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Figure 1: Frames used in this report

1 VIO with MSCKF

1.1 The State Vector

In this technical report, we analyze a robot that carries Inertial Measurement Unit (IMU), visual
sensor (camera), and two separately driven wheel sensors. First, we briefly review the visual-
inertial odometry (VIO) within the standard MSCKF framework [!], which serve as the baseline
for the proposed visual-inertial-wheel odometry (VIWO) system.

Specifically, at time ¢, the state vector xj consists of the current inertial state x;, and n
historical IMU pose clones x¢, represented in the global frame {G}:

T LT17
xp = X7, X¢,] (1)
I =
xi, = [4a" “p V] bj b]] (2)
T
Lot - Lo -
XCk:[é“ g Cpl o gt GP}L_J (3)

where gf(j is the JPL unit quaternion [2] corresponding to the rotation g“R from {G} to IMU frame
{I}, “py, and %vy, are the position and velocity of {I} in {G}, and b, and b, are the biases of
the gyroscope and accelerometer. We define x = X HH x, where x is the true state, X is its estimate,
X is the error state, and the operation H which maps the error state vector to its corresponding
manifold [3].

By using Extended Kalman Filter, we propagate the state with IMU measurements and update
the state with visual and wheel measurements. The IMU propagation and the visual sensor update
is not the main scope of this paper, so will be briefly described within the following chapters.

1.2 IMU State Propagation

The angular velocity w,, and linear acceleration a,, measurements of the IMU are used for inertial
state x; propagation:

wm:w+bg+ng (4)
am =a+ Rg+ b, +n, (5)

where a and w are true acceleration and angular velocity, b, and b, are biases of gyroscope and
accelerometer, g ~ [0 0 9.81]" is the global gravity, and n, and n, are zero mean Gaussian noises.
These measurements are used to propagate the inertial state from timestep k to k + 1 based on the
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following generic nonlinear kinematic model [2]:

)A(Ik-&—l\k = f(quw By Wiy, ) (6)

where fqalb denotes the estimate at timestep a processing the measurements up to timestep b. In
order to propagate the corresponding covariance matrix, we use the error state transition matriz
®;(tr11,t;) and the Jaconian matrix of f(-) respect to the noise Gy as:

Pr 1y = ®rlte1, te)Pr, , Prtesa, tr)" + GrQaG) (7)

where [n;, n,, nIg, n!, " ~ N(0,Qy), and n,, and n,,, are white Gaussian noises of gyroscope and

accelerometer bias random walk model. In this report, we refer to [1] for the matrix ®;(tx11,%),
which is:

@111 (tk-‘rla tk) 03 03 (I)114 (tk-‘rla tk}) 03
D, (ter1,te) I ®Pr,(teri,te) Pro,(tes1,th) Prs(terr, tr)
Dr(tht1,th) = | P, (b1, tk) 03 I3 Dr, (L1, te)  Pros(tet1ste) (8)
03 03 03 I3 03
03 03 03 03 I3
. thy1
@, (trer.th) = 'R @1, (te, tr) = —/ nRdr (9)
2
1 ~
@, (s, tr) = [9Pr, + OV, At — 9Py, — ngtQJZ“RT @, (try1, tr) = Atls (10)
Ot e "LaT KAl AP
B, (b1, b)) = / / LRT|a) / TR drdsdo B, (ter, te) = —/ / LR Tdrds (11)
Sty Sty tr e Jt
Tt R rS .
<I)131 (tk+17tk‘) = LG‘A'Ik - G‘A’k-kl - GgAtJ g]‘f{T (1)134(tk‘+17t/€) = / v gRT LISaJ / ZRTdeS (]‘2)
t th
ety T
B, Ly, tr) = / ¢Rdr (13)
ty

where [-] is the skew-symmetric matrix and At = t341 — .
Note that we only showed the error transition matrix for inertial state, not for whole state,
which will be handled in later chapter 3.

1.3 Visual Measurement Update

We maintain a number of stochastic clones in x¢,, and perform visual feature tracking to obtain
series of visual bearing measurements to 3D environmental features. A measurement z., at timestep
i is expressed as a function of a cloned pose and feature position “p Iz

ze, = TL(“'py) +m; (14)
m(ley")=[2 4" (15)
“ps=FRER (“py— “pr) + “ps (16)

where ?R and ©p; represent the camera to IMU extrinsics. To get an estimate of “p f, triangulation
is performed using the current state estimates. Then we compute the Jacobian matrix by linearizing

G~

Eq. (14) at current estimate and feature position Gf)f = [G:%f Ur Gé‘f]T. The Jacobian matrix

respect to é;(j, Gpli, and pr for the update are:
0z,

I.p

0.0

e,
29py,

= B, R[¢R(“py — “Pu,)] = -H,{R¢R (17)
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1 Cigy

e ot conn o 0 o
9CD, Hy/RER H, = 1 Cigy (18)

Py 0 Tiz; T; 52

f

Stacking the Jacobians and residuals for all visual measurements yields the following general
form:

7. = H,%, + H;"p; +ny (19)

where z. is formed by stacking the individual measurement residuals for a given feature, H, and
H/ are the state and feature Jacobians, respectively. Either the feature can now be updated using
the standard EKF update or treated as a MSCKF feature [5]. The key idea of the MSCKF is to
find the matrix N’ (H]T) whose columns span the left null space of Hy. Multiplying the above linear

system on the left by N (HJI)T, we obtain a new measurement function that depends only on the
state:

z, = H.%x), + n (20)

We can directly use this measurement in an EKF update without storing features in the state. This
leads to substantial computational savings as the problem size remains bounded over the entire
trajectory.
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2 Wheel-Encoder Measurement Model

Building upon the preceding VIO models, we now generalize our 3D motion tracking system to
optimally incorporate 2D wheel-encoder measurements that are commonplace in ground vehicles.
In particular, a ground vehicle is often driven by two differential (left and right) wheels mounted on
a common axis (baselink), each equipped with an encoder providing local angular rate readings [6]:

Wml = Wy + nwl, Wmr — Wy + an (21)

where w; and w, are the true angular velocities of each wheel, and n,, and n,,, are the corresponding
zero-mean white Gaussian noises. These encoder readings can be combined to provide 2D linear

and angular velocities about the vehicle body or odometer frame {O} at the center of the baselink:
Ow = (werr —wir) /b, v = (wpry +wiry)/2 (22)

where xyy 7 := [r; 7 b]" are the left and right wheel radii and the baselink length, respectively.

2.1 Wheel Odometry Preintegration

Figure 2: Definition of notations used in 2D

As the wheel encoders typically provide measurements of higher rate (e.g., 100-500 Hz) than the
camera, it would be too expensive to perform EKF update at their rate. On the other hand, as a
sliding window of states corresponding to the imaging times are stochastically cloned in the state
vector [see (1)], we naturally preintegrate the wheel odometry measurements (22) between the two
latest camera poses and then use this integrated 2D motion measurement for the MSCKF update
together with the visual feature measurements. As a result, the state vector of our VIWO remains
the same (up to online calibration) as that of the VIO, incurring only a small extra computational
overhead.

Consider preintegrating wheel odometry measurements between two clone times ¢ and 1.
The continuous-time 2D kinematic model for ¢, € [ty, tx11] is given by:

Or 4 o @]
7-9 —Tw —YTw
k
Orgo | = |© vcos(8’:9) = OTUCOS(%;H) (23)
Okgo. Ofvsin(g’;ﬁ) —Ofvsin(oz 0)

where 829 is the local yaw angle, “*zo_ and % yo_ are the 2D position of {O,} in the starting

integration frame {O;}. Note that we use —%7w and —OTUSin(g;—@) because we follow global-to-

local orientation representation. Also note that this model reveals the fact that the 2D orientation
evolves over the integration period.
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To locally combine all the wheel odometry measurements from time-step k£ to 7 + 1 without ac-
cessing the state estimates (in particular, the orientation), we can perform the following integration
of the measurements:

0 0 AR
S0 =00 [ Ot (24)
tr
~ o0 — OTwAt (25)
t‘r+1
kaOTH =Okzo + / O vcos(gt 0)dt (26)
tr
) o O.p_ O
~“rro. + / veos(or 0 — “Tw(t —tr))dt (27)
tr
O 1 OT O : OT
Tu(sin(570 — “TwAt) — sin( 576
Tw
tT+1
O’“Z/OTH = O’“yoT — / Ofvsin(gze)dt (29)
tr
t‘r+l
~ Pkyo, — Orusin(9r0 — Orw(t —t.))dt (30)
tr
o, O:p O, 0.
O B v(cos(gr 8 — “rwAt) — cos(570)) a1
Yo, O ) ( )

where At = t,,1 — t,. Note that we assume constant “7w and “7v (discrete sensor model) but
considered the change of heading angle between ¢, and ¢,41 so that we have more accurate model
than assuming it constant.

We then integrate these steps from tj to tx41 and obtain the 2D relative pose measurement as
follows:

B Ok+19 tk+1ft;i+l Otwgf
Zpi1 = [O’“dokH] ftk o v cos( o 10)dt (32)
ft Pt sin(p! 0)dt
= Wikt 1)s Wr(kik-+1), XWT) (33)

where w(j.141) denote all the wheel measurements integrated ¢y to ¢x41. If both extrinsic and time
offset (spatiotemporal) calibration parameters between the odometer and IMU /camera are perfectly
known, the above integrated odometry measurements can be readily used in the MSCKF update
as in [7]. However, in practice, this often is not the case, for example, due to inaccurate prior
calibration or mechanical vibration. To cope with possible time-varying calibration parameters
during terrain navigation, the proposed VIWO performs online calibration of the wheel-encoders’
intrinsics X7, and the extrinsics Xyg = [IOqT OpIT] and time offset 9¢; between the odometer
and IMU. Note again that the IMU and camera are assumed to be calibrated and synchronized for

presentation brevity. To this end, we augment the state vector (1) with these parameters:

-
Xk = [X;k ng xwp Ctr Xy (34)

In what follows, we will derive in detail the relation between the preintegrated wheel odometry mea-
surements (33) and the augmented state (34) by properly taking into account the intrinsic/extrinsic
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calibration parameters:
O
Zip4+1 = h(X1k+17XCk+1’XWE7 tI7XWI) (35)

2.2 Odometry Measurement wrt. Intrinsics

As evident from (33), the wheel-odometry integration entangles the intrinsics xy 7, and ideally we
should re-integrate these measurements whenever a new estimate of intrinsics is available, which
however negates the computational efficiency of preintegration. To address this issue, we linearize
the preintegrated odometry measurements about the current estimate of the intrinsics while properly
taking into account the measurement uncertainty due to the linearization errors of the intrinsics
and the noise [see (33)]:

og

X — 36
8)2W[XWI + on, Iy ( )

Zh+1 ™ B(Winl(kik+1)> Wrnr (kekt1)> XWT) +

where n,, is the stacked noise vector whose 7-th block is corresponding to the encoder measurement
noise at tr € [tg,trpy1] (i-e., [, , N, ] ") [see (21)].

Clearly, performing EKF update with this measurement requires the Jacobians with respect to
both the intrinsics and the noise in (36). It is important to note that as the preintegration of g(-) is
computed incrementally using the encoders’ measurements in the interval [t, tx+1], we accordingly
calculate the measurement Jacobians incrementally one step at a time. Note also that since the
noise Jacobian and n,, are often of high dimensions and may be computationally expensive when
computing the stacked noise covariance during the update, we instead compute the noise covariance
P,, by performing small matrix operations at each step.

Before we show the derivations of Jacobians and covariance, we would like to show the definition
of 2D orientation perturbation that is going to be utilized in derivation. We drive this from general
3D orientation &R perturbation as:

8ZR = exp(—8;0) = exp(ggé)exp(—ggé) (37)

where 8; = 8; fes and e; is the i-th standard unit basis vector. Note that we follow JPL notation,

that uses exp(gz )= exp(—gg é)exp(gzé). From the above equation we get:

exp(gzé) = exp(—gze)exp(—gzé)_l (38)
cos(gf 0) sin(gz 0) 0 cos(gz é) —sin(g;é) 0
= | —sin(g;0) COS(8;9> 0 sin(gzﬁ) COS<8;9) 0 (39)
0 0 1 0 0 1
[ cos(G70—078)  sin(g70—9r6) 0
= |=sin(5r0 — 570) cos(gr0—9r6) 0 (40)
i 0 0 1
= exp(r0 — 670) (41)

(41) can be simplified to 829 = 8;9 — 8;0 by removing the exponential function, and we get the
definition of orientation error in 2D as:

Orpg_ O:j _ Orj
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Using the derivation (42), we get the Jacobian of ¢, step integraion from (25), (28), and (31):

OT n Oq— N O‘r =~

o 0=0570+ A6 (43)
=970 + hg 0@ (44)
= Ozé + thwaiWI + hewHwn (45)
=970 + Hy Ky + Hyony, - (46)

Orij(cos(70 — OrwAL) — cos(970))

O’“fOTﬂ =%z + o 8;5
. Ord(sin(gr 0 — O wAL) — sin(gr 0) + OrwAtcos(gr0 — O @A),
Or )2
sin(gr 0 — O wAL) — sin(gr0) ,
- Or v (47)
W
= %30, + hopQ 0 + ha O™ @ + ha 070 (48)
B Ok.%o,r + hzegzé + hg;w (HinWI + Hwnnw,r) + hxv(HvxiW[ + annw,‘r) (49)
= Oki'O‘,— + hx98;9~ + (hwawx + hvavx)iWI + (hwawn + hvavn)nw,T (50)
=%z, + H3,7829~ +Hy-xwr + Hs» (51)
i Orh On o)
O~ _ Onn OTU(SIH(OkQ — OrOAL) — Sm(Oke))OTé
yOT+1 - yOT - OT(I} Ok
N OT@(COS(gzé — OrQAL) — cos(gzé) — OT@Atsin(gzé — OT&)At))OT@
Or 22

TW

cos(ggé — OrQOAL) — cos(gzé) o -
— T’U

2 (52)
= %go, + hyoggé + Py 9@ + hyy 07 %3)
= %o, + hyog 0 + hyw(HaxXwr + Hunly 1) + hyo(HoxXw + Hunn ;) (54)
= %o, + hyogr0 + (hywHus + hyHo) R 1 + (hywHun + hyoHon)ng, - (55)
= %o, + He,ngé +Hrxwr +Hgrng, r (56)

where H,x, Hyn,Hyx, and H,,, are the Jacobians of measurement (22) respect to intrinsic and the
noise with given estimate values as:

T
Od') — 7‘-’2ml % _ erTTngmlrl:| 7,? + |:% _%i| |:Z:’l:| (57)
b T
= Huxxcr + Hynny (58>
T
Co=[= e o] |7 +[-% 5] [Z““} (59)
b wr
= Hyxxcr + Hynny, (60)
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It can be found that the error of 7 + 1 step preintegration is the linear combination of 7 step

preintegration and measurement errors. With the above equations, we can recursively compute the

0
noise covariance P, r41 and the Jacobian dgf+; as follows:

1 00 H, , H,.,
q)157",7' = H3,T 10 5 q)WI,T = H4,7’ 5 Qnﬂ' = H5,T (61)
HG,T 0 1 H?,T HS,T
Pt = @4y P 2 +&,,Q. ) (62)
0gr+1 g
_ % By 63
05{1/[/1 tr, T8XW + WiI, ( )

where Q; is the noise covariance of wheel encoder measurement at t,. These equations show
how the Jacobian and the noise covariance evolve during the preintegration interval We thus can
recursively compute measurement noise covariance P,, and the Jacobian matrix 8* 7 atb the end

of preintegration ¢y, based on the zero initial condition (i.e., Py, 0, 8?2%31 = 03). The closed form

of 85? g — can be derived by assuming n number of measurements are used for preintegration as:
O
k+19 - Z h@w i lwx, zXC’I (64)
=1
n ~ ~
— ZAtz |: wénl,z W’n’ér,z _er,l'r’ri)2wml,zrlj| 5(0[ (65)
=1
= [Fo1 To2 To3]xc1 (66)
n ~
Ok-iOk_H = Z hxe,zgjﬁ + (hxw,inx,i + hmv,iHvx,i)iCI (67)

n i—1 ) R

_ . | ZWml Wmrg W Tr Wl T |

=) :hw,l{ > Aty [ ; ; = } ch}
=1 Jj=1

i (hxw,i [ﬂuznz,z‘ Winr,i _wmr,ifriwmz,iﬁ} +ha:v,z‘ |:w7y21l,i % 0] )5(01 (68)

b b b2
=[x Tyx2 T3] Xer (69)
yOk_H Z hy@ lOk yw,inx,i + hyv,iHvx,i)iC'I (70)

_ . | TWmij Wmr,j _ wmr,jf‘r_w"ﬂvjﬁ X
= E hyg’l{ E At] [ 3 3 72 } XC’I}
=1 J=1

+ (hyw,i |:_wznl,7l wrrl,'r,i _me,ifTA_wml,ifl] + hyvyi |:w7721,l,i % 0] )iC’I (71)

b b 52
=[Ty1 Ty2 Tys]xcr (72)
where
- Wimnl,i
Tg; = —At;—> 73
o1 Z; ; (73)
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Tor = Y At “’Z (74)

=1
n A A~
WmeriTr — WmiTl
T3 = Z—Ati ULAL Té? e (75)
i=1
n Wil Wil i—1 Wl i
Ty =) { — hawi =2 + havi—g = hapi > At } (76)
i=1 b j=1 b
n w ) w ) i—1 w )
ro=3Y {hm b I g 3 A } (77)
i=1 b j=1 b
- WinriTr — Wi Ut Win i Tr — Wi T
T — Wl iT1 T — Wi jT1
Fx3 — { _ hxw,i mr,i TI;Q mi,e _ hx97z‘ ZAt] mr,j 7'[;2 mt,) } (78)
i=1 j=1
n w ) w ) i—1 w )
Iy = { — i By — g Y Aty } (79)
i=1 b 2 =1 b
= ]_
n w ) w ) i—1 w )
Ty = {hyw,i”}“ + it hygq » At } (80)
i=1 b 2 =1 b
= ]7
- WinriTr — Wil i U "
ry3 _ { _ hyw,i mr,i TAQ ml,i’l _ hya,iZAtj mr,j T‘A2 ml,j l} (81)
=1 b j=1 b
To summarize, we get the Jacobian of intrinsic state as:
Ior T'g2 TLos
9]
s = T Tx D (82)
X
Wi Fyl 1-‘y2 I‘y3

Note this derivation cannot be applied in computing covariance matrix P,,, because the noise n,, -
has different values for every iteration unlike Xy .

2.3 Odometry Measurement wrt. Extrinsics

2.3.1 Spatial calibration

Note that the preintegrated wheel measurement (33) provides only the 2D relative motion on the
odometer’s plane, while the VIWO state vector (34) contains the 3D IMU /camera poses. In or-
der to establish the connection of the preintegrated odometry with the state, clearly the relative
transformation (extrinsic calibration) between the IMU and the odometer is required [see (32)]:

o I I
Zk;+1 — Oll:+19 = I e;Log(gRéfrlRéjRT?RT) 7 (83)
OkdOkJrl AIORGICR(GPIIHJ + C§+1RTIPO - prk - GI'CRTIPO)
where A = [e; €3] and Log(-) is the SO(3) matrix logarithm function [3]. As this measurement

depends on the two consecutive poses as well as the odometer/IMU extrinsics, when updating with
it in the MSCKF, the measurement residual and the corresponding measurement Jacobians are
needed and computed as follows.
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The residual of each measurement can be defined as:
5 Tkt et TOY o)
rg = e; Log(fRATRERTPRT) — 5510 (84)
5 1k ~ 1 a A~ X It A~
rq = %doy,, — AYRER(“Pr,, + ¢ 'R Do — b1 — $RPo) (85)
Note that we have prediction - measurement form in orientation residual because of the definition

of 2D orientation perturbation (42).
First, we perturb the poses to get the Jacobian matrix of (83) respect to the poses as:

(I- LegokHe j)o’““R — PRI — [0 RERT 1+ [46))9RT (86)
O~ e] PRI — e PRATRART 4O (87)

%do,,, + %do,,, = APRI - [$0))¢R(Dr,,, + “Pry,.)
FAPRI - [GODERE R (1 +1G76)) bo
— APR(I— |46)) ¢ R(“pr, + “Br,) — PR Po (88)
Ocdo,,, ~ APR[ER(Cpy,,, + ¢ R po — “py,) |0
~ ASRERDy, — APRERETRT [Tpo) 710 + APRER Br,,,  (89)
Also, the perturbation of the spatial extrinsic is:
(1- lesor 0o R = (I— [56))PRETRERTPRT (1+ [56)) (90)
o0~ ef (1—PREVRERTIRT)S0 (91)

Ordg,,, +%do,,, = A1 - |96))YRER p;
k+1 k+1 k+1
A(I LOOJ)OR]kRIkJrlRTORT(I + LOéJ)(OfU + OIN)I)
—A(I—- [960)9RER Dy, + A(PBr + OPr) (92)
~ ~ A~ I ~ A “ ~
Odo,  ~ A|IRER(CDr,,, + PR po — “pr,)] + PRERIMRTIRT |9p; )96
+ AT - ORERIVRTORT)Op, (93)

By collecting the above equations into the matrix shape, we get the following Jacobian matrix
respect to the each state as:

oh e3' YR O0ix3  Oixg (94)
O%1,, | —AYREREMRT[Tpo) AYRER 0g0
Jh . [ —QST?RIICJARIICRT O1x3 (95)
Xy, _A?RL2R<Gf’Ik+1 k+1RTIp0 - ﬁ[k)J _A?RgR
- N
oh _ |ejI-9YRIVRIRTORT) 01x3 (9%6)
OXwE Hy 1 AT~ IORg RIGk+1RT?RT)

Hyp = A IRER(CPr,,, + "R po — “pr)] + FRERETRTORT (Opr))  (97)

Note that the Jacobians (94) and (95) are the same with [7].
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2.3.2 Temporal calibration

To account for the difference between sensor clocks and measurement delay, we model an unknown
constant time offset between the IMU clock and the odometer clock:' Tt;, = ©t;,+%t;, where Tt;, and
Ot are the times when measurement zj was collected in the IMU and odometer’s clocks, and Ot;
is the time offset between the two time references. Consider that we want to derive preintegrated
odometry constraints between two cloned states at the true IMU times ’t;, and ¢;,1. Using the
current best estimate of the time offset “¢;, we can integrate our wheel encoder measurements
between the odometer times 9t = 't — 9¢; and Otk+1 ItkH Ot}, whose corresponding times
in the IMU clock are:
It% L= Itk — Of] + Ot[ = Itk + OE] (98)
Ty =Tt = Ot + % =Tt + 91 (99)
I
thta
while the corresponding states are at the times /¢, and ‘¢;,1. To update with this measurement,
we employ the following first-order approximation by accounting the time-offset estimation error:

After preintegration we have the 2D relative pose measurement between the times ! t;. and

Iy
g tk)R I( tk+OtI)R 100

101
102

Q

(100)
(00,0 IR (101)
0T )ER (102)
Prie) = "Pr(it,+0%;) (103)
7 (104)

(105)

104
105

Q

G
(I-
=(I-
G
“Prity + Vi Ol
G

pPr, + GVIkOtNI

Then the perturbation of the measurement become:

(I Lesgr D R ~ FR(I — 1607 ) M RERT(I+ | *wOfr))PRT (106)
~ ORch RgRT?RT . IORLIleoEIJ gc-q-lﬁggRTIORT

+ ORIV RERT 5000 ORT (107)

8:“§ ~ eglolf{([’““w — g*lﬁgRTIkw)Off (108)

Ordo, ,, + %do,,, = AR — w0 )R (b1, + 1, ,O01)
+APR(I — 70O NERENRT (I + [+1wO%]) o
— APR(I - ")) ER(“Pr, + %1, Of) — APR'po (109)
Ordo, , ~ APR|ER Dy, + EREVR T po — BRpy, |TFw
+ORERGY, - IRERETRT | Tpo) 1w — PRER%,,)0%;  (110)
Therefore the Jacobian of temporal extrinsic become:
3711 _ e;?ﬁ(lkﬂw — gf“]::{nglew)

— = 111

!We assume that the two wheel encoders are hardware synchronized and thus their readings have the same
timestamps.
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. n AT N . A G oA
H; = A(?RLgRGPIk+1 + g‘CRGkHRTIpO B gRGpIlekw

+ 9REREY,,,, — PREREVRT [Tpo)vriw — FRER Yy, (112)

2.4 Odometry Measurement Update

At this point, we have obtained the preintegrated wheel odometry measurements along with their
corresponding Jacobians which are readily used for the MSCKF update:

Zt1 = B(Wi(kht1) Wr(kekt1) Xw1) = h(X1 X0y 0, XwE, Ot1) (113)
og og
~ ) . X —= X —_— 114
g(wml(k.k+1)7wmr(k.k+1)aXWI) + aiWIXWI + n., n, (114)
R oh Jh oh oh H-
%h X ’A 7,\ 7Ot —X —X — X 7~Ot 115
(Rtiias X Xwe, Zr) + OX[y iy Kl T Xy *Onta oxwe W E * a8 ! (115)
Zror1 = B(Woni (kb 1) Wrnr (k1) Xw1) — WXy Xy, Xwe, Otr) (116)
oh oh oh dg oh ] - g
~ Oxn ., O%cp,, OXwe T Oxwg 8051] Xg+1 — aTnW (117)

w

Hy

Note that similar to how we treat visual features, we also employ the Mahalanobis distance test
to reject bad preintegrated odometry measurements (which can be due to some unmodelled errors
such as slippage) and only those passing the x? test will be used for EKF update.
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3 Observability Analysis

As system observability plays an important role for state estimation [9, 4|, we perform the observ-
ability analysis to gain insights about the state/parameter identifiability for the proposed VIWO.

For the analysis purpose, in analogy to [10], we consider the following state vector which includes
a single cloned pose of x7, , and a single 3D point feature p f

T
Xp = [x?k xgk xwr %t Xy Gpﬂ (118)
The observability matrix for the linearized system is:
_ H, -
H1¢’(t1, to)
M = ; 119
Hkq)(tk, to) ( )
Hy 1P (thi1,%0)

where ®(k,0) is the state transition matrix which is not obvious when including the clone in the
state vector and will be derived below, and Hj, is the stacked visual/wheel measurement Jacobian
at time step k ((17),(18), and(117)). If we can find matrix N that satisfies MIN = 0, the basis of
N indicate the unobservable directions of the linearized system.

3.1 State Transition Matrix

In the MSCKF-based linearized system, the state transition matrix corresponding to the cloned
state essentially reveals the stochastic cloning process. To see this, first recall how the cloned states
are processed [11]: (i) augment the state with the current IMU pose when a new image is available,
(ii) propagate the cloned pose with zero dynamics, (iii) marginalize the oldest clone after update
if reaching the maximum size of the sliding window. In the case of one clone, this cloning process
in respect to the error state corresponds to the following operation (while marginalization in the
covariance form is trivial):

I3 03 03 03 03 03 03  03x13]
03 I3 03 03 03 03 03  O3x13
03 03 I3 03 03 03 03  Osx13
03 03 03 I3 03 03 03  O3x13
03 03 03 03 I3 03 03  O3x13
I3 03 03 03 03 03 03  O3x13
03 I3 03 03 03 03 03  O3x13
[013x3  013x3 013x3 O13x3 013x3 O13x3 O13xz Iiz |

Xplk Xk (120)

Note I3 at 6-th and 7-th row copy the IMU poses of the state to the clone state. One may model
this state transition by including all the clones (with zero dynamics) in the state vector. This may
complicate the analysis as it needs to explicitly include all the clone constraints, while we here
construct the state transition matrix with implicit clone constraints.
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We discover that cloning and propagating the current error state X; can be unified by the
following linear mapping;:

(@1, (t+1:t) O3 03 @, (tet1s te) 03 03 03  03x13]
@, (ter,tr)  Is Pry(tesrite) Prg(tiei,te) Pros(testr) 03 03  O3x13
¢)131 (tk+17 tk) 03 IS ¢134 (tk+1a tk) §135 (tk+17 tk) 05 03 03>< 13
= 03 03 03 I3 03 03 03  O3x13| &
Xht1 = 03 03 03 03 I3 03 03  O3x13 X, (121)
I3 03 03 03 03 03 03  03x13
03 I3 03 03 03 03 03  03x13
L O13xs O13x3 013%3 013x3 013%3 013x3 O13x3  Iiz |

=(k+1,k)

where ®; is the error state transition matrix of IMU state [see (8)]. Note I at 6-th and 7-th row
copy the IMU pose of Xj into X;y1 as a cloned pose without changing its value, while the cloned
state in X; has been discarded (marginalized). The above operation clearly reveals the MSCKF
cloning process and thus, we will leverage this linear system (121) for the ensuing analysis.
Specifically, during the time interval [¢o, tx+1], we have the following linear dynamic system:

Xpt1 = E(trg1, ) E(tk, te—1) - - - E(t1, o) Xo (122)
E(tk+1,t0)

(@7, (tht1,t0) O3 03 Dy, (tey1sto) 03 03 03 03y3]

@5, (tkt1,t0) Iz @ry(trri,t0) Pry(terito) Pros(titi,to) 03 03 03x13

@7, (tit1,t0) 03 I3 @5, (tkt1,t0) Prs(teri,to) 03 03 03x13
= _ 03 03 03 I3 03 03 03 Osxi3 (123)

(tr+1,t0) 03 03 03 03 I3 03 03 O3x13

Yoy, (teg1.to) 03 03 Yo, (tesrs to) 03 03 03 03413

e, (ter1,t0) I3 oo, (thr1, o) Yoo, (trristo) Wous (ter1.to) 03 03 O3x13

L O13x3 O13x3 O13x3 O13x3 O13x3 013x3 O13x3 Tz |
‘Ilou (tk+17 tU) = (Pfu (tk7 tO) (124)
‘1’014 (tk+17 tU) = q:’114 (tkv to) (125)
‘1’021 (thrl? tO) = (1)121 (tkv to) (126)
Wy (tha1, t0) = Py (tr, to) (127)
Wy, (tha, to) = Pryy (tr, to) (128)
lIlCQS (thrl’tO) = (I)bs (tkv t()) (129>

The blue highlighted parts of the equations were derived incorrectly in the previous version of this
documentation (found by Chuchu Chen). Though this error does not affect any of the observability
analysis results followed by this chapter, we hereby note the mistake and show the correct derivation.
Since the clone pose is the history of the IMU pose, we also enforce the constraint that the initial
IMU pose and the clone state at time tg are identical as:

I — IC one -

Goq = Gl 7Oq’ GpIO - Gplclone,O (130)
where {édo’w‘ocj, p [Elmw,o} are the initial pose of the clone state. The above relation can be expressed
as following geometrical constraints:

Ly Osx12 —Li Oux17] x0 = 041 (131)
(0354 I3 O3x9 03x4 —I3 03514] X0 = 0351 (132)
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G

Iclone,k+1 é

Through linearization, the constraint of the error states is:

I3 03 O3x9 —I3 03 O3xi3]|
xg=0 133
05 I3 039 03 —I3 O3y13| " Ot (133)

With (133), we can convert the 6-th and 7-th row of (122) as:

(Wey, (tegr, o) O3 03 Yo, (test,to) 03 03 03 03413 %

Gf)fclm,,ﬁl] oy (tegrsto) I3 oy (tr1,to) Weu,(tegisto) Weos(thti to) 03 03 03><13] 0

(134)
_ [ 5 lIlCll(tk-l—latO)g)é + ‘IlC14(tk‘+17t0)bg :|
_‘Ilczl (tk+17 to)é}@ + Gf)fo + ‘11023 (tk-i-l’ tO)G‘N’IO + ‘Il024 (tk+17 to)bg + ‘I’C% (tk—i-l’ to)ba
(135)

IC one N
Yo, (tk-‘rlv tO)Gl "0 + Ye, (tk+17 tU)bg

(136)
_ |03 03 03 Uy (trt, to) 03 Yoy, (tkt1,to) 03 03><13] %
103 03 Wi, (tig1,to) Weu,(teristo) Woos(th1,to) Weu, (tks1.to) I3 03x13
(137)
We finally have the following state transition matrix ®y, ., 1) for our observability analysis:
(@, (tht1,t0) 03 03 ®;, (tkt1,t0) 03 03 03  03x13]
D, (ter1,t0) I3 @r,(teyisto) Pr,(teti,to) Prs(trristo) 03 03 0O3x13
®p,, (te1,t0) 03 I3 D, (tet1,t0) Pros(trr1,to) 03 03 O3x13
< _ 03 03 03 I; 03 03 03 O3x13| =
Xk+1 = 03 03 03 03 I3 03 03 O3x13 %o (138)
03 03 03 W, (tetrsto) 03 ey, (teg1,to) 03 Ozxi3
03 03 Yo, (tht1,t0) Wou, (thrsto) Yoo (trr1,t0) Yoo, (tkr1.to) I3 O3x13
013x3 013x3 O13x3 013x3 013x3 013x3 013x3 Itz |
D (try1,to)

3.2 Observability Properties

Based on the measurement Jacobians and state transition matrix [see (17), (18), (117) and (138)],
we are able to construct the observability matrix (119) of the MSCKF-based linearized system under
consideration. To be specific, the stacked Jacobian matrix of visual/wheel measurement Hy 1 at
k+2-th block row of the observability matrix has the following components:

Hor Hp2 02x9 0243 0243 0243 0243 02x1 0241 02x1 0241 Hpe
Hii 1 = |Hii Oix3 019 Hig 013 Higs 01x3 Hi, Hyy, Hie Hjyg Oix3| (139)
H>y Hi 02x9 Hy Hoy Hys Hoy Hy, Hy Hoe Hyy 0oy

where
A I A N N A I A
Hy = H,f R[G5V R(ODPy - “Pr.,)] Hp = -H,{R4"'R (140)
Ho. = H,YRVR (141)
H11 = egTIO]::{ H16 = —e3T?Rg€+1Rg€RT (142)
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Hiz —ej (I- YREVRERTORT) Hy, = e] FR(T 1w — JHRER T kw)  (143)
n Wml n Wimr,i
Hy=3) At : Hy. = Zizl — A2 (144)
n er,ifr - wml,i'f'l
Hy, = Zi:l At; = (145)
Hy = —AIORQ“RQHIRT "po] Hy = APRER (146)
Hys = APR|ER(py,,, + ¢ R po — pr,)| Har = ~AYRER (147)
AT ~ I ~
Hos = A([PRER(Chr,., + 5 R Tpo — Oy, + PRERETRTIRT(Op,]) (145)
Hy = A1 - PRERIVMRTIRT) (149)
H2a _ A(ORLIkRGp[k_H + IkﬁngRTIf)O - gCRGIA)IkJIkw
ORERY,,, — PREREVRT LIA e — ORERG ) (150)
i 'I"L_ h .w'rrAzl,i _ h Wml,i 4 h . At Wml,j
Hy, = Zln_l e wrgl i xv,zwn%l i o E mel Winl,j (151)
_Zi:l Py, =5 = hyv,i =5 + yp.i Z 1At b
B TLf _h 'Wrrl,r,i _ h Wmr i _ At w'n’ir]
Ho, = Z’n—l R oo 3= jwmm (152)
izt i T = hyi =5 = By Z 1At
B n Wimr, if'r_wml irl 1—1 Wmr, Tf‘_wml Tl
H2d - Zz ! hx"-’ Zw 7 bzw 7 - hxe Z Z 1 At w ]r bzw J'r (153)
ZZ 1hywz 'mr,i rb2 mlzl+hyezzl At mr,j Tb2 ml,j"l

Now, the k+2-th block row of the observability matrix is:

M 12 = Hp 1 @(trt1, o)
o Tor To2 Toz Tos Tos 02x3 0243 0243 0243 021 02x1 O02x1 0241 Toe
= |I't| = [T11 01x3 01x3 I'14 01x3 I'ig O1x3 T'ig 01x3 I'ia I'tpy T'ie T'ig O1x3
I's I'yp Tap Iag T'oy Tos g Toy I'og T'ag Tay Ty Tae I'yg 0243
(154)

where
Lot =Hpi P11 + HpePoy T'po = Hpo Loz = Hpo®Po3
Loy = Hp1 P14 + HpoPoy Tos = HpoPos I'oe = Hoe
' =Hu®n 'y =H 1 P1s + HigPes I'ie = HisPes
I''s = Hig ' = Hyq 'y = Hyy
I''e = Hye I'ig =Hyy 'y = Hoy P11 + Hoo Py
'y = Hoo Ty = Hyo®Po3 + HorPr3 Loy = Ho Py + Hoo®Pog + HosPsy + Hro®Pry

I'os = Hoo®Pos + Hor P75
I'ogs = Hog
'y, = Hyy,

'y = HosPes + Hor Pre
I’y = Hyy
F2c - HQC

I'y; = Hoy
F2a == H2a
I'yy = Hyy

®;; are the block matrix of (138) at i-th row and j-th column.
Based on the observability matrix (119), the proposed VIWO has the following observability

properties:

Lemma 3.1. With general motions, there are four unobservable directions corresponding to the
global position and the yaw angle as in VINS [10].
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Proof. The 4 unobservable directions of VINS corresponding to the state (118) is

03 g)Rg
I3 L f)fojg
03 _LGVIOJg
03 0351
Nm'ns = [Nvinsl Nvinsg] - 03 03><1 (155)

03 g)Rg
I3 _LGf)IOJg

Oi10x3  Oiox1

| L —|%psle

Nyins is the null space of My 9 proving the unobservability of the 4 directions.

FONvinsl FONvinsz
Mk+2Nvins = Fle’nsl FleinSQ = 05><4 (156)
FZNvinsl F2Nvinsg

This completes the proof. O

Lemma 3.2. If the system undergoes pure translation (no rotation), the translation part ©py of the
spatial calibration and the baselink length b will be unobservable, with unobservable directions as:

[021x3  021x1]
03 03x1
Is  Os3x1
0 0
Ntrans == [Ntrans1 NtranSQ] - Oixi 0 (157)
X
01><3 0
01x3 1
| 03 0351 ]

Proof. Since the system undergoes pure translation, we have the following geometric constraints:

¢UR =GR =(R (158)
Wy 3T — W4T
Oiw:%’“zo for i €1,2,---,n (159)
By applying the above constraints, N qns become the null space of the observability matrix My o:
02x3 02x1
Mk:—i-QNtrans = |01x3 Fld (160)
a9 Tad
02><3 02><1
01><3 ZZ 1 At Wmr, 1TT_Wml zrl
= n Wmr, 17'7"_me i1 i—1 Wmr, Pr—Wmi,i 1
AT - ORERIHRTORT) izt hawi =50 o hag i Z R
I G G 1 Z’n h/ Wmr, zrr_wml i + h Z’L 1 At Wmr jrr_wml ]Tl
i=1"yw,i b2 Y0, b2
(161)
= O5x4 (162)
This completes the proof. O
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Lemma 3.3. If the system undergoes random (general) translation but with only one-axis IMU
rotation, the translation calibration parameter ©pr along the rotation axis will be unobservable, with
the following unobservable direction:

0241
N,ot = | YRu (163)
07x1

where u is the constant rotation axis in the IMU frame.

Proof. Since the system undergoes one-axis IMU rotation, we have the following geometric con-
straints:

I Ru = “Ru = bRu (164)

By applying the above constraints, N,.,; become the null space of the observability matrix My o:

[ 0243
Mk+2Nrot - OIXZZ) (165)
_I‘QgIORu
i 02x3
= O1x3 (166)
AT —9REREVRTORT)9Ru
= O5x4 (167)
This completes the proof. O

Lemma 3.4. If the system undergoes constant local IMU angular velocity Tw and linear velocity
Iy, the time offset Ot will be unobservable with the following unobservable direction.:

0211
—IORIOw
Nconstv = IORIOV (168)
1
06x1

Proof. Since the system undergoes constant local IMU angular velocity fw and linear velocity ‘v,
we have the following geometric constraints:

Doy = oy = Togy (169)

Ity = Iy = loy (170)

By applying the above constraints, Nonst» become the null space of the observability matrix Mjo:

92x3
My, 1oNeonstv = _AF18?RIOW +AI‘1a (171)
_F28[ORIOL¢J + F29?RIOV + Ty,
02x3
= |—e] I—PRIRERTORT)ORIw + ] PR(I+1w — FHRER T Trw) (172)
MN;
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= O5x4 (173)
MN; = —A(|PRER(py,,, + ¢ R po — b)) + PRERETRTIRT [Op; )R w
AT - FRERGVRTIRTIRDY + APR[ER Dy, + $RGR 'po — $Rpy, [hw
+PRERCy,,,, - IRERLT R [Tpo) 1w — PRERYY,) (174)
This completes the proof. O
Lemma 3.5. If the system undergoes motions that does not execute left/right wheel movement, the
intrinsic parameter r;/r, will be unobservable, with the following unobservable direction:

0281 0281
1 0
Nradii = 0 or 1 (175)
04x1 04x1

Proof. Since the system undergoes motions that does not execute left/right wheel movement, we
have the following geometric constraints:

wi=0 or w;=0 for i€1,2,---,n (176)

By applying the above constraints, N,,q; become the null space of the observability matrix My o:

02x3

02X3
M 2Npggii = | Ty | or | Tye
| Ty 'y
02x3
n
Z Ati w"fl’l
i=1 b
Z hxw,i Tg’z - hxv,i 7721 =+ hx@,i Z Atj mi) =
i=1 Jj=1
i—1
i h Wl _ h Wml,i + h . ZE At‘wml,j
Yyw,t g Yu,i T 2 y0,i i
| Li=1 j=1
02X3
i Wmr,i
E:'_ZXU 5
i=1
or < Wi Wi izl o
Z _ha:w,i Wérﬂ - ha:v,i T;T'Z - hx@,i Z Atj T%T’J
i=1 Jj=1
i—1
& —h Wmrio h Wmrio h 41 At‘wmr’j
> —hywi 5 YusiT 2 vo.i 2 At 3
| Li=1 j=1
= O5x4

This completes the proof.

Lemma 3.6. If the system does not move, all the calibration pammeters(IOR, Opr, Otr, 1y, T, b)

RPNG-2020-VIWO
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are unobservable, with the following unobservable direction:

021x3 021x3 021x1 O21x1 O21x1 O21x1]

I3 03  0O3x1 O03x1 O3x1  03x1

03 I3 O3x1 O3x1  O3x1  Osx1:

N — O1x3 O1x3 1 0 0 0
O1x3 O1x3 0 0 1 0

L O3 03  O3x1  O3x1  O3x1  Oszx1

Proof. Since the system does not move, we have the following geometric constraints:

G G G
Vi, = VI, = V[, = 0

Wpty1 =wp =wp =0
ap1 =a,=2a=0
Irtip _ Ikp _ Io
G R_GR_GR
G G G
P14 = P, = Pl
wr; =wy; =0 for i €1,2,---,n

)

(180)

By applying the above constraints, N,,, become the null space of the observability matrix My o:

M 12Npo = 0544

This completes the proof.
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