.,,.,,tka,na

The fixed foot requires word-to-foot alignment, requiring that every PrWd begins or ends with a foot, as captured by the constraint pair below:

(43) ALIGN (PrWd, LEFT)
Align (PrWd, L, Pr, L) “Every PrWd begins with a foot.”

(44) ALIGN-PrWd-RIGHT
Align (PrWd, R, Pr, R) “Every PrWd ends in a foot.”

Tableau (45) illustrates the interaction of alignment constraints and Parse-Syl for Garawa. In the interests of brevity, violations for All-Pr-R and All-Pr-L are expressed as numbers; “2, 5” means that one of the feet incurred two violations while another incurred five, to make a total of 7 violations of the constraint.

(45) Bidirectional rhythm in Garawa
ALIGN-PrWd-L > Parse-Syl > All-Pr-R > All-Pr-L

<table>
<thead>
<tr>
<th>Input: /gan.ki,.,tki,.,ri,m,pa,ji/</th>
<th>ALIGN-PrWd-L</th>
<th>Parse-Syl</th>
<th>All-Pr-R</th>
<th>All-Pr-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (') (') (') (') (') (') (') (') (') (')</td>
<td>*</td>
<td>2, 5</td>
<td>3, 5</td>
<td></td>
</tr>
<tr>
<td>(b) (') (') (') (') (') (') (') (') (') (')</td>
<td>*</td>
<td>1, 3, 5!</td>
<td>2, 4</td>
<td></td>
</tr>
<tr>
<td>(c) (') (') (') (') (') (') (') (') (') (')</td>
<td>***</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(d) (') (') (') (') (') (') (') (') (') (')</td>
<td>*</td>
<td></td>
<td>2, 4</td>
<td>1, 3, 5</td>
</tr>
</tbody>
</table>

Bidirectional patterns which allow degenerate feet are rare. One trochaic case is Gosiute Shoshone (Miller 1996; as referred to by Gordon 2002a), which has a fixed secondary stress on the final syllable, and alternating stress on odd-numbered syllables. Two iambic cases are Tuyua (MacDonald 1990) and Southern Paiute (Sapir 1930).

A factorial typology of systems with strictly binary feet arises when the ranking of foot alignment All-Pr-X (with X being either Left or Right) is varied with respect to ALIGN-PrWd-X and Parse-Syl (Pr-Bin remains undominated throughout the typology).
(46) **Iterative binary systems**

(a) single foot systems:

\[
\text{FT-BIN, ALIGN-PrWd-X, ALL-Pr-X} \rightarrow \text{PARSE-SYL}
\]

(b) unidirectional binary systems:

\[
\text{FT-BIN, ALIGN-PrWd-X} \rightarrow \text{PARSE-SYL} \rightarrow \text{ALL-Pr-X}
\]

(c) bidirectional binary systems:

\[
\text{FT-BIN, ALIGN-PrWd-X} \rightarrow \text{PARSE-SYL} \rightarrow \text{ALL-Pr-Y}
\]

Depending on the ranking of **ALIGN-HEAD-X** with respect to **ALL-Pr-X**, systems have primary stress on the same side (as in Pintupi) or on the opposite side (as in Cairene Arabic).

Many languages impose the requirement that the final syllable must be **unstressed**: the PrWd must not end in a stressed syllable. In strictly binary trochaic systems, such as Pintupi, high-ranked **FT-BIN** already guarantees final non-stressability, but iambic systems need a special constraint to that effect. A stronger kind of nonfinality is the requirement that final syllables be **unfooted**: the PrWd must not end in a foot. (See again the Hikkaryana pattern in (22)). Both requirements are combined in Prince & Smolensky's version of **NonFinality**:

(47) **NonFinality**

No prosodic head is final in PrWd.

This is the OT counterpart of 'extrametricality' in rule-based theory. The difference is, of course, that OT constraints are violable. **NonFinality** can give in to avoid violation of higher-ranking constraints, such as those enforcing quantity-sensitivity (see example under unbounded systems below) or minimal word requirements (see Section 9.4.2). For further discussion of **NonFinality**, see Hung (1994), Kager (1999a), and Hyde (2002).

9.3.4 Ternary systems

Thus far we have seen rhythmic patterns which were based on binary alternation, albeit occasionally obscured by clashes or lapses. Other languages have a ‘ternary’ style of alternation, where stresses fall on every third syllable, separated by two weak syllables. Ternary rhythmic patterns are exemplified by Cayuvara (48), where stresses fall on every third syllable, starting at the right edge.

(48) **Cayuvara** (Key 1961): ante penultimate syllable, leftward ternary rhythm

(a) 'tso	da.p \(\text{'cane'}\)
(b) 'tso	t'oo.m \(\text{small water container'}\)
(c) 'tso	a.'ri.p \(\text{he already turned around'}\)
(d) 'tso	a.'ri.pi.to \(\text{already planted'}\)
(e) 'tso	a.'ri.hi.'hi.be \(\text{'I have already put the top on'}\)
(f) 'tso	ma.,ra.ha.ha.'eki \(\text{their blankets'}\)
(g) 'tso	i.ki.ta.pa.re.'re.pe.ha \(\text{the water is clean'}\)
(h) 'tso	t'fa.a.d́.ro.bo.'ru.ru.t'fe \(\text{ninety-nine (first digit)'}\)

Elenbaas & Kager (1999) extend the gradient foot alignment analysis to ternary rhythm. Their analysis incorporates the insight from Ishii (1996) that ternarity arises from the interaction of gradient alignment constraints (ALL-Pr-X) and an anti-lapse constraint. However, Kager & Elenbaas deviate from Ishii (1996) in employing a grid-based anti-lapse constraint, instead of a foot-based one. Kager & Elenbaas refer to this constraint as **Lapse**, but we will rename it as **LongLapse**.

(49) **LongLapse**

A weak beat must be adjacent to a strong beat or the word edge.

This constraint effectively bans sequences of three or more unstressed syllables (Gordon 2002a). With it ranked above **ALL-Pr-X**, ternary rhythms are produced.

(50) **Ranking for ternarity**

\[
\text{**LongLapse**} \rightarrow \text{**ALL-Pr-X**} \rightarrow \text{PARSE-SYL}
\]

Undominated **LongLapse** restricts the maximal distance between stresses to two. The sub-ranking **ALL-Pr-X** > **PARSE-SYL**, known from (46a), reduces the number of feet to the bare minimum needed to avoid long lapses. The result is a perfect ternary alternation. An example from Cayuvara (51) shows the activity of **LongLapse** for a six-syllable word. (Ft-BIN is assumed to be undominated.)

(51) **Ternary in Cayuvara: words of length 3n**

<table>
<thead>
<tr>
<th>/arihihbebe/</th>
<th>LongLapse</th>
<th>ALL-Pr-L</th>
<th>ALL-Pr-R</th>
<th>PARSE-SYL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 'ari:hi:hi:be.e</td>
<td>***</td>
<td>3</td>
<td>4</td>
<td>***</td>
</tr>
<tr>
<td>(b) a:ri:hi:('hi:be.e)</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(c) a:ri:hi:('hi:be.e)</td>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>(d) a:ri,hi,hi,('be.e)</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

A seven-syllable word shows how gradient alignment functions not only to reduce the number of feet, see (52e), but also to place the feet, compare (52c–d).

(52) **Cayuvara**: words of length 3n+1

<table>
<thead>
<tr>
<th>/marahahaeik/</th>
<th>LongLapse</th>
<th>ALL-Pr-L</th>
<th>ALL-Pr-R</th>
<th>PARSE-SYL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (ma:ra),ha,ha,'e,i,ki</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>(b) (ma:ra),ha,('e,i,ki)</td>
<td>*</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>(c) ma:ra,ha,ha,'e,i,ki</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>(d) ma:ra,ha,ha,'e,i,ki</td>
<td>2, 5</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(e) ma:ra,ha,ha,('e,i,ki)</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
An eight-syllable word shows interaction between two gradient alignment constraints. Two candidates tie (53b–c) on the highest-ranking alignment constraint, so that the lower-ranking constraint steps in.

(53) Cayuvava: words of length 3n+2

<table>
<thead>
<tr>
<th>/ ikitaparepepa /</th>
<th>*LONG-LAPSE</th>
<th>All-PtL</th>
<th>All-PtR</th>
<th>PARSE-SYL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) i.(),(ri.ta),pa.('re.re).pe.ha</td>
<td>1,4</td>
<td>2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) i.(),(ri.ta),pa.('re.re).pe.ha</td>
<td>2,5</td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) (ri),(),(ra.ta),pa.('re.re).pe.ha</td>
<td>2,5</td>
<td>1,4,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) (ri),(),(ra.ta).re.('re.re).pe.ha</td>
<td>3,6</td>
<td>3,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) (ri),(),(ra.ta).re.('re.re).pe.ha</td>
<td>2,4,6</td>
<td>2,4,6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The interaction of two antagonistic alignment constraints is a typical feature of the OT analysis.

A mini-typology shows skeletal rankings for single foot, binary, and ternary systems.

(54) Mini-typology

(a) single foot : All-FT-X >> LONG-LAPSE, PARSE-SYL
(b) binary rhythm : *LONG-LAPSE, PARSE-SYL >> All-FT-X
(c) ternary rhythm : *LONG-LAPSE >> All-FT-X >> PARSE-SYL

9.3.5 Quantity-sensitive systems
We now turn to stress systems which involve sensitivity to syllable weight. As compared to strings of light syllables only, mixed strings of light and heavy syllables are naturally subject to a larger set of stress-affecting factors, such as stress attraction by heavy syllables, repulsion of stress by light syllables, and stress-induced lengthening and shortening. Consequently, the typology becomes more complicated. We will focus on relatively straightforward patterns of moraic trochees and iambs, examples of which occur in Section 9.2.3, while leaving out of consideration more subtle effects of quantity-sensitivity. (See Alber 1997, Kager 1999a, Elenbaas 1999.)

Quantity-sensitivity is enforced mainly by the Weight-to-Stress Principle:

(55) WEIGHT-TO-STRESS PRINCIPLE (WSP)

Heavy syllables must be stressed. (If heavy, then stressed.)

This constraint is violated by any heavy syllable that is not prominent, either within or outside a foot. Hence, it expresses the conditional ‘if heavy then stressed’. This is illustrated by Tübatulabal (56; see 24).

(56) Right-to-left trochees in Tübatulabal

<table>
<thead>
<tr>
<th>hanil:i</th>
<th>WSP</th>
<th>PARSE-SYL</th>
<th>All-FT-L</th>
<th>Ft-BIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (ha.'ni).ti.'la)</td>
<td>1</td>
<td>3,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) (ha.'ni).ti.'la)</td>
<td>1</td>
<td>3,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) (ha.'ni).ti.'la)</td>
<td>1</td>
<td>3,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The power of gradient foot alignment is illustrated by example (57), which motivates the ranking All-FT-L >> Ft-BIN:

(57) Tübatulabal: Even string of light syllables between the left edge and a heavy syllable

<table>
<thead>
<tr>
<th>witaghatal:abacu</th>
<th>WSP</th>
<th>PARSE-SYL</th>
<th>All-FT-L</th>
<th>Ft-BIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (wi).(),(ta.ta).(),(ta.ta).(),(ba.'cu)</td>
<td>1,3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) (wi).(),(ta.ta),(),(ba.'cu)</td>
<td>2,4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The reverse conditional, ‘if stressed then heavy’ is expressed by a gradient constraint, measuring degrees of syllable weight, indicated by |x|.

(58) PEAK PROMINENCE (PK-PROM)

Peak(x) is more harmonic than Peak(y) if |x| > |y|.

This constraint correlates the size of a prominence peak (that is, the height of its grid column) with the quantity of the syllable which carries it. More concretely, it requires the tallest peak to lodge on the heaviest syllable. We will see applications below in unbounded stress systems.

9.3.6 Unbounded systems
Unbounded stress systems broadly fall into two classes: default-to-same-edge systems, exemplified by Western Cheremis in (5), and default-to-opposite-edge systems, as exemplified by Selkup in (4). The standard analysis (e.g. Prince & Smolensky 2004; Zoll 1996; Walker 1997; Baković 1998) is based on the interaction of alignment constraints, quantity-sensitivity constraints, and nonfinality constraints.

The analysis of default-to-same systems involves the core ranking PK-PROM >> ALIGN-HEAD (59).

(59) Default-to-same: PK-PROM >> ALIGN-HEAD

<table>
<thead>
<tr>
<th>/ H L H /</th>
<th>PK-PROM</th>
<th>ALIGN-HEAD-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) H L'H</td>
<td>σ</td>
<td></td>
</tr>
<tr>
<td>(b) H 'L H</td>
<td>σ</td>
<td></td>
</tr>
<tr>
<td>(c) H 'L H</td>
<td>σ</td>
<td></td>
</tr>
</tbody>
</table>
In default-to-same systems, two types of nonfinality effects occur (Prince & Smolensky 2004; Walker 1997). First, nonfinality may hold for all final syllables, regardless of syllable weight. Such 'quantity-insensitive nonfinality' is found in Western Cheremis (60).

(60) QI nonfinality (Western Cheremis): NONFINALITY » PK-PROM » ALIGN-HEAD-R

(a) HHL /of+maj.ta/ NONFINALITY PK-PROM ALIGN-HEAD-R
 (a) of+maj.ta "!" *
 (b) of+.'maj.ta σ
 (c) 'of+maj.ta σσ!

(b) LLH /sm+tem/ NONFINALITY PK-PROM ALIGN-HEAD-R
 (a) s+mol.'tem "!"
 (b) s.'mol.tem * σ
 (c) 's.mol.tem * σσ!

(c) HLH /ba+talam/ NONFINALITY PK-PROM ALIGN-HEAD-R
 (a) ba+talam "!"
 (b) ba.'talam "!" σ
 (c) 'ba+talam σσ!

Quantity-sensitive nonfinality is found in Sindhi (Khubchandani 1969, Walker 1997). If a word has only one heavy syllable (CV, CVc), stress falls on it (61a, b). If a word has more than one heavy syllable, stress falls on the rightmost nonfinal heavy syllable (61c, d, e). In words composed of light syllables only, the penult is stressed (61f, g).

(61) Sindhi: Quantity-sensitive nonfinality
 (a) LH /dɔ;̥a:go/ 'ox'
 (b) HLL /'sah.kɔ.nu/ 'to gasp'
 (c) HLH /'o:ci.to/ 'sudden'
 (d) HLLL /'mo:ki.lı.nı:lo/ 'to be sent'
 (e) HHHH /k'ı:li:n.dı/ 'they will open' (trans.)
 (f) LL /bı:tı/ 'wall'
 (g) LLLL /u.tı:ˈa:lo/ 'inundation'

This is accounted for by re-ranking PK-PROM and NONFINALITY, so that stress falls on a final syllable if it is the only heavy syllable in the word (62).

(62) QS nonfinality (Sindhi): PK-PROM » NONFINALITY » ALIGN-HEAD-R

(a) LH /dɔːgo/ PK-PROM NONFINALITY ALIGN-HEAD-R
 (a) dɔː'go: *
 (b) dɔː'go: "!" σ

(b) HLH /o:ci.tı/ PK-PROM NONFINALITY ALIGN-HEAD-R
 (a) o:ci.tı: "!" σ
 (b) o:ci.tı: "!" σσ

(c) LLL /u.tı:ˈa:lo/ PK-PROM NONFINALITY ALIGN-HEAD-R
 (a) u.tı:ˈa:lo * "!"
 (b) u.tı:ˈa:lo * σ
 (c) u.tı:ˈa:lo * σσ!
The analysis of default-to-opposite systems requires an additional constraint, which draws stress to the opposite edge of the word if there are no heavy syllables. This is a licensing constraint (Zoll 1996; Walker 1997), which bans stressed light syllables except in initial position.

(63) ALIGN (L, PrWD, L)
A stressed light syllable (\(L\)) must be PrWD-initial.

This constraint is illustrated in (64) for Selkup (Walker 1997):

(64) Default-to-same. Selkup: rightmost heavy, else initial
ALIGN (L, PrWD, L) \(\rightarrow\) ALIGN-HEAD-R

\[
\begin{array}{ccc}
\text{LHLL} /\text{qumoqlilu}/ & \text{ALIGN}(L, \text{PrWD}, L) & \text{ALIGN-HEAD-R} \\
\sigma(a) & \text{qu.mo:qilil/} & \sigma \\
(b) & \text{qu.mo:qilil/} & \sigma \\
(c) & \text{qu.mo:qilil/} & \sigma \\
(d) & \text{qu.mo:qilil/} & \sigma \\
\end{array}
\]

(b)

\[
\begin{array}{ccc}
\text{LHLL} /\text{pynakisa}/ & \text{ALIGN}(L, \text{PrWD}, L) & \text{ALIGN-HEAD-R} \\
\sigma(a) & \text{py.na:ki:sa/} & \sigma \\
(b) & \text{py.na:ki:sa/} & \sigma \\
(c) & \text{py.na:ki:sa/} & \sigma \\
(d) & \text{py.na:ki:sa/} & \sigma \\
\end{array}
\]

(c)

\[
\begin{array}{ccc}
\text{LLLL} /\text{qol:qimpati}/ & \text{ALIGN}(L, \text{PrWD}, L) & \text{ALIGN-HEAD-R} \\
(a) & \text{qol:qimpati/} & \sigma \\
(b) & \text{qol:qimpati/} & \sigma \\
(c) & \text{qol:qimpati/} & \sigma \\
(d) & \text{qol:qimpati/} & \sigma \\
\end{array}
\]

The typology of default-to-opposite systems includes nonfinality effects, which will not be discussed.

Thus far, we have seen some virtues of rhythmic alignment constraints. However, the next section will expose certain problems for gradient alignment theory.

9.3.7 Revising classical alignment theory

Stress typology contains a well-known gap, already identified above: in strictly binary iambic systems, parsing is uniformly rightward (Kager 1993, 2001; Hayes 1995; McCarthy & Prince 1993b; Vijver 1998; Alber 2001; Hyde 2002). The classical theory, which assumes foot type (trochee or iamb) to be dissociated from foot distribution, predicts four strictly binary uni-directional patterns. Yet, only three patterns are attested, see (37). This asymmetry cannot be attributed to a universal prohibition against leftward iambic parsing, since leftward iambs do in fact occur in languages such as Weri and Tubatulabai, which allow unary feet by the ranking PARSE-SYL > Pr-Bin. In sum, an unexplained interdependence holds between foot type, foot binarity, and directionality of parsing. Kager (2001) observes that the missing pattern suffers from a rhythmic defect: it contains a word-initial lapse. Cross-linguistically, initial lapses are sharply disfavored, in contrast to final lapses, which widely occur in stress languages, for example in Pintupi. The lapse asymmetry is known from other rhythmic domains, in particular musical rhythm, where double upbeats are avoided (Lerdahl & Jackendoff 1983).

Kager proposes that parsing is controlled by local rhythmic configurations, rather than by gradient alignment. He introduces a set of rhythmic licensing constraints, which ban lapses everywhere except in one specific context. An example is in (65).

(65) LAPSE-AT-END
Lapse must be adjacent to the right edge.

This constraint assigns one violation mark for each pair of unstressed syllables, except the final one. In a trochaic language like Pintupi, this attractsthe unparsed syllable to the word end, giving the illusion of a directional, rightward parsing. AtT-P-PrX is now dispensed with, while word-to-foot alignment is no longer gradient and becomes categorical.

The factorial typology of the revised constraint set does not contain the iambic initial lapse pattern as this is 'harmonically bounded' (Samek-Lodovici & Prince 1999). If the violations of a candidate C_1 form a proper subset of those of another candidate C_2, then C_2 cannot be generated under any ranking of constraints in the set. The iambic initial lapse pattern (66b) is harmonically bounded by any iambic candidate which has the same number of feet, satisfies right-edge alignment, but in addition satisfies left-edge alignment.

(66) Harmonic bounding of the initial lapse pattern

\[
\begin{array}{ccc}
\sigma & \sigma & \sigma & \sigma & \sigma / \\
\text{LAPSE-AT-END} & \text{ALIGN} & \text{ALIGN} \\
(a) & (\sigma') & (\sigma') & (\sigma') & (\sigma') & * \\
(b) & (\sigma') & (\sigma') & (\sigma') & * & * \\
\end{array}
\]

Although the initial lapse pattern (66b) is eliminated, the resulting iambic typology still contains a gap, since (66a), a bidirectional pattern, is also unattested. Nevertheless, the typology is more restrictive than the standard typology, which generates both gaps (66a–b).

In rhythmic licensing theory, the ranking in (67) produces the pattern of Pintupi:
(67) Lapse-based analysis of Pintupi

<table>
<thead>
<tr>
<th>Ft-Bin</th>
<th>ALIGN-Wd-L</th>
<th>Lapse-AT-END</th>
<th>Parse-Syl</th>
<th>*Lapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>/pulinkalatu/</td>
<td>(a) 1pu.ling.kalatu</td>
<td>""</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td></td>
<td>(b) 1pu.ling.kalatu</td>
<td>""</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td></td>
<td>(c) 1pu.ling.kalatu</td>
<td>""</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td></td>
<td>(d) 1pu.ling.kalatu</td>
<td>""</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td></td>
<td>(e) 1pu.ling.kalatu</td>
<td>""</td>
<td>""</td>
<td>""</td>
</tr>
</tbody>
</table>

Kager (2001) observes a second gap, which is more subtle, but equally puzzling as the iambic gap. In bidirectional systems, directional footing always starts from the edge opposite from the edge where the fixed foot lodges. This is shown for strictly binary trochaic systems in (68).

(68) Overview of bidirectional trochaic systems with strictly binary feet

<table>
<thead>
<tr>
<th>Stress</th>
<th>Fixed foot right plus left-to-right</th>
<th>Fixed foot left plus right-to-left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary stress on fixed foot</td>
<td>(s)(s)(s)(s)</td>
<td>(s)(s)(s)(s)</td>
</tr>
<tr>
<td></td>
<td>(s)(s)(s)(s)</td>
<td>(s)(s)(s)(s)</td>
</tr>
<tr>
<td></td>
<td>Piro</td>
<td>Garawa</td>
</tr>
<tr>
<td>Secondary stress on fixed foot</td>
<td>(s)(s)(s)(s)</td>
<td>(s)(s)(s)(s)</td>
</tr>
<tr>
<td></td>
<td>(s)(s)(s)(s)</td>
<td>(s)(s)(s)(s)</td>
</tr>
</tbody>
</table>

In the standard analysis, the edge specification of the fixed foot is independent of directionality of parsing, hence all four strictly binary bidirectional trochaic systems are predicted. These gaps cannot be attributed to a resulting mismatch between directionality of parsing and the End Rule (Hammond 1984, Hulst 1984), because languages exist that exhibit mismatches, such as Cairene Arabic. Nor can the gap be attributed to a mismatch between the edge of the fixed foot and the End Rule, since such mismatches occur in languages which allow unary feet, such as Southern Paiute. Why should there be interdependence between the edge of the fixed foot and the edge of the End Rule? Again, the restriction is stateable in terms of rhythmic targets: the lapse occurs immediately before the stress peak, as in Piro, or immediately after the peak, as in Garawa. This motivates another rhythmic licensing constraint.

(69) Lapse-AT-Peak
Lapse must be adjacent to the peak.

As an example of a bidirectional system, consider the analysis of Garawa (70).

(70) Lapse-based analysis of Garawa

<table>
<thead>
<tr>
<th>Align-Wd-R, Align-Wd-L</th>
<th>Lapse-AT-Peak</th>
<th>Parse-Syl</th>
<th>Lapse-AT-END</th>
</tr>
</thead>
<tbody>
<tr>
<td>/pankirikirimajji/</td>
<td>(a) 1gan.ki.rimajji</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td></td>
<td>(b) 1gan.ki.rimajji</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td></td>
<td>(c) 1gan.ki.rimajji</td>
<td>""</td>
<td>""</td>
</tr>
</tbody>
</table>

The unattested trochaic pattern (70b) is harmonically bounded by (70a). Consequences of the rhythmic licensing theory for quantity-sensitive systems need further investigation. (See Alber 2001 for some issues to be addressed.)

McCarthy (2003b) generalizes Kager's proposal to abandon gradient foot alignment so that all constraints become categorical. He re-evaluates cases that apparently require gradient alignment (unbounded stress and foot extrematicity), and finds no compelling evidence for gradient alignment. This conclusion is reinforced by work in computational phonology suggesting that formally, gradient constraint evaluation is a rather questionable device (Riggle 2004; Biró 2004; Heinz, Kobele & Riggle 2005). These modifications of classical foot alignment theory show an increased reliance on the grid, while remaining within representational assumptions of bracketed-grid theory. Taking the rhythmic perspective further, Gordon (2002a) develops a grid-only typology for quantity-insensitive stress, while Hyde (2002) questions one-to-one mapping between constituents and the grid. Probably, we will see a reassessment of the balance between rhythm and constituency in metrical phonology in the years ahead.

9.4 Feet in phonological domains and prosodic morphology

This section identifies evidence for metrical feet apart from stress patterns. Feet can be domains for phonological processes, minimal word conditions, and templates in morphologically-sensitive processes. Of course, feet within a language should be consistent - if the stress pattern requires iamb, then word minimality requirements should also demand iamb, and so on; this consistency of foot form within the same language is called the metrical cohesion hypothesis (Prince 1980; Hayes 1982, 1995; McCarthy & Prince 1986; Dresher & Lahiri 1991; cf. Gordon 1999). Among the non-stress phenomena to be discussed here are feet as domains for
9.4.1 Feet as phonological domains

Vowel lengthening and shortening are often sensitive to foot structure. For example, many languages display a process of rhythmic lengthening of vowels in alternating even-numbered syllables, often excluding the final syllable of the word. See Hixkaryana (22) for illustration. Rightward lambs, respecting nonfinality, account for the rhythmic distribution of vowel lengthening and the exclusion of final syllables, while supplying a rationale of vowel lengthening as filling the foot template (LI) to its maximal size.

Similarly, vowels in unstressed syllables undergo vowel reduction (licensing inside or outside the foot: Dutch (Kager 1989), Russian (Crosswhite 1999)). Evidence for the even moraic trochee comes from various sources. Uneven sequences [HIL], when forced into a binomoric foot, undergo trochaic shortening [HL] → [LL] in Latin (Mester 1991) and Fijian (71a) (Dixon 1988, Prince 1990, Hayes 1995). Another strategy to attain binomoric trochees is vowel breaking, as in Tongan (71b) (Churchward 1953, Mester 1991, Prince & Smolensky 2004, Hayes 1995).

(71) Two reactions to a sequence . . . HIL#

(a) Fijian: trochaic shortening

\[\text{[si.'bi]} \]
\[('.si.'bi) \] ; ‘to exceed’

cf. \[.si.'bi.ta]
\[('.si).'bi.ta] \] ; ‘to exceed’ (trans.)

(b) Tongan: vowel breaking

\[.hu'i \]
\[('.hu'i) \] ; ‘to go in’

cf. \[.hu.'fi]
\[.hu.'fi] \] ; ‘to open officially’

Both languages avoid a heavy plus light sequence at the end of a word, and strive toward a situation in which a binomoric trochee is right-aligned in the word.

Although the asymmetrical foot inventory accounts for an impressive set of quantitative changes in natural languages, it also meets with a number of challenges. For example, some trochaic languages display a process of stressed vowel lengthening, which typically affects the main stress, but sometimes alternating syllables (Mellander 2001, 2004). Iambic lengthening might thus be construed as a special case of the general process of stressed vowel lengthening, which is specifically enhanced in iambic feet due to lapsed avoidance within the foot (Kager 1993), or domain-final lengthening (Revithiadou & Vijver 1997; Vijver 1998). Another kind of evidence which challenges the uneven lamb comes from segmental processes which suggest metrification into binomoric even lambs (LL, HL). The key example is fortition in Chugach Yupik (72) (Leer 1985, Kager 1993). All foot-initial consonants have a fortis realization (in lodd).

(72) Chugach Yupik fortition governed by even lambs

(a) \(\text{[LL]} / \) (a.'ku).ta.'mek
\(\text{akutaq} \) (a food) (abl.sg.)

(b) \(\text{[LLL]} / \) (ma.'na).su.ta.(qu.'ni
\(\text{'if he (refl.)} \) is going to hunt porpoise

(c) \(\text{[HL]} / \) (un).ti.'qu)
\(\text{I'll go out}'

(d) \(\text{[HLL]} / \) (ne).mu.ti.'qu
\(\text{I will suffice}'

Note especially how the parsing of (72c) deviates from the prediction of the uneven theory, [HL][H].

Other phonological sources of evidence for metrical feet involve stress shifts after the deletion of stressed vowels (Halle & Kenstowicz 1991; Hayes 1995), foot boundaries creating opaque domains to further metrification (Free Element Condition; Steriade 1988a; Halle & Kenstowicz 1991), and tonal phenomena (see Yip Ch.10).

9.4.2 Minimal words

Another type of evidence for the metrical foot derives from minimal word effects. Many languages require stems to have a fixed minimum size, such as two syllables or a single heavy syllable, matching a binary foot. The requirement that a stem minimally equal a foot derives from the prosodic hierarchy, which requires every element at level \(n \) (here, the PrWd) to dominate at least one element at level \(n+1 \) (here, a foot). The following constraint captures the relation between a morphological category (Stem) and a prosodic category (PrWd).

(73) \(\text{STEM=PrWd} \)

For every stem, there is a PrWd and the stem and PrWd’s boundaries coincide

If Pr-BIN is high-ranked, as can be verified in the stress system, it follows that the minimal word must be binary as well.

Strong evidence for word minima comes from languages which actively reinforce it by avoiding subminimal words. This may happen by means of epenthesis or lengthening in subminimal words, or by means of the blocking of otherwise general processes of deletion, where deletion would produce a subminimal (monosyllabic or monomoraic) word. Augmentation is illustrated by examples from Mohawk (epenthesis, 74a) and Levantine Arabic (lengthening, 74b):

(74) Epenthesis driven by the minimal word

(a) Mohawk (Michelson 1981): [k'ta]-s- → [iktats] '1 offer'

(b) Levantine Arabic (Broselow 1995): [s'tal] → [s'taal] 'ask' (m.sg.)

(c) Hixkaryana (Derbyshire 1979): [k'ajja] → [k'aja] 'red and green macaw'
The Hixkaryana example in (74c) shows an interaction of subminimal lengthening with nonfinality. Since the final syllable cannot be footed, words of two light syllables undergo subminimal lengthening of the first syllable.

The blocking of apocope (i.e. deletion of word-final vowels) to avoid a subminimal word is illustrated by Lardil and Estonian (75).

(75) Apocope blocked if it would result in a sub-minimal word

(a) Lardil (Wilkinson 1988)

[majarə] → [majar] 'rainbow'
[kela] → [kela] 'beach' *[kel]

(b) Estonian (Prince 1980)

[tænovə] → [tænov] 'street' (nom.sg.)
[koŋa] → [koŋa] 'chicken' (nom.sg.) *[kuna]
[koi] → [koi] 'clothes-moth' (nom.sg.) *[ko]

The examples above give evidence for disyllabic or bimoraic feet. Evidence for the un-even iamb (H) from minimal word requirements is difficult to obtain, since both (H) and (LL) are licit feet.

9.4.3 Morphological templates

A final source of evidence for metrical feet comes from templates in prosodic morphology, as found in reduplication, truncation and classical template-based morphology. Further discussion is provided in Ussishkin (Ch.19) and Urbanczyk (Ch.20). McCarthy & Prince (1986) stated the general relation between morphological templates and prosodic categories (including foot) in their Prosodic Morphology Hypothesis: “templates are defined in terms of authentic units of prosody (mora, syllable, foot, PrWd, etc.).” They hypothesized that the set of feet required for templatic morphology matches the foot typology for stress systems: syllabic trochee, moraic trochee, and iamb.

Examples of foot-sized templates, including reduplications and truncations, are given in (76–78), for all three foot types:

(76) Disyllabic templates [σσ]

(a) Yidin (Dixon 1977): reduplicant is [σσ]

stem reduplicated stem
mulari mula-mulari
kintalpa kintal-kintalpa

(b) French (Tranel 1993): hypocoristic is [σσ]

name hypocoristic
dominik doni
ameli meli

(77) Bimoraic templates [LL], [H]

(a) Japanese (Poser 1984): hypocoristic is [LL], [H]

name hypocoristic
midori mido-tjan, mi-tjan
wasaburo wasa-tjan, wa-tjan

(b) Manam (Lichtenberk 1983): reduplicant is [LL], [H]

stem reduplicated stem
salaga salaga-laqa
malaboŋ malaboŋ-boŋ

(78) Iambic templates [H], [LH]

(a) Arabic (McCarthy & Prince 1993a); broken plural is [LH]

singular broken plural
nafs nafus
?asad ?usud

(b) Central Alaskan Yup'ik (Woodbury 1987); proximal vocative is [H], [LH]

full noun proximal vocative
qatunyəq qat-qatun
ajukaynaq aj-ajuk

The template was translated into an alignment constraint schema by McCarthy & Prince (1993b):

(79) Constraint schema for classical templates

{MCAT=PCAT

where MCAT = Morphological Category = Prefix, Suffix, RED, Root, Stem, LexWd, etc.
and PCAT = Prosodic Category = Mora, Syllable (type), Foot (type), PrWd (type), etc.

McCarthy & Prince (1994, 1995a, 1999) proposed to eliminate the classical template by interactions of violable constraints. The Generalized Prosodic Morphology Hypothesis says that templatic conditions are the reflection of canonical prosodic restrictions on the morphological category that an item (such as a reduplicative morpheme) belongs to, categories like stem and affix. Templatic specification is minimal, consisting only of a statement to the effect that the reduplicant equals an ‘affix’ or a ‘stem’, while the reduplicant’s shape characteristics are derived from interactions of prosodic well-formedness constraints and constraints on reduplicative identity. This approach can be illustrated with an example from Diyari (80) (Austin 1981, Poser 1989).

(80) Diyari reduplication (copies initial foot, minus coda of second syllable)

(a) wiła wiła-wiła ‘woman’
(b) kulku kulku-kulku ‘to jump’
(c) tilparku tilpa-tilparku ‘bird species’
Properties of the Diyari stress system underlie the exact disyllabicity of the reduplicant. The language has initial primary stress, and a secondary stress falls on the third syllable of a four-syllable stem.

(81) (a) 'wilja 'woman'
 (b) 'rilparku 'bird species'
 (c) 'wilja,pina 'old woman'

This trochaic stress pattern is due to the constraint ranking in (82).

(82) Pr-Bin > Parse-Syl > All-Pr-Left

The disyllabic reduplicant also matches the minimal prosodic word of Diyari: all stems are minimally disyllabic. The claim that the reduplicant is a PrWd is confirmed by stress. The examples in (83) show that a primary stress falls on both the base and the reduplicant:

(83) (a) 'wilja cf. 'wilja-'wilja 'woman'
 (b) 'rilparku cf. 'rilpa-'rilparku 'bird species'
 (c) 'wilja,pina cf. 'wilja-'wilja,pina 'old woman'

Since each primary stress heads one PrWd, the reduplicant must equal a PrWd itself.

According to Generalized Template Theory (McCarthy & Prince 1995a), the shape invariance of reduplicants emerges from interactions of markedness constraints and constraints of reduplicative identity. Universally reduplicants tend to have unmarked prosodic structures, a property which follows from an increased role of prosodic markedness constraints in shaping reduplicants. Template-specific prosodic requirements are thus reduced to a bare minimum, such as ‘Red=Affix’ or ‘Red=STEM’.

All that needs to be stated specifically for the Diyari reduplicant is that this equals a stem:

(84) Red=STEM

The reduplicant is a stem.

The reduplicant’s stem status implies PrWd status, due to undominated Stem=PrWd. Crucially, PrWd must be minimally a foot in size, due to the prosodic hierarchy, in which every PrWd is headed by a foot. This single-foot minimum translates as a disyllabic minimum, due to undominated Fr-Bin, and the language’s overall quantity-insensitivity. What is more, the exact limitation of the reduplicant to a single disyllabic foot follows from metrical constraints that are high-ranked in Diyari.

(85) (a) The reduplicant’s foot is disyllabic (by Fr-Bin)
 (b) The reduplicant’s syllables are exhaustively parsed (by Parse-Syl)
 (c) The reduplicant’s foot is left-aligned, hence single-footed (by All-Pr-L)

This is a case of the emergence of the unmarked in the Diyari reduplicant. Finally, note that strict disyllabic is imposed on reduplicants, but not on non-reduplicant stems. This is accounted for by having segment faithfulness on the stem domain (Io-correspondence) take precedence over metrical well-formedness, which takes precedence over reduplicative identity (Br-correspondence). This analysis of Diyari shows that ‘unmarked’ prosody in the reduplicant’s shape can be attributed to universal markedness constraints. It takes violable constraints to reach this conclusion: the same universal markedness constraints which govern the reduplicant are violated in non-reduplicative forms of the language.

9.5 Conclusion

The metrical theory of word stress captures a range of cross-linguistic generalizations about rhythmic patterns by postulating a mixed rhythmin constituentized representation. the ‘bracketed grid’, a small alphabet of metrical feet, together with a small set of metrical constraints. The asymmetrical inventory of feet receives additional support from foot-based segmental processes, as well as from word minima and templates in prosodic morphology. The standard Optimality-Theoretic treatment of stress patterns, based on a gradient interpretation of alignment, which closely mimicked the predictions of earlier rule-based models of directional metrification, has been criticized for giving grid-based rhythmic patterns too small a role in predicting gaps in typologies. Future developments in metrical theory are likely to redress the balance between constituent-based and grid-based principles of explanation.

Note

Many thanks to Paul de Lacy and an anonymous reviewer for comments on an earlier version of this chapter.