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Figure 1: Frames used in this report

1 VIO with MSCKF

1.1 The State Vector

In this technical report, we analyze a robot that carries Inertial Measurement Unit (IMU), visual
sensor (camera), and two separately driven wheel sensors. First, we briefly review the visual-
inertial odometry (VIO) within the standard MSCKF framework [1], which serve as the baseline
for the proposed visual-inertial-wheel odometry (VIWO) system.

Specifically, at time tk, the state vector xk consists of the current inertial state xIk and n
historical IMU pose clones xCk represented in the global frame {G}:

xk =
[
x>Ik x>Ck

]> (1)

xIk =
[
Ik
G q̄
> Gp>Ik

Gv>Ik b>g b>a

]>
(2)

xCk =
[
Ik−1

G q̄> Gp>Ik−1
· · · Ik−n

G q̄> Gp>Ik−n

]>
(3)

where IkG q̄ is the JPL unit quaternion [2] corresponding to the rotation Ik
GR from {G} to IMU frame

{I}, GpIk and GvIk are the position and velocity of {I} in {G}, and bg and ba are the biases of
the gyroscope and accelerometer. We define x = x̂ � x̃, where x is the true state, x̂ is its estimate,
x̃ is the error state, and the operation � which maps the error state vector to its corresponding
manifold [3].

By using Extended Kalman Filter, we propagate the state with IMU measurements and update
the state with visual and wheel measurements. The IMU propagation and the visual sensor update
is not the main scope of this paper, so will be briefly described within the following chapters.

1.2 IMU State Propagation

The angular velocity ωm and linear acceleration am measurements of the IMU are used for inertial
state xI propagation:

ωm = ω + bg + ng (4)

am = a + I
GRg + ba + na (5)

where a and ω are true acceleration and angular velocity, bg and ba are biases of gyroscope and
accelerometer, g ≈ [0 0 9.81]> is the global gravity, and na and ng are zero mean Gaussian noises.
These measurements are used to propagate the inertial state from timestep k to k+ 1 based on the
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following generic nonlinear kinematic model [2]:

x̂Ik+1|k = f(x̂Ik|k ,amk ,ωmk) (6)

where x̂Ia|b denotes the estimate at timestep a processing the measurements up to timestep b. In
order to propagate the corresponding covariance matrix, we use the error state transition matrix
ΦI(tk+1, tk) and the Jaconian matrix of f(·) respect to the noise Gk as:

PIk+1|k = ΦI(tk+1, tk)PIk|kΦI(tk+1, tk)
> + GkQdG

>
k (7)

where [n>g ,n
>
a ,n

>
ωg,n

>
ωa]
> ∼ N (0,Qd), and nωg and nωa are white Gaussian noises of gyroscope and

accelerometer bias random walk model. In this report, we refer to [4] for the matrix ΦI(tk+1, tk),
which is:

ΦI(tk+1, tk) =


ΦI11(tk+1, tk) 03 03 ΦI14(tk+1, tk) 03

ΦI21(tk+1, tk) I3 ΦI23(tk+1, tk) ΦI24(tk+1, tk) ΦI25(tk+1, tk)
ΦI31(tk+1, tk) 03 I3 ΦI34(tk+1, tk) ΦI35(tk+1, tk)

03 03 03 I3 03

03 03 03 03 I3

 (8)

ΦI11(tk+1, tk) =
Ik+1

Ik
R̂ ΦI14(tk+1, tk) = −

∫ tk+1

tk

Iτ
Ik

R̂>dτ (9)

ΦI21(tk+1, tk) = bGp̂Ik + Gv̂Ik∆t− Gp̂Ik+1
− 1

2
Gg∆t2cIkG R̂> ΦI23(tk+1, tk) = ∆tI3 (10)

ΦI24(tk+1, tk) =

∫ θ

tk

∫ tk+1

tk

Is
G R̂>bIsac

∫ s

tk

Iτ
Is

R̂>dτdsdθ ΦI25(tk+1, tk) = −
∫ tk+1

tk

∫ s

tk

Iτ
G R̂>dτds (11)

ΦI31(tk+1, tk) = bGv̂Ik − Gv̂k+1 − Gg∆tcIkG R̂> ΦI34(tk+1, tk) =

∫ tk+1

tk

Is
G R̂>bIsac

∫ s

tk

Iτ
Is

R̂>dτds (12)

ΦI35(tk+1, tk) =

∫ tk+1

tk

Iτ
G R̂>dτ (13)

where b·c is the skew-symmetric matrix and ∆t = tk+1 − tk.
Note that we only showed the error transition matrix for inertial state, not for whole state,

which will be handled in later chapter 3.

1.3 Visual Measurement Update

We maintain a number of stochastic clones in xCk , and perform visual feature tracking to obtain
series of visual bearing measurements to 3D environmental features. A measurement zci at timestep
i is expressed as a function of a cloned pose and feature position Gpf :

zci = Π(Cipf ) + ni (14)

Π
(

[x y z]>
)

=
[
x
z

y
z

]> (15)
Cipf = C

I RIi
GR

(
Gpf − GpIi

)
+ CpI (16)

where CI R and CpI represent the camera to IMU extrinsics. To get an estimate of Gp̂f , triangulation
is performed using the current state estimates. Then we compute the Jacobian matrix by linearizing
Eq. (14) at current estimate and feature position Gp̂f =

[
Gx̂f

Gŷf
Gẑf

]>. The Jacobian matrix
respect to Ii

G q̄,
GpIi , and Gpf for the update are:

∂z̃ci

∂IiGθ̃
= Hp

C
I R̂bIiGR̂(Gp̂f − Gp̂Ii)c

∂z̃ci
∂Gp̃Ii

= −Hp
C
I R̂Ii

GR̂ (17)
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∂z̃ci
∂Gp̃f

= Hp
C
I R̂Ii

GR̂ Hp =

 1
Ci ẑf

0 −
Ci x̂f
Ci ẑ2f

0 1
Ci ẑf

−
Ci ŷf
Ci ẑ2f

 (18)

Stacking the Jacobians and residuals for all visual measurements yields the following general
form:

z̃c = Hxx̃k + Hf
Gp̃f + nf (19)

where z̃c is formed by stacking the individual measurement residuals for a given feature, Hx and
Hf are the state and feature Jacobians, respectively. Either the feature can now be updated using
the standard EKF update or treated as a MSCKF feature [5]. The key idea of the MSCKF is to
find the matrix N (H>f ) whose columns span the left null space of Hf . Multiplying the above linear
system on the left by N (H>f )>, we obtain a new measurement function that depends only on the
state:

z̃′c = H′xx̃k + n′f (20)

We can directly use this measurement in an EKF update without storing features in the state. This
leads to substantial computational savings as the problem size remains bounded over the entire
trajectory.

RPNG-2020-VIWO 3



2 Wheel-Encoder Measurement Model

Building upon the preceding VIO models, we now generalize our 3D motion tracking system to
optimally incorporate 2D wheel-encoder measurements that are commonplace in ground vehicles.
In particular, a ground vehicle is often driven by two differential (left and right) wheels mounted on
a common axis (baselink), each equipped with an encoder providing local angular rate readings [6]:

ωml = ωl + nωl , ωmr = ωr + nωr (21)

where ωl and ωr are the true angular velocities of each wheel, and nωl and nωr are the corresponding
zero-mean white Gaussian noises. These encoder readings can be combined to provide 2D linear
and angular velocities about the vehicle body or odometer frame {O} at the center of the baselink:

Oω = (ωrrr − ωlrl)/b , Ov = (ωrrr + ωlrl)/2 (22)

where xWI := [rl rr b]
> are the left and right wheel radii and the baselink length, respectively.

2.1 Wheel Odometry Preintegration

{k}
kdτ=

kxτ
kyτ

θτ
k

{τ}

Figure 2: Definition of notations used in 2D

As the wheel encoders typically provide measurements of higher rate (e.g., 100-500 Hz) than the
camera, it would be too expensive to perform EKF update at their rate. On the other hand, as a
sliding window of states corresponding to the imaging times are stochastically cloned in the state
vector [see (1)], we naturally preintegrate the wheel odometry measurements (22) between the two
latest camera poses and then use this integrated 2D motion measurement for the MSCKF update
together with the visual feature measurements. As a result, the state vector of our VIWO remains
the same (up to online calibration) as that of the VIO, incurring only a small extra computational
overhead.

Consider preintegrating wheel odometry measurements between two clone times tk and tk+1.
The continuous-time 2D kinematic model for tτ ∈ [tk, tk+1] is given by: Oτ

Ok
θ̇

Ok ẋOτ
Ok ẏOτ

 =

 −Oτω
Oτ vcos(OkOτ θ)
Oτ vsin(OkOτ θ)

 =

 −Oτω
Oτ vcos(OτOkθ)
−Oτ vsin(OτOkθ)

 (23)

where Oτ
Ok
θ is the local yaw angle, OkxOτ and OkyOτ are the 2D position of {Oτ} in the starting

integration frame {Ok}. Note that we use −Oτω and −Oτ vsin(OτOkθ) because we follow global-to-
local orientation representation. Also note that this model reveals the fact that the 2D orientation
evolves over the integration period.

RPNG-2020-VIWO 4



To locally combine all the wheel odometry measurements from time-step k to τ + 1 without ac-
cessing the state estimates (in particular, the orientation), we can perform the following integration
of the measurements:

Oτ+1

Ok
θ = Oτ

Ok
θ −

∫ tτ+1

tτ

Otωdt (24)

≈ Oτ
Ok
θ − Oτω∆t (25)

OkxOτ+1 = OkxOτ +

∫ tτ+1

tτ

Otvcos(OtOkθ)dt (26)

≈ OkxOτ +

∫ tτ+1

tτ

Oτ vcos(OτOkθ −
Oτω(t− tτ ))dt (27)

= OkxOτ −
Oτ v(sin(OτOkθ −

Oτω∆t)− sin(OτOkθ))
Oτω

(28)

OkyOτ+1 = OkyOτ −
∫ tτ+1

tτ

Otvsin(OtOkθ)dt (29)

≈ OkyOτ −
∫ tτ+1

tτ

Oτ vsin(OτOkθ −
Oτω(t− tτ ))dt (30)

= OkyOτ −
Oτ v(cos(OτOkθ −

Oτω∆t)− cos(OτOkθ))
Oτω

(31)

where ∆t = tτ+1 − tτ . Note that we assume constant Oτω and Oτ v (discrete sensor model) but
considered the change of heading angle between tτ and tτ+1 so that we have more accurate model
than assuming it constant.

We then integrate these steps from tk to tk+1 and obtain the 2D relative pose measurement as
follows:

zk+1 =

[
Ok+1

Ok
θ

OkdOk+1

]
=


∫ tk+1

tk
Otωdt∫ tk+1

tk
Otv cos(OtOkθ)dt∫ tk+1

tk
Otv sin(OtOkθ)dt

 (32)

=: g(ωl(k:k+1), ωr(k:k+1),xWI) (33)

where ω(k:k+1) denote all the wheel measurements integrated tk to tk+1. If both extrinsic and time
offset (spatiotemporal) calibration parameters between the odometer and IMU/camera are perfectly
known, the above integrated odometry measurements can be readily used in the MSCKF update
as in [7]. However, in practice, this often is not the case, for example, due to inaccurate prior
calibration or mechanical vibration. To cope with possible time-varying calibration parameters
during terrain navigation, the proposed VIWO performs online calibration of the wheel-encoders’
intrinsics xWI , and the extrinsics xWE = [OI q̄

> Op>I ]> and time offset OtI between the odometer
and IMU. Note again that the IMU and camera are assumed to be calibrated and synchronized for
presentation brevity. To this end, we augment the state vector (1) with these parameters:

xk =
[
x>Ik x>Ck x>WE

OtI x>WI

]> (34)

In what follows, we will derive in detail the relation between the preintegrated wheel odometry mea-
surements (33) and the augmented state (34) by properly taking into account the intrinsic/extrinsic
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calibration parameters:

zk+1 = h(xIk+1
,xCk+1

,xWE ,
OtI ,xWI) (35)

2.2 Odometry Measurement wrt. Intrinsics

As evident from (33), the wheel-odometry integration entangles the intrinsics xWI , and ideally we
should re-integrate these measurements whenever a new estimate of intrinsics is available, which
however negates the computational efficiency of preintegration. To address this issue, we linearize
the preintegrated odometry measurements about the current estimate of the intrinsics while properly
taking into account the measurement uncertainty due to the linearization errors of the intrinsics
and the noise [see (33)]:

zk+1 ' g(ωml(k:k+1), ωmr(k:k+1), x̂WI) +
∂g

∂x̃WI
x̃WI +

∂g

∂nw
nw (36)

where nω is the stacked noise vector whose τ -th block is corresponding to the encoder measurement
noise at tτ ∈ [tk, tk+1] (i.e., [nωl,τ nωr,τ ]>) [see (21)].

Clearly, performing EKF update with this measurement requires the Jacobians with respect to
both the intrinsics and the noise in (36). It is important to note that as the preintegration of g(·) is
computed incrementally using the encoders’ measurements in the interval [tk, tk+1], we accordingly
calculate the measurement Jacobians incrementally one step at a time. Note also that since the
noise Jacobian and nω are often of high dimensions and may be computationally expensive when
computing the stacked noise covariance during the update, we instead compute the noise covariance
Pm by performing small matrix operations at each step.

Before we show the derivations of Jacobians and covariance, we would like to show the definition
of 2D orientation perturbation that is going to be utilized in derivation. We drive this from general
3D orientation Oτ

Ok
R perturbation as:

Oτ
Ok

R = exp(−OτOkθ) = exp(OτOk θ̃)exp(−OτOk θ̂) (37)

where OτOkθ = Oτ
Ok
θe3 and ei is the i-th standard unit basis vector. Note that we follow JPL notation,

that uses exp(OτOkθ) = exp(−OτOk θ̃)exp(OτOk θ̂). From the above equation we get:

exp(OτOk θ̃) = exp(−OτOkθ)exp(−OτOk θ̂)−1 (38)

=

 cos(OτOkθ) sin(OτOkθ) 0

−sin(OτOkθ) cos(OτOkθ) 0

0 0 1


cos(OτOk θ̂) −sin(OτOk θ̂) 0

sin(OτOk θ̂) cos(OτOk θ̂) 0

0 0 1

 (39)

=

 cos(OτOkθ −
Oτ
Ok
θ̂) sin(OτOkθ −

Oτ
Ok
θ̂) 0

−sin(OτOkθ −
Oτ
Ok
θ̂) cos(OτOkθ −

Oτ
Ok
θ̂) 0

0 0 1

 (40)

= exp(OτOk θ̂ −
Oτ
Ok
θ) (41)

(41) can be simplified to Oτ
Ok
θ̃ = Oτ

Ok
θ̂ − Oτ

Ok
θ by removing the exponential function, and we get the

definition of orientation error in 2D as:

Oτ
Ok
θ = Oτ

Ok
θ̂ − Oτ

Ok
θ̃ (42)

RPNG-2020-VIWO 6



Using the derivation (42), we get the Jacobian of tτ step integraion from (25), (28), and (31):

Oτ+1

Ok
θ̃ = Oτ

Ok
θ̃ + ∆tOτ ω̃ (43)

= Oτ
Ok
θ̃ + hθω

Oτ ω̃ (44)

= Oτ
Ok
θ̃ + hθωHωxx̃WI + hθωHωn (45)

= Oτ
Ok
θ̃ + H1,τ x̃WI + H2,τnω,τ (46)

Ok x̃Oτ+1 = Ok x̃Oτ +
Oτ v̂(cos(OτOk θ̂ −

Oτ ω̂∆t)− cos(OτOk θ̂))
Oτ ω̂

Oτ
Ok
θ̃

+
Oτ v̂(sin(OτOk θ̂ −

Oτ ω̂∆t)− sin(OτOk θ̂) + Oτ ω̂∆tcos(OτOk θ̂ −
Oτ ω̂∆t))

Oτ ω̂2
Oτ ω̃

−
sin(OτOk θ̂ −

Oτ ω̂∆t)− sin(OτOk θ̂)
Oτ ω̂

Oτ ṽ (47)

= Ok x̃Oτ + hxθ
Oτ
Ok
θ̃ + hxω

Oτ ω̃ + hxv
Oτ ṽ (48)

= Ok x̃Oτ + hxθ
Oτ
Ok
θ̃ + hxω(Hωxx̃WI + Hωnnω,τ ) + hxv(Hvxx̃WI + Hvnnω,τ ) (49)

= Ok x̃Oτ + hxθ
Oτ
Ok
θ̃ + (hxωHωx + hxvHvx)x̃WI + (hxωHωn + hxvHvn)nω,τ (50)

= Ok x̃Oτ + H3,τ
Oτ
Ok
θ̃ + H4,τ x̃WI + H5,τ (51)

Ok ỹOτ+1 = Ok ỹOτ −
Oτ v̂(sin(OτOk θ̂ −

Oτ ω̂∆t)− sin(OτOk θ̂))
Oτ ω̂

Oτ
Ok
θ̃

+
Oτ v̂(cos(OτOk θ̂ −

Oτ ω̂∆t)− cos(OτOk θ̂)−
Oτ ω̂∆tsin(OτOk θ̂ −

Oτ ω̂∆t))
Oτ ω̂2

Oτ ω̃

−
cos(OτOk θ̂ −

Oτ ω̂∆t)− cos(OτOk θ̂)
Oτ ω̂

Oτ ṽ (52)

= Ok ỹOτ + hyθ
Oτ
Ok
θ̃ + hyω

Oτ ω̃ + hyv
Oτ ṽ (53)

= Ok ỹOτ + hyθ
Oτ
Ok
θ̃ + hyω(Hωxx̃WI + Hωnnω,τ ) + hyv(Hvxx̃WI + Hvnnω,τ ) (54)

= Ok ỹOτ + hyθ
Oτ
Ok
θ̃ + (hyωHωx + hyvHvx)x̃WI + (hyωHωn + hyvHvn)nω,τ (55)

= Ok ỹOτ + H6,τ
Oτ
Ok
θ̃ + H7,τ x̃WI + H8,τnω,τ (56)

where Hωx, Hωn,Hvx, and Hvn are the Jacobians of measurement (22) respect to intrinsic and the
noise with given estimate values as:

Oω̃ =
[
−ωml
b̂

ωmr
b̂
−ωmr r̂r−ωmlr̂l

b̂2

]r̃lr̃r
b̃

+
[
r̂l
b̂
− r̂r

b̂

] [nωl
nωr

]
(57)

= Hωxx̃CI + Hωnnω (58)

Oṽ =
[
ωml
2

ωmr
2 0

] r̃lr̃r
b̃

+
[
− r̂l

2 − r̂r
2

] [nωl
nωr

]
(59)

= Hvxx̃CI + Hvnnω (60)

RPNG-2020-VIWO 7



It can be found that the error of τ + 1 step preintegration is the linear combination of τ step
preintegration and measurement errors. With the above equations, we can recursively compute the
noise covariance Pm,τ+1 and the Jacobian ∂gτ+1

∂x̃WI
as follows:

Φtr,τ =

 1 0 0
H3,τ 1 0
H6,τ 0 1

 , ΦWI,τ =

H1,τ

H4,τ

H7,τ

 , Φn,τ =

H2,τ

H5,τ

H8,τ

 (61)

Pm,τ+1 = Φtr,τPm,τΦ
>
tr,τ + Φn,τQτΦ

>
n,τ (62)

∂gτ+1

∂x̃WI
= Φtr,τ

∂gτ
∂x̃WI

+ ΦWI,τ (63)

where Qτ is the noise covariance of wheel encoder measurement at tτ . These equations show
how the Jacobian and the noise covariance evolve during the preintegration interval. We thus can
recursively compute measurement noise covariance Pm and the Jacobian matrix ∂g

∂x̃WI
at the end

of preintegration tk+1, based on the zero initial condition (i.e., Pm,0,
∂g0

∂x̃WI
= 03). The closed form

of ∂g
∂x̃WI

can be derived by assuming n number of measurements are used for preintegration as:

Ok+1

Ok
θ̃ =

n∑
i=1

hθω,iHωx,ix̃CI (64)

=
n∑
i=1

∆ti

[
−ωml,i

b̂

ωmr,i

b̂
−ωmr,ir̂r−ωml,ir̂l

b̂2

]
x̃CI (65)

=
[
Γθ1 Γθ2 Γθ3

]
x̃CI (66)

Ok x̃Ok+1
=

n∑
i=1

hxθ,i
Oi
Ok
θ̃ + (hxω,iHωx,i + hxv,iHvx,i)x̃CI (67)

=
n∑
i=1

hxθ,i

{ i−1∑
j=1

∆tj

[
−ωml,j

b̂

ωmr,j

b̂
−ωmr,j r̂r−ωml,j r̂l

b̂2

]
x̃CI

}
+ (hxω,i

[
−ωml,i

b̂

ωmr,i

b̂
−ωmr,ir̂r−ωml,ir̂l

b̂2

]
+ hxv,i

[ωml,i
2

ωmr,i
2 0

]
)x̃CI (68)

=
[
Γx1 Γx2 Γx3

]
x̃CI (69)

Ok ỹOk+1
=

n∑
i=1

hyθ,i
Oi
Ok
θ̃ + (hyω,iHωx,i + hyv,iHvx,i)x̃CI (70)

=
n∑
i=1

hyθ,i

{ i−1∑
j=1

∆tj

[
−ωml,j

b̂

ωmr,j

b̂
−ωmr,j r̂r−ωml,j r̂l

b̂2

]
x̃CI

}
+ (hyω,i

[
−ωml,i

b̂

ωmr,i

b̂
−ωmr,ir̂r−ωml,ir̂l

b̂2

]
+ hyv,i

[ωml,i
2

ωmr,i
2 0

]
)x̃CI (71)

=
[
Γy1 Γy2 Γy3

]
x̃CI (72)

where

Γθ1 =

n∑
i=1

−∆ti
ωml,i

b̂
(73)

RPNG-2020-VIWO 8



Γθ2 =

n∑
i=1

∆ti
ωmr,i

b̂
(74)

Γθ3 =
n∑
i=1

−∆ti
ωmr,ir̂r − ωml,ir̂l

b̂2
(75)

Γx1 =
n∑
i=1

{
− hxω,i

ωml,i

b̂
+ hxv,i

ωml,i
2
− hxθ,i

i−1∑
j=1

∆tj
ωml,j

b̂

}
(76)

Γx2 =
n∑
i=1

{
hxω,i

ωmr,i

b̂
+ hxv,i

ωmr,i
2

+ hxθ,i

i−1∑
j=1

∆tj
ωmr,j

b̂

}
(77)

Γx3 =

n∑
i=1

{
− hxω,i

ωmr,ir̂r − ωml,ir̂l
b̂2

− hxθ,i
i−1∑
j=1

∆tj
ωmr,j r̂r − ωml,j r̂l

b̂2

}
(78)

Γy1 =

n∑
i=1

{
− hyω,i

ωml,i

b̂
+ hyv,i

ωml,i
2
− hyθ,i

i−1∑
j=1

∆tj
ωml,j

b̂

}
(79)

Γy2 =
n∑
i=1

{
hyω,i

ωmr,i

b̂
+ hyv,i

ωmr,i
2

+ hyθ,i

i−1∑
j=1

∆tj
ωmr,j

b̂

}
(80)

Γy3 =
n∑
i=1

{
− hyω,i

ωmr,ir̂r − ωml,ir̂l
b̂2

− hyθ,i
i−1∑
j=1

∆tj
ωmr,j r̂r − ωml,j r̂l

b̂2

}
(81)

To summarize, we get the Jacobian of intrinsic state as:

∂g

∂x̃WI
=

Γθ1 Γθ2 Γθ3

Γx1 Γx2 Γx3

Γy1 Γy2 Γy3

 (82)

Note this derivation cannot be applied in computing covariance matrix Pm, because the noise nω,τ
has different values for every iteration unlike x̃WI .

2.3 Odometry Measurement wrt. Extrinsics

2.3.1 Spatial calibration

Note that the preintegrated wheel measurement (33) provides only the 2D relative motion on the
odometer’s plane, while the VIWO state vector (34) contains the 3D IMU/camera poses. In or-
der to establish the connection of the preintegrated odometry with the state, clearly the relative
transformation (extrinsic calibration) between the IMU and the odometer is required [see (32)]:

zk+1 =

[
Ok+1

Ok
θ

OkdOk+1

]
=

[
e>3 Log(OI R

Ik+1

G RIk
GR>OI R>)

ΛOI RIk
GR(GpIk+1

+
Ik+1

G R>IpO − GpIk − Ik
GR>IpO)

]
(83)

where Λ = [e1 e2]
> and Log(·) is the SO(3) matrix logarithm function [8]. As this measurement

depends on the two consecutive poses as well as the odometer/IMU extrinsics, when updating with
it in the MSCKF, the measurement residual and the corresponding measurement Jacobians are
needed and computed as follows.
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The residual of each measurement can be defined as:

rθ = e>3 Log(OI R̂
Ik+1

G R̂Ik
G R̂>OI R̂>)− Ok+1

Ok
θ (84)

rd = OkdOk+1
− ΛOI R̂Ik

G R̂(Gp̂Ik+1
+
Ik+1

G R̂>I p̂O − Gp̂Ik − Ik
G R̂>I p̂O) (85)

Note that we have prediction - measurement form in orientation residual because of the definition
of 2D orientation perturbation (42).

First, we perturb the poses to get the Jacobian matrix of (83) respect to the poses as:

(I− be3Ok+1

Ok
θ̃c)Ok+1

Ok
R̂ = O

I R̂(I− bIk+1

G θ̃c)Ik+1

G R̂Ik
G R̂>(I + bIkG θ̃c)OI R̂> (86)

Ok+1

Ok
θ̃ ≈ e>3

O
I R̂

Ik+1

G θ̃ − e>3
O
I R̂

Ik+1

G R̂Ik
G R̂>IkG θ̃ (87)

Ok d̂Ok+1
+ Ok d̃Ok+1

= ΛOI R̂(I− bIkG θ̃c)
Ik
G R̂(Gp̂Ik+1

+ Gp̃Ik+1
)

+ ΛOI R̂(I− bIkG θ̃c)
Ik
GR

Ik+1

G R>(I + bIk+1

G θ̃c)I p̂O
− ΛOI R̂(I− bIkG θ̃c)

Ik
G R̂(Gp̂Ik + Gp̃Ik)− O

I R̂I p̂O (88)
Ok d̃Ok+1

≈ ΛOI R̂bIkG R̂(Gp̂Ik+1
+
Ik+1

G R̂>I p̂O − Gp̂Ik)cIkG θ̃
− ΛOI R̂Ik

G R̂Gp̃Ik − ΛOI R̂Ik
G R̂

Ik+1

G R̂>bI p̂OcIk+1

G θ̃ + ΛOI R̂Ik
G R̂Gp̃Ik+1

(89)

Also, the perturbation of the spatial extrinsic is:

(I− be3Ok+1

Ok
θ̃c)Ok+1

Ok
R̂ = (I− bIOθ̃c)OI R̂

Ik+1

G R̂Ik
G R̂>OI R̂>(I + bIOθ̃c) (90)

Ok+1

Ok
θ̃ ≈ e>3 (I− O

I R̂
Ik+1

G R̂Ik
G R̂>OI R̂>)IOθ̃ (91)

Ok d̂Ok+1
+ Ok d̃Ok+1

= Λ(I− bOI θ̃c)OI R̂Ik
G R̂Gp̂Ik+1

− Λ(I− bOI θ̃c)OI R̂Ik
G R̂

Ik+1

G R̂>OI R̂>(I + bOI θ̃c)(Op̂I + Op̃I)

− Λ(I− bOI θ̃c)OI R̂Ik
G R̂Gp̂Ik + Λ(Op̂I + Op̃I) (92)

Ok d̃Ok+1
≈ Λ(bOI R̂Ik

G R̂(Gp̂Ik+1
+
Ik+1

G R̂>I p̂O − Gp̂Ik)c+ O
I R̂Ik

G R̂
Ik+1

G R̂>OI R̂>bOp̂Ic)OI θ̃
+ Λ(I− O

I R̂Ik
G R̂

Ik+1

G R̂>OI R̂>)Op̃I (93)

By collecting the above equations into the matrix shape, we get the following Jacobian matrix
respect to the each state as:

∂h

∂x̃Ik+1

=

[
e3
>O
I R̂ 01×3 01×9

−ΛOI R̂Ik
G R̂

Ik+1

G R̂>bI p̂Oc ΛOI R̂Ik
G R̂ 02×9

]
(94)

∂h

∂x̃Ck+1

=

[
−e3

>O
I R̂

Ik+1

G R̂Ik
G R̂> 01×3

ΛOI R̂bIkG R̂(Gp̂Ik+1
+
Ik+1

G R̂>I p̂O − Gp̂Ik)c −ΛOI R̂Ik
G R̂

]
(95)

∂h

∂x̃WE
=

[
e>3 (I− O

I R̂
Ik+1

G R̂Ik
G R̂>OI R̂>) 01×3

HWE1 Λ(I− O
I R̂Ik

G R̂
Ik+1

G R̂>OI R̂>)

]
(96)

HWE1 = Λ(bOI R̂Ik
G R̂(Gp̂Ik+1

+
Ik+1

G R̂>I p̂O − Gp̂Ik)c+ O
I R̂Ik

G R̂
Ik+1

G R̂>OI R̂>bOp̂Ic) (97)

Note that the Jacobians (94) and (95) are the same with [7].
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2.3.2 Temporal calibration

To account for the difference between sensor clocks and measurement delay, we model an unknown
constant time offset between the IMU clock and the odometer clock:1 Itk = Otk+OtI , where Itk and
Otk are the times when measurement zk was collected in the IMU and odometer’s clocks, and OtI
is the time offset between the two time references. Consider that we want to derive preintegrated
odometry constraints between two cloned states at the true IMU times Itk and Itk+1. Using the
current best estimate of the time offset O t̂I , we can integrate our wheel encoder measurements
between the odometer times Otk = Itk − O t̂I and Otk+1 = Itk+1 − O t̂I , whose corresponding times
in the IMU clock are:

It′k : = Itk − O t̂I + OtI = Itk + O t̃I (98)
It′k+1 : = Itk+1 − O t̂I + OtI = Itk+1 + O t̃I (99)

After preintegration we have the 2D relative pose measurement between the times It′k and It′k+1

while the corresponding states are at the times Itk and Itk+1. To update with this measurement,
we employ the following first-order approximation by accounting the time-offset estimation error:

I(I t′k)
G R =

I(I tk+
O t̃I)

G R (100)

≈ (I− bI(I tk)ωO t̃Ic)I(
I tk)

G R (101)

= (I− bIkωO t̃Ic)IkGR (102)
GpI(I t′k) = GpI(I tk+O t̃I) (103)

≈ GpI(I tk) + GvI(I tk)
O t̃I (104)

= GpIk + GvIk
O t̃I (105)

Then the perturbation of the measurement become:

(I− be3Ok+1

Ok
θ̃c)Ok+1

Ok
R̂ ≈ O

I R̂(I− bIk+1ωO t̃Ic)Ik+1

G R̂Ik
G R̂>(I + bIkωO t̃Ic)OI R̂> (106)

≈ O
I R̂

Ik+1

G R̂Ik
G R̂>OI R̂> − O

I R̂bIk+1ωO t̃IcIk+1

G R̂Ik
G R̂>OI R̂>

+ O
I R̂

Ik+1

G R̂Ik
G R̂>bIkωO t̃IcOI R̂> (107)

Ok+1

Ok
θ̃ ≈ e>3

O
I R̂(Ik+1ω − Ik+1

G R̂Ik
G R̂>Ikω)O t̃I (108)

Ok d̂Ok+1
+ Ok d̃Ok+1

= ΛOI R̂(I− bIkωO t̃Ic)IkG R̂(Gp̂Ik+1
+ Gv̂Ik+1

O t̃I)

+ ΛOI R̂(I− bIkωO t̃Ic)IkG R̂
Ik+1

G R̂>(I + bIk+1ωO t̃Ic)I p̂O
− ΛOI R̂(I− bIkωO t̃Ic)IkG R̂(Gp̂Ik + Gv̂Ik

O t̃I)− ΛOI R̂I p̂O (109)
Ok d̃Ok+1

≈ Λ(OI R̂bIkG R̂Gp̂Ik+1
+ Ik
G R̂

Ik+1

G R̂>I p̂O − Ik
G R̂Gp̂IkcIkω

+ O
I R̂Ik

G R̂Gv̂Ik+1
− O
I R̂Ik

G R̂
Ik+1

G R̂>bI p̂OcIk+1ω − O
I R̂Ik

G R̂Gv̂Ik)O t̃I (110)

Therefore the Jacobian of temporal extrinsic become:

∂h

∂O t̃I
=

[
e>3

O
I R̂(Ik+1ω − Ik+1

G R̂Ik
G R̂>Ikω)

Ht1

]
(111)

1We assume that the two wheel encoders are hardware synchronized and thus their readings have the same
timestamps.
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Ht1 = Λ(OI R̂bIkG R̂Gp̂Ik+1
+ Ik
G R̂

Ik+1

G R̂>I p̂O − Ik
G R̂Gp̂IkcIkω

+ O
I R̂Ik

G R̂Gv̂Ik+1
− O
I R̂Ik

G R̂
Ik+1

G R̂>bI p̂OcIk+1ω − O
I R̂Ik

G R̂Gv̂Ik) (112)

2.4 Odometry Measurement Update

At this point, we have obtained the preintegrated wheel odometry measurements along with their
corresponding Jacobians which are readily used for the MSCKF update:

zk+1 := g(ωl(k:k+1), ωr(k:k+1),xWI) = h(xIk+1
,xCk+1

,xWE ,
OtI) (113)

≈ g(ωml(k:k+1), ωmr(k:k+1), x̂WI) +
∂g

∂x̃WI
x̃WI +

∂g

∂nω
nω (114)

≈ h(x̂Ik+1
, x̂Ck+1

, x̂WE ,
O t̂I) +

∂h

∂x̃Ik+1

x̃Ik+1
+

∂h

∂x̃Ck+1

x̃Ck+1
+

∂h

∂x̃WE
x̃WE +

∂h

∂O t̃I

O t̃I (115)

z̃k+1 := g(ωml(k:k+1), ωmr(k:k+1), x̂WI)− h(x̂Ik+1
, x̂Ck+1

, x̂WE ,
O t̂I) (116)

≈
[

∂h
∂x̃Ik+1

∂h
∂x̃Ck+1

∂h
∂x̃WE

− ∂g
∂x̃WI

∂h
∂O t̃I

]
︸ ︷︷ ︸

Hk+1

x̃k+1 −
∂g

∂nω
nω (117)

Note that similar to how we treat visual features, we also employ the Mahalanobis distance test
to reject bad preintegrated odometry measurements (which can be due to some unmodelled errors
such as slippage) and only those passing the χ2 test will be used for EKF update.
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3 Observability Analysis

As system observability plays an important role for state estimation [9, 4], we perform the observ-
ability analysis to gain insights about the state/parameter identifiability for the proposed VIWO.

For the analysis purpose, in analogy to [10], we consider the following state vector which includes
a single cloned pose of xIk−1

and a single 3D point feature Gpf :

xk =
[
x>Ik x>Ck x>WE

OtI x>WI
Gp>f

]> (118)

The observability matrix for the linearized system is:

M =



H0

H1Φ(t1, t0)
...

HkΦ(tk, t0)
Hk+1Φ(tk+1, t0)

...


(119)

where Φ(k, 0) is the state transition matrix which is not obvious when including the clone in the
state vector and will be derived below, and Hk is the stacked visual/wheel measurement Jacobian
at time step k ((17),(18), and(117)). If we can find matrix N that satisfies MN = 0, the basis of
N indicate the unobservable directions of the linearized system.

3.1 State Transition Matrix

In the MSCKF-based linearized system, the state transition matrix corresponding to the cloned
state essentially reveals the stochastic cloning process. To see this, first recall how the cloned states
are processed [11]: (i) augment the state with the current IMU pose when a new image is available,
(ii) propagate the cloned pose with zero dynamics, (iii) marginalize the oldest clone after update
if reaching the maximum size of the sliding window. In the case of one clone, this cloning process
in respect to the error state corresponds to the following operation (while marginalization in the
covariance form is trivial):

x̃k|k ←−



I3 03 03 03 03 03 03 03×13
03 I3 03 03 03 03 03 03×13
03 03 I3 03 03 03 03 03×13
03 03 03 I3 03 03 03 03×13
03 03 03 03 I3 03 03 03×13
I3 03 03 03 03 03 03 03×13
03 I3 03 03 03 03 03 03×13

013×3 013×3 013×3 013×3 013×3 013×3 013×3 I13


x̃k|k (120)

Note I3 at 6-th and 7-th row copy the IMU poses of the state to the clone state. One may model
this state transition by including all the clones (with zero dynamics) in the state vector. This may
complicate the analysis as it needs to explicitly include all the clone constraints, while we here
construct the state transition matrix with implicit clone constraints.
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We discover that cloning and propagating the current error state x̃k can be unified by the
following linear mapping:

x̃k+1 =



ΦI11(tk+1, tk) 03 03 ΦI14(tk+1, tk) 03 03 03 03×13
ΦI21(tk+1, tk) I3 ΦI23(tk+1, tk) ΦI24(tk+1, tk) ΦI25(tk+1, tk) 03 03 03×13
ΦI31(tk+1, tk) 03 I3 ΦI34(tk+1, tk) ΦI35(tk+1, tk) 03 03 03×13

03 03 03 I3 03 03 03 03×13
03 03 03 03 I3 03 03 03×13
I3 03 03 03 03 03 03 03×13
03 I3 03 03 03 03 03 03×13

013×3 013×3 013×3 013×3 013×3 013×3 013×3 I13


︸ ︷︷ ︸

Ξ(k+1,k)

x̃k (121)

where ΦI is the error state transition matrix of IMU state [see (8)]. Note I3 at 6-th and 7-th row
copy the IMU pose of x̃k into x̃k+1 as a cloned pose without changing its value, while the cloned
state in x̃k has been discarded (marginalized). The above operation clearly reveals the MSCKF
cloning process and thus, we will leverage this linear system (121) for the ensuing analysis.

Specifically, during the time interval [t0, tk+1], we have the following linear dynamic system:

x̃k+1 = Ξ(tk+1, tk)Ξ(tk, tk−1) · · ·Ξ(t1, t0)︸ ︷︷ ︸
Ξ(tk+1,t0)

x̃0 (122)

Ξ(tk+1,t0) =



ΦI11(tk+1, t0) 03 03 ΦI14(tk+1, t0) 03 03 03 03×13
ΦI21(tk+1, t0) I3 ΦI23(tk+1, t0) ΦI24(tk+1, t0) ΦI25(tk+1, t0) 03 03 03×13
ΦI31(tk+1, t0) 03 I3 ΦI34(tk+1, t0) ΦI35(tk+1, t0) 03 03 03×13

03 03 03 I3 03 03 03 03×13
03 03 03 03 I3 03 03 03×13

ΨC11(tk+1, t0) 03 03 ΨC14(tk+1, t0) 03 03 03 03×13
ΨC21(tk+1, t0) I3 ΨC23(tk+1, t0) ΨC24(tk+1, t0) ΨC25(tk+1, t0) 03 03 03×13

013×3 013×3 013×3 013×3 013×3 013×3 013×3 I13


(123)

ΨC11(tk+1, t0) = ΦI11(tk, t0) (124)
ΨC14(tk+1, t0) = ΦI14(tk, t0) (125)
ΨC21(tk+1, t0) = ΦI21(tk, t0) (126)
ΨC23(tk+1, t0) = ΦI23(tk, t0) (127)
ΨC24(tk+1, t0) = ΦI24(tk, t0) (128)
ΨC25(tk+1, t0) = ΦI25(tk, t0) (129)

The blue highlighted parts of the equations were derived incorrectly in the previous version of this
documentation (found by Chuchu Chen). Though this error does not affect any of the observability
analysis results followed by this chapter, we hereby note the mistake and show the correct derivation.
Since the clone pose is the history of the IMU pose, we also enforce the constraint that the initial
IMU pose and the clone state at time t0 are identical as:

I0
G q̄ =

Iclone,0
G q̄, GpI0 = GpIclone,0 (130)

where {Iclone,0G q̄,GpIclone,0} are the initial pose of the clone state. The above relation can be expressed
as following geometrical constraints:[

I4 04×12 −I4 04×17
]
x0 = 04×1 (131)[

03×4 I3 03×9 03×4 −I3 03×14
]
x0 = 03×1 (132)
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Through linearization, the constraint of the error states is:[
I3 03 03×9 −I3 03 03×13
03 I3 03×9 03 −I3 03×13

]
x̃0 = 06×1 (133)

With (133), we can convert the 6-th and 7-th row of (122) as:[
Iclone,k+1

G θ̃
Gp̃Iclone,k+1

]
=

[
ΨC11(tk+1, t0) 03 03 ΨC14(tk+1, t0) 03 03 03 03×13
ΨC21(tk+1, t0) I3 ΨC23(tk+1, t0) ΨC24(tk+1, t0) ΨC25(tk+1, t0) 03 03 03×13

]
x̃0

(134)

=

[
ΨC11(tk+1, t0)

I0
G θ̃ + ΨC14(tk+1, t0)bg

ΨC21(tk+1, t0)
I0
G θ̃ + Gp̃I0 + ΨC23(tk+1, t0)

GṽI0 + ΨC24(tk+1, t0)bg + ΨC25(tk+1, t0)ba

]
(135)

=

[
ΨC11(tk+1, t0)

Iclone,0
G θ̃ + ΨC14(tk+1, t0)bg

ΨC21(tk+1, t0)
Iclone,0
G θ̃ + Gp̃Iclone,0 + ΨC23(tk+1, t0)

GṽI0 + ΨC24(tk+1, t0)bg + ΨC25(tk+1, t0)ba

]
(136)

=

[
03 03 03 ΨC14(tk+1, t0) 03 ΨC11(tk+1, t0) 03 03×13
03 03 ΨC23(tk+1, t0) ΨC24(tk+1, t0) ΨC25(tk+1, t0) ΨC21(tk+1, t0) I3 03×13

]
x̃0

(137)

We finally have the following state transition matrix Φ(tk+1,t0) for our observability analysis:

x̃k+1 =



ΦI11(tk+1, t0) 03 03 ΦI14(tk+1, t0) 03 03 03 03×13
ΦI21(tk+1, t0) I3 ΦI23(tk+1, t0) ΦI24(tk+1, t0) ΦI25(tk+1, t0) 03 03 03×13
ΦI31(tk+1, t0) 03 I3 ΦI34(tk+1, t0) ΦI35(tk+1, t0) 03 03 03×13

03 03 03 I3 03 03 03 03×13
03 03 03 03 I3 03 03 03×13
03 03 03 ΨC14(tk+1, t0) 03 ΨC11(tk+1, t0) 03 03×13
03 03 ΨC23(tk+1, t0) ΨC24(tk+1, t0) ΨC25(tk+1, t0) ΨC21(tk+1, t0) I3 03×13

013×3 013×3 013×3 013×3 013×3 013×3 013×3 I13


︸ ︷︷ ︸

Φ(tk+1,t0)

x̃0 (138)

3.2 Observability Properties

Based on the measurement Jacobians and state transition matrix [see (17), (18), (117) and (138)],
we are able to construct the observability matrix (119) of the MSCKF-based linearized system under
consideration. To be specific, the stacked Jacobian matrix of visual/wheel measurement Hk+1 at
k+2-th block row of the observability matrix has the following components:

Hk+1 =

H01 H02 02×9 02×3 02×3 02×3 02×3 02×1 02×1 02×1 02×1 H0e

H11 01×3 01×9 H16 01×3 H18 01×3 H1a H1b H1c H1d 01×3
H21 H22 02×9 H26 H27 H28 H29 H2a H2b H2c H2d 02×3

 (139)

where

H01 = Hp
C
I R̂bIk+1

G R̂(Gp̂f − Gp̂Ik+1
)c H02 = −Hp

C
I R̂

Ik+1

G R̂ (140)

H0e = Hp
C
I R̂

Ik+1

G R̂ (141)

H11 = e3
>O
I R̂ H16 = −e3

>O
I R̂

Ik+1

G R̂Ik
G R̂> (142)
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H18 = e>3 (I− O
I R̂

Ik+1

G R̂Ik
G R̂>OI R̂>) H1a = e>3

O
I R̂(Ik+1ω − Ik+1

G R̂Ik
G R̂>Ikω) (143)

H1b =
∑n

i=1
∆ti

ωml,i

b̂
H1c =

∑n

i=1
−∆ti

ωmr,i

b̂
(144)

H1d =
∑n

i=1
∆ti

ωmr,ir̂r − ωml,ir̂l
b̂2

(145)

H21 = −ΛOI R̂Ik
G R̂

Ik+1

G R̂>bI p̂Oc H22 = ΛOI R̂Ik
G R̂ (146)

H26 = ΛOI R̂bIkG R̂(Gp̂Ik+1
+
Ik+1

G R̂>I p̂O − Gp̂Ik)c H27 = −ΛOI R̂Ik
G R̂ (147)

H28 = Λ(bOI R̂Ik
G R̂(Gp̂Ik+1

+
Ik+1

G R̂>I p̂O − Gp̂Ik)c+ O
I R̂Ik

G R̂
Ik+1

G R̂>OI R̂>bOp̂Ic) (148)

H29 = Λ(I− O
I R̂Ik

G R̂
Ik+1

G R̂>OI R̂>) (149)

H2a = Λ(OI R̂bIkG R̂Gp̂Ik+1
+ Ik
G R̂

Ik+1

G R̂>I p̂O − Ik
G R̂Gp̂IkcIkω

+ O
I R̂Ik

G R̂Gv̂Ik+1
− O
I R̂Ik

G R̂
Ik+1

G R̂>bI p̂OcIk+1ω − O
I R̂Ik

G R̂Gv̂Ik) (150)

H2b =

[∑n
i=1 hxω,i

ωml,i

b̂
− hxv,i ωml,i2 + hxθ,i

∑i−1
j=1 ∆tj

ωml,j

b̂∑n
i=1 hyω,i

ωml,i

b̂
− hyv,i ωml,i2 + hyθ,i

∑i−1
j=1 ∆tj

ωml,j

b̂

]
(151)

H2c =

[∑n
i=1−hxω,i

ωmr,i

b̂
− hxv,i ωmr,i2 − hxθ,i

∑i−1
j=1 ∆tj

ωmr,j

b̂∑n
i=1−hyω,i

ωmr,i

b̂
− hyv,i ωmr,i2 − hyθ,i

∑i−1
j=1 ∆tj

ωmr,j

b̂

]
(152)

H2d =

[∑n
i=1 hxω,i

ωmr,ir̂r−ωml,ir̂l
b̂2

+ hxθ,i
∑i−1

j=1 ∆tj
ωmr,j r̂r−ωml,j r̂l

b̂2∑n
i=1 hyω,i

ωmr,ir̂r−ωml,ir̂l
b̂2

+ hyθ,i
∑i−1

j=1 ∆tj
ωmr,j r̂r−ωml,j r̂l

b̂2

]
(153)

Now, the k+2-th block row of the observability matrix is:

Mk+2 = Hk+1Φ(tk+1, t0)

=

Γ0

Γ1

Γ2

 =

Γ01 Γ02 Γ03 Γ04 Γ05 02×3 02×3 02×3 02×3 02×1 02×1 02×1 02×1 Γ0e

Γ11 01×3 01×3 Γ14 01×3 Γ16 01×3 Γ18 01×3 Γ1a Γ1b Γ1c Γ1d 01×3
Γ21 Γ22 Γ23 Γ24 Γ25 Γ26 Γ27 Γ28 Γ29 Γ2a Γ2b Γ2c Γ2d 02×3


(154)

where

Γ01 = H01Φ11 + H02Φ21 Γ02 = H02 Γ03 = H02Φ23

Γ04 = H01Φ14 + H02Φ24 Γ05 = H02Φ25 Γ0e = H0e

Γ11 = H11Φ11 Γ14 = H11Φ14 + H16Φ64 Γ16 = H16Φ66

Γ18 = H18 Γ1a = H1a Γ1b = H1b

Γ1c = H1c Γ1d = H1d Γ21 = H21Φ11 + H22Φ21

Γ22 = H22 Γ23 = H22Φ23 + H27Φ73 Γ24 = H21Φ14 + H22Φ24 + H26Φ64 + H72Φ74

Γ25 = H22Φ25 + H27Φ75 Γ26 = H26Φ66 + H27Φ76 Γ27 = H27

Γ28 = H28 Γ29 = H29 Γ2a = H2a

Γ2b = H2b Γ2c = H2c Γ2d = H2d

Φij are the block matrix of (138) at i-th row and j-th column.
Based on the observability matrix (119), the proposed VIWO has the following observability

properties:

Lemma 3.1. With general motions, there are four unobservable directions corresponding to the
global position and the yaw angle as in VINS [10].
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Proof. The 4 unobservable directions of VINS corresponding to the state (118) is:

Nvins =
[
Nvins1 Nvins2

]
=



03
I0
GRg

I3 −bGp̂I0cg
03 −bGv̂I0cg
03 03×1
03 03×1
03

I0
GRg

I3 −bGp̂I0cg
010×3 010×1

I3 −bGpfcg


(155)

Nvins is the null space of Mk+2 proving the unobservability of the 4 directions.

Mk+2Nvins =

Γ0Nvins1 Γ0Nvins2

Γ1Nvins1 Γ1Nvins2

Γ2Nvins1 Γ2Nvins2

 = 05×4 (156)

This completes the proof.

Lemma 3.2. If the system undergoes pure translation (no rotation), the translation part OpI of the
spatial calibration and the baselink length b will be unobservable, with unobservable directions as:

Ntrans =
[
Ntrans1 Ntrans2

]
=



021×3 021×1
03 03×1
I3 03×1

01×3 0
01×3 0
01×3 0
01×3 1
03 03×1


(157)

Proof. Since the system undergoes pure translation, we have the following geometric constraints:
Ik+1

G R = Ik
GR = I0

GR (158)

Oiω =
ωr,irr − ωl,irl

b
= 0 for i ∈ 1, 2, · · · , n (159)

By applying the above constraints, Ntrans become the null space of the observability matrix Mk+2:

Mk+2Ntrans =

02×3 02×1
01×3 Γ1d

Γ29 Γ2d

 (160)

=


02×3 02×1

01×3
∑n

i=1 ∆ti
ωmr,ir̂r−ωml,ir̂l

b̂2

Λ(I− O
I R̂Ik

G R̂
Ik+1

G R̂>OI R̂>)

[∑n
i=1 hxω,i

ωmr,ir̂r−ωml,ir̂l
b̂2

+ hxθ,i
∑i−1

j=1 ∆tj
ωmr,j r̂r−ωml,j r̂l

b̂2∑n
i=1 hyω,i

ωmr,ir̂r−ωml,ir̂l
b̂2

+ hyθ,i
∑i−1

j=1 ∆tj
ωmr,j r̂r−ωml,j r̂l

b̂2

]

(161)

= 05×4 (162)

This completes the proof.
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Lemma 3.3. If the system undergoes random (general) translation but with only one-axis IMU
rotation, the translation calibration parameter OpI along the rotation axis will be unobservable, with
the following unobservable direction:

Nrot =

024×1
O
I R̂u
07×1

 (163)

where u is the constant rotation axis in the IMU frame.

Proof. Since the system undergoes one-axis IMU rotation, we have the following geometric con-
straints:

Ik+1

G Ru = Ik
GRu = I0

GRu (164)

By applying the above constraints, Nrot become the null space of the observability matrix Mk+2:

Mk+2Nrot =

 02×3
01×3

Γ29
O
I R̂u

 (165)

=

 02×3
01×3

Λ(I− O
I R̂Ik

G R̂
Ik+1

G R̂>OI R̂>)OI R̂u

 (166)

= 05×4 (167)

This completes the proof.

Lemma 3.4. If the system undergoes constant local IMU angular velocity Iω and linear velocity
Iv, the time offset OtI will be unobservable with the following unobservable direction:

Nconstv =


021×1
−OI R̂I0ω
O
I R̂I0v

1
06×1

 (168)

Proof. Since the system undergoes constant local IMU angular velocity Iω and linear velocity Iv,
we have the following geometric constraints:

Ik+1ω = Ikω = I0ω (169)
Ik+1v = Ikv = I0v (170)

By applying the above constraints, Nconstv become the null space of the observability matrix Mk+2:

Mk+2Nconstv =

 02×3
−Γ18

O
I R̂I0ω + Γ1a

−Γ28
O
I R̂I0ω + Γ29

O
I R̂I0v + Γ2a

 (171)

=

 02×3

−e>3 (I− O
I R̂

Ik+1

G R̂Ik
G R̂>OI R̂>)OI R̂I0ω + e>3

O
I R̂(Ik+1ω − Ik+1

G R̂Ik
G R̂>Ikω)

MN1

 (172)
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= 05×4 (173)

MN1 = −Λ(bOI R̂Ik
G R̂(Gp̂Ik+1

+
Ik+1

G R̂>I p̂O − Gp̂Ik)c+ O
I R̂Ik

G R̂
Ik+1

G R̂>OI R̂>bOp̂Ic)OI R̂I0ω

Λ(I− O
I R̂Ik

G R̂
Ik+1

G R̂>OI R̂>)OI R̂I0v + Λ(OI R̂bIkG R̂Gp̂Ik+1
+ Ik
G R̂

Ik+1

G R̂>I p̂O − Ik
G R̂Gp̂IkcIkω

+ O
I R̂Ik

G R̂Gv̂Ik+1
− O
I R̂Ik

G R̂
Ik+1

G R̂>bI p̂OcIk+1ω − O
I R̂Ik

G R̂Gv̂Ik) (174)

This completes the proof.

Lemma 3.5. If the system undergoes motions that does not execute left/right wheel movement, the
intrinsic parameter rl/rr will be unobservable, with the following unobservable direction:

Nradii =


028×1

1
0

04×1

 or


028×1

0
1

04×1

 (175)

Proof. Since the system undergoes motions that does not execute left/right wheel movement, we
have the following geometric constraints:

ωl,i = 0 or ωr,i = 0 for i ∈ 1, 2, · · · , n (176)

By applying the above constraints, Nradii become the null space of the observability matrix Mk+2:

Mk+2Nradii =

02×3
Γ1b

Γ2b

 or

02×3
Γ1c

Γ2c

 (177)

=



02×3
n∑
i=1

∆ti
ωml,i

b̂
n∑
i=1

hxω,i
ωml,i

b̂
− hxv,i ωml,i2 + hxθ,i

i−1∑
j=1

∆tj
ωml,j

b̂

n∑
i=1

hyω,i
ωml,i

b̂
− hyv,i ωml,i2 + hyθ,i

i−1∑
j=1

∆tj
ωml,j

b̂





or



02×3
n∑
i=1
−∆ti

ωmr,i

b̂
n∑
i=1
−hxω,i ωmr,ib̂

− hxv,i ωmr,i2 − hxθ,i
i−1∑
j=1

∆tj
ωmr,j

b̂

n∑
i=1
−hyω,i ωmr,ib̂

− hyv,i ωmr,i2 − hyθ,i
i−1∑
j=1

∆tj
ωmr,j

b̂




(178)

= 05×4 (179)

This completes the proof.

Lemma 3.6. If the system does not move, all the calibration parameters(OI R, OpI , OtI , rl, rr, b)
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are unobservable, with the following unobservable direction:

Nno =



021×3 021×3 021×1 021×1 021×1 021×1
I3 03 03×1 03×1 03×1 03×1
03 I3 03×1 03×1 03×1 03×1

01×3 01×3 1 0 0 0
01×3 01×3 0 1 0 0
01×3 01×3 0 0 1 0
01×3 01×3 0 0 0 1
03 03 03×1 03×1 03×1 03×1


(180)

Proof. Since the system does not move, we have the following geometric constraints:

GvIk+1
= GvIk = GvI0 = 0 (181)

ωk+1 = ωk = ω0 = 0 (182)
ak+1 = ak = a0 = 0 (183)
Ik+1

G R = Ik
GR = I0

GR (184)
GpIk+1

= GpIk = GpI0 (185)
ωr,i = ωl,i = 0 for i ∈ 1, 2, · · · , n (186)

By applying the above constraints, Nno become the null space of the observability matrix Mk+2:

Mk+2Nno = 05×4 (187)

This completes the proof.
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