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Abstract

Due to increasing proliferation of autonomous vehicles, securing robot navigation against
malicious attacks becomes a matter of urgent societal interest, because attackers can fool these
vehicles by manipulating their sensors, exposing us to unprecedented vulnerabilities and ever-
increasing possibilities for malicious attacks. To address this issue, we analyze in-depth the
Maximum Correntropy Criterion Extended Kalman Filter (MCC-EKF) and propose a weighted
MCC-EKF (WMCC-EKF) algorithm by systematically, rather than in an ad-hoc way, inflating
the noise covariance of the compromised measurements based on each measurement’s quality. As
a conservative alternative, we also design a secure estimator by first detecting attacks based on
`0(`1)-optimization assuming that only a small number of measurements can be attacked, and
then employ a sliding-window Kalman filter to update the state estimates and covariance using
only the uncompromised measurements – the resulting algorithm is termed Secure Estimation-
EKF (SE-EKF). Both Monte-Carlo simulations and experiments are performed to validate the
proposed secure estimators for map-based localization.

1 Introduction and Related Work

It is conceivable that thousands of autonomous vehicles will be operated in a wide range of civilian
and military application domains, such as self-driving cars, unmanned aerial vehicles (UAVs), and
autonomous underwater vehicles (AUVs). However, current onboard navigation systems for these
vehicles are often vulnerable to malicious attacks – that is, terrorists and criminals may easily hijack
vehicles to attack the public. While the study of secure control has made important advances over
the past few years, the vast majority of this literature focuses on cyber attacks. However, sensor
attacks – manipulating physical fields such as electromagnetic and pressure which are measured by
sensors and/or directly compromising measurements even if communication is secure (e.g. see [1,
2]) – pose a more menacing threat to autonomous navigation systems.

In particular, secure state estimation and control in cyber-physical systems has gained significant
attention (e.g., [3, 4, 5, 6, 7, 8]), because it was realized that adversarial attacks on sensors truly
occur in real life. For example, the first-time-ever attack (Stuxnet) on the Supervisory Control
And Data Acquisition (SCADA) system was found in 2010 [9], where sensor measurements were
replaced by previously recorded data and fed to the controller, thus leading to possible catastrophic
damages; false data can be injected into smart power grids [10]; and an attacker can spoof the GPS
to misguide an $80 million yacht off route [11].

To secure state estimation in linear dynamical systems, one can formulate a non-convex `0-
minimization problem when sensor measurements are either noise-free [3, 4] or being corrupted by
noise [6], which is then relaxed into a convex `r/`1 (sum of `r norms) problem. In particular, Fawzi
et al. [4] studied the secure estimation problem for a noiseless linear time invariant (LTI) system
with a fixed set of attacked sensors which are less than one half of the total number of sensors,
but the attack signals can be arbitrary. Pajic et al. [12, 13] extended [4] to noisy system with
bounded noise assumption, and proved that the worst-case estimation error of their algorithms
is linear with the size of the noise. If there is no (processing) resource constraint, a minimax
optimization can be formulated to construct an optimal estimator by minimizing the worst-case
mean square error against all possible attacked sensors and all possible sensor noise [5, 8]. Moreover,
in [3, 14] a complete set of fault-monitor filters are generated to detect the existence of an attack.
However, if only an upper bound on the number of the attacked sensors is available, this method
is not scalable since the number of monitors is combinatorial in the size of the attacked sensors. In
[14] observability analysis was also performed for a linear system under attacks, showing that the
system is observable if and only if less than a half of the sensors are attacked. In robotics, Bezzo
et al. [15] introduced a secure Kalman filter (KF) for the LTI system by inflating the covariance
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of attacked sensors’ measurements. Recently, Hu et al. [16] addressed secure localization for UAVs
by using error correction techniques [17] to identify the attack signals based on the sparse attack
assumption but relaxing the assumption of a fixed set of attack sensors and allowing different sets
of sensors to be attacked each time. Additionally, in noise-free cases, Satisfiability Modulo Theory
(SMT)-based algorithms can also be employed to detect and isolate the compromised sensors for
both linear dynamical systems [7] and nonlinear differentially flat systems [18].

In this paper, we seek to secure state estimation for stochastic nonlinear systems with the par-
ticular application to map-based localization. In particular, based on the MCC-KF [19], we first
perform in-depth analysis of the maximum correntropy criterion (MCC)-based EKF. Based on that,
we analytically derive the weighted MCC-EKF (WMCC-EKF) that shows to improve accuracy and
robustness to unbounded attacks as compared to the state-of-the-art methods. Different with [20],
the proposed WMCC-EKF is derived for nonlinear measurement model and the weights are deter-
mined partially according to the known noise level. Furthermore, as a conservative solution, we
generalize the secure estimation algorithm [16] to nonlinear systems and develop the Secure Esti-
mation (SE)-EKF that integrates the attack detection within a sliding-window filtering framework.
The proposed secure EKFs are validated through both Monte-Carlo simulations and experiments
on real datasets.

2 Problem Statement

Consider a nonlinear system with measurements possibly attacked by adversaries:

xk+1 = f(xk,wk) (1)

yk+1 = h(xk+1) + nk+1 + ak+1 (2)

zk+1 = yk+1 − ak+1 = h(xk+1) + nk+1 (3)

where xk ∈ Rm×1 represents the system states at the time step k, f represents the system dy-
namic model and w is the input white Gaussian noise with covariance Q. y ∈ Rp×1 denotes the
measurements from p sensors, h represents the nonlinear measurement model function. a ∈ Rp×1

denotes the attack signals and is assumed to be sparse vector that at least one sensor cannot be
attacked. We also define z ∈ Rp×1 as the un-attacked output. n ∈ Rp×1 represents zero-mean
Gaussian white noises with covariance R = diag{σ2

1 . . . σ
2
i . . . σ

2
p}, where σi, i = 1 . . . p represents

the i-th sensor’s measurement noise variance and diag{·} is the diagonal matrix form. If the R is
a full (not diagonal or block diagonal) matrix, a noise pre-whitening operation (see Appendix A)
can be performed to transform R into diagonal form. The corresponding linearized system can be
computed as follows:

x̃k+1 ' Fkx̃k + Gkwk (4)

ỹk+1 ' Hk+1x̃k+1 + nk+1 + ak+1 (5)

z̃k+1 ' Hk+1x̃k+1 + nk+1 (6)

where x̃ = x− x̂ denotes the error states, the Fk and Gk represent the Jacobians regarding to the
state xk and the noise wk respectively. ỹ denotes the measurement residual, while z̃ describes the
un-attacked measurement residual. Hk+1 represents the measurement Jacobian with respect to the
state xk+1.

2.1 Map-based Localization with Malicious Attacks

While this paper particularly focuses on 2D map-based localization (Fig. 1) as an example to
illustrate the key ideas of our proposed secure estimators, the methodology is general and readily
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applicable to other systesm. Specifically, in map-based localization, the dynamic motion model is
given by:

Gẋ =

GẋGẏ
Gφ̇

 =

v cos(φ)
v sin(φ)

ω

 =

cos(φ)
sin(φ)

0

 v +

0
0
1

ω (7)

where v = [v cos(φ) v sin(φ)]> is the linear velocity and ω is the angular velocity of the robot. φ
denotes the orientation of the robot. Note that we assume a more challenging localization scenario
than [16, 13] that the robot cannot get GPS signals. Instead, only the relative range and bearing
measurements of the features are available for localization, and the measurements can be described
as:

h =

[
h(r)

h(b)

]
+ a =

[ √
spf
>spf

arctan
(

syf
sxf

)]+ a (8)

where h(r) and h(b) represent the range and bearing measurements respectively, spf = [sxf
syf ]

>

represents the map feature in the sensor frame of reference.

Figure 1: 2D map-based localization with adversarial attacks

It is important to note that, instead of assuming a fixed set of attacked sensors [4, 12], we
assume that the attacker can attack different sensors randomly at different time steps [see (49)].
Note also that as compared to [16, 15], instead of assuming that less than a half of the sensors can
be attacked, we only assume that at least one bearing or range sensor is not attacked. Moreover,
attack signals can even go unbounded – that is, some of the sensor attacks ai(i = 1 . . . p) might go
unbounded, i.e., ‖ai‖ → ∞.

3 Maximum Correntropy Criterion (MCC)-based Filters

In this section, we present in detail our secure filters based on the maximum correntropy criterion.
The correntropy can be defined as a statistical metric of similarity between two random variables
[19], and one can pose a cost function Jm for robust filters based on the correntropy with Gaussian
kernels as follows:

Jm(xk+1) = Gσ

(
‖yk+1 − h(xk+1)‖R−1

k+1

)
+ Gσ

(
‖xk+1 − f(xk)‖P−1

k+1|k

)
(9)

where Gσ is the Gaussian kernel in the form of Gσ(‖xi − yi‖) = exp(−‖xi−yi‖
2

2σ2 ) with σ as band-
width, Pk+1|k are propagated covariance [see (11)]. Minimization of the cost function (9) can lead
to the derivation of correntropy based filters [19]. Correntropy based filter is proved to be robust
when having large disturbances or outliers and can work well with non-Gaussian noise.
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3.1 MCC-EKF

Based on [19, 21], we analytically derive the MCC-EKF for the case of nonlinear systems such
as map-based localization. In particular, given the prior knowledge of the state in the form of
Gaussian distribution, N (x̂0|0,P0), state estimate and covariance propagation based on the motion
model (1) from time step k to k + 1 is:

x̂k+1|k = f(x̂k|k, 0) (10)

Pk+1|k = FkPk|kF
>
k + GkQkG

>
k (11)

Then, EKF-like update based on the measurement model (2) can be expressed as:

ŷk+1|k = ẑk+1|k = h(x̂k+1|k) (12)

dk+1 =
Gσ

(∥∥yk+1 − h(x̂k+1|k)
∥∥

R−1
k+1

)
Gσ

(∥∥x̂k+1|k − f(x̂k+1|k)
∥∥

P−1
k+1|k

) (13)

Kk+1|k =
(
P−1
k+1|k + H>k+1(dk+1R

−1
k+1)Hk+1

)−1

H>k+1(dk+1R
−1
k+1) (14)

= Pk+1|kH
>
k+1

(
Hk+1Pk+1|kH

>
k+1 + d−1

k+1Rk+1

)−1
(15)

x̂k+1|k+1 = x̂k+1|k + Kk+1|k(yk+1 − ŷk+1|k) (16)

Pk+1|k+1 =
(
P−1
k+1|k + H>k+1(dk+1R

−1
k+1)Hk+1

)−1

(17)

where dk+1 is a ratio scalar computed from Gaussian kernel. Based on these derivations, the
detailed MCC-EKF algorithm can be found as Algorithm 1.

Algorithm 1 MCC-EKF Algorithm

1: Prior Information x̂0|0, P0|0
2: for k ← 0, N − 1 do
3: x̂k+1|k ← Eq.(10) {Propagation}
4: Pk+1|k ← Eq.(11)
5: ẑk+1|k ← Eq.(12) {Update}
6: dk+1 ← Eq.(13)
7: Kk+1|k ← Eq.(14)
8: x̂k+1|k+1 ← Eq.(16)
9: Pk+1|k+1 ← Eq.(17)

10: end for

With an in-depth inspection of the MCC-EKF, the updated covariance (17) can also be written
as:

Pk+1|k+1 = Pk+1|k −Pk+1|kH
>
k+1S

−1
k+1|kHk+1Pk+1|k (18)

with the innovation covariance Sk+1|k defined as:

Sk+1|k = Hk+1Pk+1|kH
>
k+1︸ ︷︷ ︸

S1

+ d−1
k Rk+1︸ ︷︷ ︸

S2

(19)

where S1 and S2 denote the covariance contribution from the motion (1) and measurement (2),
respectively. Note that the MCC-EKF can be viewed as using the scalar dk+1 to control the
covariance inflation from the attacked measurements. As shown in (13), dk+1 decreases if system
has been attacked, and the covariance contribution S2 will be strengthened [see(19)], which indicates
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large uncertainties from the measurements. Thus, Sk+1|k increases accordingly and the updated
state covariance Pk+1|k+1 will be inflated due to (18). Lemma 3.1 summarizes our analysis:

Lemma 3.1. For the MCC-EKF, if the attack ak+1 goes unbounded, the filter will not perform
measurement update and output the propagated estimates.

Proof. If the attack goes unbounded, that is ‖ak+1‖ → ∞, then
∥∥yk+1 − h(x̂k+1|k)

∥∥
R−1

k+1

→ ∞, and

hence dk → 0. According to (14) and (16), Kk+1 → 0 and x̂k+1|k+1 → x̂k+1|k respectively. Finally,
with (17), Pk+1|k+1 → Pk+1|k.

This result essentially shows that the scalar dk+1 will cancel all the observation updates even
if only one measurement is attacked at time step k + 1, which clearly is too conservative and loses
much useful information. Thus, in order to enable the MCC-EKF to still utilize the information
contained in un-attacked measurements, we propose the weighted MCC-EKF derived from multiple
Gaussian kernels.

3.2 Weighted MCC-EKF

Compared to (9), we define the cost function for the maximum correntropy criterion with multiple
Gaussian kernels as:

J(xk+1) =

p∑
i=1

Gσ̂i,k+1
(‖yi,k+1 − hi,k+1(xk+1)‖) + Gσ̂0,k+1

(∥∥xk+1 − f(x̂k|k)
∥∥

P−1
k+1|k

)
(20)

where we have defined the Gaussian kernel Gσ̂i,k+1
and Gσ̂0,k+1

according to [19]:

Gσ̂i,k+1
(‖yi,k+1 − hi,k+1(xk+1)‖) = exp

(
−‖yi,k+1 − hi,k+1(xk+1)‖2

2σ̂2
i,k+1

)
(21)

Gσ̂0,k+1

(∥∥xk+1 − f(x̂k|k)
∥∥

P−1
k+1|k

)
= exp

−
∥∥xk+1 − f(x̂k|k,0)

∥∥2

P−1
k+1|k

2σ̂2
0,k+1

 (22)

where σ̂i,k+1, i = 1 . . . p denotes the Gaussian kernel bandwidth of the i-th measurement at time
step k + 1, and σ̂0,k+1 denotes the Gaussian kernel bandwidth of the motion model. yi,k+1 and
hi,k+1(xk+1) represents each row of yk+1 and hk+1. Aiming to meet the maximum correntropy
criterion, we linearize and take the derivatives of the cost function J(xk+1) as:

∂J(xk+1)

∂x̃k+1
' − 1

2

p∑
i=1

Gσ̂i,k+1

σ̂2
i,k+1

∂
(
‖ỹi,k+1 −Hi,k+1x̃k+1‖2

)
∂x̃k+1

− 1

2

Gσ̂0,k+1

σ̂2
0,k+1

∂
(
‖x̃k+1‖2P−1

k+1|k

)
∂x̃k+1

= 0 (23)

where Hi,k+1, i = 1 . . . p represents each row of the Jacobian Hk+1, x̂k+1|k = f(x̂k|k,0), and x̃k+1 =
xk+1 − x̂k+1|k. Then we can arrive at:

p∑
i=1

Gσ̂i,k+1

Gσ̂0,k+1

H>i,k+1Hi,k+1

σ̂2
i,k+1

σ̂2
0,k+1

x̃k+1 −
p∑
i=1

Gσ̂i,k+1

Gσ̂0,k+1

H>i,k+1

σ̂2
i,k+1

σ̂2
0,k+1

ỹi,k+1 + P−1
k+1|kx̃k+1 = 0 (24)

⇒

 p∑
i=1

Gσ̂i,k+1

Gσ̂0,k+1

H>i,k+1Hi,k+1

σ̂2
i,k+1

σ̂2
0,k+1

+ P−1
k+1|k

 x̃k+1 =

p∑
i=1

Gσ̂i,k+1

Gσ̂0,k+1

H>i,k+1

σ̂2
i,k+1

σ̂2
0,k+1

ỹi,k+1 (25)
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Then (25) can be written in matrix form as:[
H>k+1Dk+1R̂

−1
k+1Hk+1 + P−1

k+1|k

]
x̃k+1 = H>k+1Dk+1R̂

−1
k+1ỹk+1 (26)

where we have defined di,k+1, Dk+1 and R̂k+1 as:

di,k+1 =
Gσ̂i,k+1

(‖yi,k+1 − hi,k+1(xk+1)‖)

Gσ̂0,k+1

(∥∥xk+1 − f(x̂k|k,0)
∥∥

P−1
k+1|k

) (27)

Dk+1 = diag{d1,k+1, . . . , di,k+1, . . . , dp,k+1} (28)

R̂k+1 = diag{
σ̂2

1,k+1

σ̂2
0,k+1

, . . . ,
σ̂2
i,k+1

σ̂2
0,k+1

, . . . ,
σ̂2
p,k+1

σ̂2
0,k+1

} (29)

Hence, the new state and covariance update can be expressed as:

x̂k+1|k+1 = x̂k+1|k +
[
H>k+1Dk+1R̂

−1
k+1Hk+1 + P−1

k+1|k

]−1

H>k+1Dk+1R̂
−1
k+1

(
yk+1 − ŷk+1|k

)
(30)

Pk+1|k+1 =
[
H>k+1Dk+1R̂

−1
k+1Hk+1 + P−1

k+1|k

]−1

(31)

To this step, we have the new state update as (30), which is highly similar to (16). Now comes
how to choose appropriate bandwidths. In order to design the bandwidths with physical meanings,

we fix the ratio of
σ̂2
i

σ̂2
0

as σ2
i , where σi denotes the standard deviation of the i-th measurement from

noise covariance Rk+1. Therefore, R̂k+1 = Rk+1, and Dk+1 can just be seen as a weight matrix
for the measurement noise. During the implementation of the WMCC-EKF, we choose σ2

i = λσσ̂
2
i ,

with λσ ∈ (0.125, 0.5) which are shown to work well in our simulation and experiments. Upon this
choice, the state and covariance update of the proposed WMCC-EKF can be finally described as:

Kk+1|k =
[
H>k+1Dk+1R

−1
k+1Hk+1 + P−1

k+1|k

]−1

H>k+1Dk+1R
−1
k+1 (32)

= Pk+1|kH
>
k+1

(
Hk+1Pk+1|kH

>
k+1 + Rk+1D

−1
k+1

)−1
(33)

x̂k+1|k+1 = x̂k+1|k + Kk+1|k
(
yk+1 − ŷk+1|k

)
(34)

Pk+1|k+1 =
[
H>k+1Dk+1R

−1
k+1Hk+1 + P−1

k+1|k

]−1

(35)

Algorithm 2 WMCC-EKF Algorithm

1: Prior Information x̂0|0, P0|0
2: for k ← 0, N − 1 do
3: x̂k+1|k ← Eq.(10) {Propagation}
4: Pk+1|k ← Eq.(11)
5: ẑk+1|k ← Eq.(12) {Update}
6: for i← 1, p do
7: di,k+1 ← Eq.(27) {Construct Dk+1}
8: end for
9: Kk+1|k ← Eq.(32)

10: x̂k+1|k+1 ← Eq.(34)
11: Pk+1|k+1 ← Eq.(35)
12: end for
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Now we will inspect WMCC-EKF from an information perspective. Compared to the MCC-
EKF, the information matrix for the WMCC-EKF can be written as:

P−1
k+1|k+1 = P−1

k+1|k + H>k+1(Dk+1R
−1
k+1)Hk+1 = P−1

k+1|k︸ ︷︷ ︸
Σw1

+

p∑
i=1

di,k+1

H>i,k+1Hi,k+1

σ2
i,k+1︸ ︷︷ ︸

Σw2

(36)

where Σw1 and Σw2 denotes the information from motion model (1) and the measurement model

(2), respectively. Note that di,k+1
H>i,k+1Hi,k+1

σ2
i,k+1

represents the information contribution from the i-th

sensor’s measurement, and thus, Σw2 in (36) can be seen as the sum of single information matrix
from all the p sensors. If the i-th sensor is attacked, di,k+1 will decrease exponentially and the

corresponding information contribution di,k+1
H>i,k+1Hi,k+1

σ2
i,k+1

will be dramatically weakened. However,

this process will not affect the information contribution from other sensors. Therefore, different
with the MCC-EKF, the WMCC-EKF is able to utilize the information from un-attacked sensor
measurements.

3.3 Convergence Analysis under Unbounded Attacks

Inspired by [15], we also perform the convergence analysis for the proposed WMCC-EKF when
the system is suffering from unbounded attacks. We first define x̄k+1 as the state estimate with
un-attacked measurement zk+1, and the predicted measurement based on x̄k+1 can be denoted as:

z̄k+1 = h(x̄k+1) (37)

Hence, with (2) and (3), the update equation (34) can be rewritten as:

x̂k+1|k+1 = x̂k+1|k + Kk+1|k(zk+1 − z̄k+1 + h(x̄k+1)− h(x̂k+1|k) + ak+1) (38)

= x̂k+1|k + Kk+1|k(zk+1 − z̄k+1) + Kk+1|ksk+1 (39)

where sk+1 = h(x̄k+1)− h(x̂k+1|k) + ak+1, describes the difference of measurement estimates from
un-attacked and attacked measurements. Since sk+1 also includes the attack vector ak+1, the term
Kk+1|ksk+1 can be seen as Attack Innovation. We would like to shrink this term, so that the
attacked estimate x̂k+1|k+1 will approach the ideal estimate x̄k+1 as close as possible. Interestingly,
in the following lemma, we in fact show that the WMCC-EKF can constrain the attack innovation
to a small bound even under unbounded attacks.

Lemma 3.2. Given an unbounded attack ak+1 and an arbitrarily small positive constant value ξ,
there exists a correntropy weight matrix Dk+1 for the WMCC-EKF such that:

Pr
(∥∥Kk+1|ksk+1

∥∥2 ≤ ξ
)
> 99.7% (40)

Proof. See Appendix B.

4 Secure Estimation (SE)-EKF

Ideally, we would like to identify the attacked measurements so that we can ensure estimation
security by excluding them from the EKF update. To this end, we introduce the Secure-estimation
(SE)-EKF by generalizing the SE-KF [16, 22] to the nonlinear system under consideration. In
particular, in order to detect sensor attacks, we adopt the sliding-window strategy. Specifically,
we construct a fixed-sized window within EKF framework by stochastic cloning [23]. All the
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accumulated measurements within the window are used for update at certain time step. After
update, the window will be cleared and start to accumulate new measurements again. We define
the state vector with window size N at time step k as:

xck =
[
x>k x>k−1 · · · x>k−N+1 x>k−N

]>
(41)

where xk represents the current robot state, xk−i represents the cloned robot state at time step
k − i, i ∈ {1 . . . N}. Thus, xk−N is the oldest cloned state. Similar to SE in [16], after we have
cloned N robot states xck in the state vector and accumulated their related measurements, we can
linearize and stack all the measurements together as:

z̃k
z̃k−1

...
z̃k−N

 '


Hk

Hk−1

...
Hk−N

 x̃ck +


nk

nk−1

...
nk−N

+


ak

ak−1

...
ak−N

 (42)

According to the linearized motion model (4), within the sliding-window, we have

x̃k = Fk−1 · · ·Fk−N x̃k−N = Fk−1,k−N x̃k−N (43)

where Fk−1,k−N = Fk−1 · · ·Fk−N represents the state transition matrix from cloned state x̃k−N to
the current robot state x̃k. Thus, (42) can be written as:

z̃k
z̃k−1

...
z̃k−N


︸ ︷︷ ︸

Z̃

'


Hk

Hk−1

...
Hk−N




Fk,k−N
Fk−1,k−N

...
I


︸ ︷︷ ︸

Φ

x̃k−N +


nk

nk−1

...
nk−N

+


ak

ak−1

...
ak−N


︸ ︷︷ ︸

E

(44)

where Z̃ represents the stacked measurement residuals, and E denotes the sum of stacked noise
and attack vectors, Φ denotes the stacked state transition matrix from x̃k−N to each state in the
window. Inspired by the attack detection techniques in [16, 22] we apply left null space operation
to Φ to simplify (44). Let Un be the left null space of Φ, that is U>nΦ = 0, then we can have:

Zo = U>nZ = U>nE (45)

where Un can be computed from the QR decomposition of Φ as:

Φ = UeR∆ =
[
Ue Un

] [R∆

0

]
(46)

Given the strong sparse attack assumption that less than a half of the all the sensors can be
attacked, E can be solved from (45) by formulating the following optimization problem with `1
norm regularization[24] as:

Ê = arg min
E

[∥∥Zo −U>nE
∥∥2

2
+ λ ‖E‖`1

]
(47)

where λ is the regularization parameter.
Different from [16], we here consider a nonlinear model and thus, the sparsity of E will be

contaminated by linearization errors and noises. Therefore, the `1-optimization solution Ê from
(45) will not be perfectly sparse. In order to minimize this side effects, we propose to set a threshold

t for Ê to enforce the sparsity. Let ei denotes the i-th element in E, and if ei < t, we set ei = 0
and assume no attack to the i-th element; otherwise ei will keep its value and the i-th element is
labeled as attacking signal. Let ai and ni denote the corresponding i-th element of the noise and
attack vector respectively. If the i-th measurement is not attacked (ai = 0), then:

‖ei‖ = ‖ni + ai‖ ≤ ‖ni‖+ ‖ai‖ ≤ ‖ni‖ (48)
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Based on the white Gaussian noise assumption [i.e., ni ∼ N (0, σ2
i )], we have Pr(‖ni‖ ≤ 3σi) =

99.7%. Considering the linearization errors, we set the threshold ti = λtσi where λt ∈ (3, 6) is used
in our simulations. With the attack identification, the SE-EKF algorithm will be able to remove
all the attacked measurements and perform the state update only with un-attacked measurements.
The Algorithm 3 describes the main procedures of SE-EKF as:

Algorithm 3 SE-EKF Algorithm

1: Prior Information x̂0|0, P0|0
2: for i← 0, N do
3: Stack and construct Z̃, E and Φ as in Eq. (44) {Until current window size i reaches N}
4: if i reaches N then
5: Ê← Eq.(47)
6: a←Enforce sparsity by threshold λt and determine the attacks
7: Kalman filter update with un-attacked measurements
8: i← 0 and clear current window
9: end if

10: end for

5 Nonlinear Observability Analysis With Attacks

According to the [25, 26, 27], the non-linear observability analysis for attacked map-based localiza-
tion system can be concluded with the following lemma:

Lemma 5.1. Given a map-based localization system of (7) and (8), if at least one bearing or range
measurement is un-attacked, the system’s observability are determined by the number of features
observed, that is:

• If only one feature is observed, the system is unobservable with unobservable direction as U;

• If more than one feature are observed, the system is fully observable.

where U =
[[
−J
(
Gpf − Gpx

)]>
1
]>

, J =

[
0 −1
1 0

]
.

Proof. See Appendix C

6 Simulation Results

To validate the proposed secure estimators, we consider a map-based localization scenario where
a wheeled robot moves in a circle trajectory with diameter of 5 meters. There are 120 landmarks
randomly generated near the trajectory as the map. We assume that the robot is equipped with
4 sensors: 2 range sensors and 2 bearing sensors, and these sensors collect independent range and
bearing measurements of the map points when the robot is moving on the trajectory.

Moreover, we have also considered 3 different attack modes (49), where Attack Mode i(i =
1 . . . 3) represents the attack signals received by the 4 sensors, and each column represents a time
step. a∗ denotes non-zero arbitrary or unbounded attack signals and 0 indicates no attack. Note
that at each time step the senors might be attacked with the probability from 33% to 50%. If
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Figure 2: Comparison of the Standard EKF, MCC-EKF, WMCC-EKF, Sliding Window-EKF and
SE-EKF under attacks.

attacked, there are i attacked sensors for Attack Mode i, and the set of attacked sensors are
changing randomly over time.

Sensor 1 : range
Sensor 2 : bearing
Sensor 3 : range
Sensor 4 : bearing

⇐

a∗ 0 0 0 · · ·
0 0 0 a∗ · · ·
0 a∗ 0 0 · · ·
0 0 a∗ 0 · · ·


︸ ︷︷ ︸

Attack Mode 1

,


a∗ a∗ 0 0 · · ·
a∗ 0 0 a∗ · · ·
0 a∗ a∗ 0 · · ·
0 0 a∗ a∗ · · ·


︸ ︷︷ ︸

Attack Mode 2

,


a∗ a∗ 0 a∗ · · ·
a∗ 0 a∗ a∗ · · ·
a∗ a∗ a∗ 0 · · ·
0 a∗ a∗ a∗ · · ·


︸ ︷︷ ︸

Attack Mode 3

(49)

We also define 3 types of attack distribution: constant attack a∗ = c, uniform attack a∗ ∼ U [−c, c],
and the Gaussian distribution a∗ ∼ N (0, c2). For the results presented below, c is set to 1 m for
range measurement and is 0.5 rad for bearing measurement if not specified.

Fig. 2 shows the estimation errors of the Standard EKF, MCC-EKF, WMCC-EKF, Sliding
Window-EKF and SE-EKF. The attacks are following Attack Mode 1 with constant attacks. We
can see that the Standard EKF and Sliding Window-EKF have failed. Although the MCC-EKF
can still work, the accuracy is much worse than that of the WMCC-EKF and the SE-EKF, which
demonstrates the superior performance of the proposed estimators.

According to [16], the SE can have stable performance if and only if the attacked sensors number
satisfies q ≤ p/2 − 1, where p is the number of sensors and q is the number of attacked sensors.
But we have relaxed this assumption for the WMCC-EKF, and Monte-Carlo tests are performed
with different numbers of attacked sensors to test the full capacity of these proposed algorithms.
Fig. 3 shows the results of 50 Monte-Carlo runs with constant attacks of Attack Mode 1, 2 and
3. Normalized estimation error squared (NEES) and root mean square error (RMSE) [28] are used
for evaluating the estimation consistency and accuracy . Clearly, the SE-EKF can only work when
one of the four sensors is attacked, which conforms to [16]. In contrast, the WMCC-EKF can still
perform well even when there are three out of four randomly attacked sensors.

We have also implemented the EKF with Mahalanobis-distance (M distance) test for outliers
rejection, and compared its performance with the WMCC-EKF. The M-distance test is a common
outliers rejection strategy, given by:

dm = r>S−1r (50)

where r is the measurement residual and S is the corresponding innovation covariance. The dm is
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Figure 3: Full capacity test of the WMCC-EKF and SE-EKF in 50 Monte-Carlo simulations.

Figure 4: (a) Comparison of the Standard EKF and M-distance test based EKF under attacks; (b)
Performance of WMCC-EKF with Gaussian, uniform and constant attacks.

assumed to follow the χ2 distribution, thus we can define a threshold γ for dm to identify outliers.
We perform 50 Monte-Carlo runs (Fig. 4) with both the WMCC-EKF and the M-distance based
EKF. Note that the Attack Mode 1 with constant attack is applied, and the overall average NEES
for the WMCC-EKF is approximately 2.97 while for M-distance based EKF is around 4.16. This
shows that the proposed WMCC-EKF achieves better consistency than the M-distance test based
EKF. In addition, the WMCC-EKF is shown to achieve slightly better estimation accuracy.

7 Experimental Results

We further test the proposed WMCC-EKF and SE-EKF with a real dataset, the Victoria Park
dataset [29], which includes wheel odometry measurements between robot poses and 2D range-
bearing observations to landmarks (trees). Specifically, we first run a batch MAP optimization
using GTSAM [30] to generate both the car trajectory and the map, which are used as the ground
truth. Based on this map, we validate our proposed algorithms for map-based localization. During
the test, we synthetically add random attacks to the range-bearing measurements with probability
of 20% at each time step. Both range and bearing attack signals follows a uniform distribution,
with magnitude c of 15m for range and 0.5rad for bearing, respectively. The results are shown in
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Figure 5: Estimated trajectories of the WMCC-EKF, SE-EKF and the Standard EKF with syn-
thetic attacks on the Victoria Park dataset.

Figs. 5 and 6. It is clear from these plots that the green trajectory estimated by the Standard EKF
is not acceptable, while the trajectories estimated by the proposed WMCC-EKF and SE-EKF are
close to the true trajectory, which demonstrate that the proposed algorithms are able to secure the
robot localization.

8 Conclusions and Future Work

In this paper, we have developed the weighted MCC-EKF to secure state estimation for stochastic
nonlinear systems under adversarial attacks. The key idea of this method is to design proper weights
to inflate the possibly-compromised measurements. More conservatively, we have also extended the
SE-KF from linear to nonlinear cases and proposed the SE-EKF within the sliding window filtering
framework to identify the attacked measurements and remove them from the EKF update. The
proposed algorithms have been extensively validated by Monte-Carlo simulations and experiments
on a real dataset. Currently we extend the current work on 2D map-based localization to 3D
simultaneous localization and mapping (SLAM). We will also investigate the signal spoofing for
commonly-used sensors in SLAM, such as GPS, cameras, lidars and sonars.
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Figure 6: Estimation errors of the WMCC-EKF, SE-EKF and the Standard EKF with synthetic
attacks on the Victoria Park dataset.
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Appendix A: Noise Pre-whitening

If the noise covariances matrix R are full matrix, we can perform pre-whitening. Since R is
symmetrical, positive and definite (SPD) matrix, we can factorized R in the following way:

R = VΛV> = (VΛ
1
2 )(VΛ

1
2 )> = V̂V̂> (51)

⇒ V̂−1R(V̂>)−1 = IΛ (52)

where Λ is a diagonal matrix and V̂ = VΛ
1
2 . The pre-whitening is to apply V̂−1 with the

linearized measurement equation as:

V̂−1z̃k+1︸ ︷︷ ︸
žk+1

= V̂−1Hk+1︸ ︷︷ ︸
Ȟk+1

x̃k+1 + V̂−1nk+1︸ ︷︷ ︸
ňk+1

(53)

After pre-whitening, the new measurement noise becomes ňk+1 ∼ N (0, IΛ), where IΛ is identity
(diagonal) matrix.

Appendix B: Proof of Lemma 3.2

From (33), we can write attack innovation Kk+1|ksk+1 as:

∥∥Kk+1|ksk+1

∥∥2
=

∥∥∥∥Pk+1|kH
>
k+1

(
Hk+1Pk+1|kH

>
k+1 + D−1

k+1Rk+1

)−1
sk+1

∥∥∥∥2

(54)

≤
∥∥∥Pk+1|kH

>
k+1

∥∥∥2
∥∥∥∥(Hk+1Pk+1|kH

>
k+1 + D−1

k+1Rk+1

)−1
sk+1

∥∥∥∥2

(55)

=
∥∥∥Pk+1|kH

>
k+1

∥∥∥2
‖τ‖2 (56)
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where we define τ =
(
Hk+1Pk+1|kH

>
k+1 + D−1

k+1Rk+1

)−1
sk+1. We can observe that in oder to show

bounded attack innovation, we only need to show that ‖τ‖ is bounded. We consider the worst case
and compute the boundaries for ‖τ‖ as:

‖τ‖2 =

∥∥∥∥(Hk+1Pk+1|kH
>
k+1 + D−1

k+1Rk+1

)−1
sk+1

∥∥∥∥2

(57)

≤
∥∥∥(σ2

minI + D−1
k+1Rk+1

)−1
sk+1

∥∥∥2
(58)

=

p∑
j=1

(
sj

σ2
min + d−1

j σ2
j

)2

(59)

We define the ideal estimate residual as z̃j,k+1 = zj,k+1 − ẑj,k+1, and z̃j,k+1 ∼ N (0, σ̄2
j,k+1).

Based on Gaussian distribution, we have:

Pr (‖z̃j,k+1‖ ≤ 3σ̄j,k+1) = 99.7% (60)

Eq. (60) indicates that ‖z̃j,k+1‖ is bounded almost surely, and the bound 3σ̄j,k+1 is accurate
enough for engineering application. Then, we drop the time stamps for simplicity and arrive at:

[
sj

σ2
min + d−1

j σ2
j

]2

=

 sj

σ2
min + exp(

(yj−h(x̂))2

2σ̂2
j

)σ2
j


2

(61)

=

 sj

σ2
min + exp(

(zj−z̄j+sj)2

2σ̂2
j

)σ2
j


2

(62)

≤

 sj

σ2
min + exp

(
(‖sj‖−‖z̃j‖)2

2σ̂2
j

)
σ2
j


2

(63)

If the jth sensor attack aj goes unbounded, according to (39), ‖sj‖ → ∞ and hence ‖sj‖ > 3σ̄j .
Then, it is not difficult to see that (‖sj‖ − ‖z̃j‖)2 ≥ (‖sj‖ − 3σ̄j)

2, and we can arrive at: sj

σ2
min + exp

(
(‖sj‖−‖z̃j‖)2

2σ̂2
j

)
σ2
j


2

≤

 sj

σ2
min + exp

(
(‖sj‖−3σ̄j)2

2σ̂2
j

)
σ2
j


2

(64)

<

σ̂2
j

σ4
j

(
‖sj‖
σ̂j

)2

[
exp

(
1
2

(
‖sj‖
σ̂j
− 3

σ̄j
σ̂j

)2
)]2 (65)

=
σ̂2
j

σ4
j

ζ2[
exp

(
1
2 (ζ − µ)2

)]2 (66)
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where ζ =
‖sj‖
σ̂j

, and µ = 3
σ̄j
σ̂j

. Obviously, as ‖sj‖ → ∞, ζ → ∞, and the right side of (64) will

finally approach 0. Besides, if we take derivative of the right side of (64), we can have:

∂

∂ζ

 σ̂2
j

σ4
j

ζ2[
exp

(
1
2 (ζ − µ)2

)]2

 =
σ̂2
j

σ4
j

 −2ζ
(
ζ2 − µζ − 1

)[
exp

(
1
2 (ζ − µ)2

)]2

 = 0 (67)

The maximum value is when ζ ′ =
µ+
√
µ2+8

2 , thus:[
sj

σ2
min + d−1

j σ2
j

]2

≤
σ̂2
j

σ4
j

ζ ′2[
exp

(
1
2 (ζ ′ − µ)2

)]2 (68)

Since ζ ′ is independent of the attack innovation sj , thus we can bound the (68) by appropriate
design of bandwidth σ̂j . Therefore, according to (57) and (60), ‖τ‖2 is the summation of (68) and

is bounded by the design of Dk+1 with probability 99.7%. In (56),
∥∥Pk+1|kH

>
k+1

∥∥2
is independent

from the ak+1, and thus it is bounded. Therefore, with ‖τ‖ also being bounded, according to (56),
we can easily find a ξ that satisfies (40).

Appendix C: Non-linear Observability Analysis Under Attacks

Before the observability analysis, we will first briefly go over the method in [25] and [27]. A
non-linear continuous-time system can be written as:{

ẋ = f0(x) +
∑l

i=1 fi(x)µi
y = h(x)

(69)

where µi, (i = 1 . . . l) is the control input and fi, (i = 1 . . . l) are the process functions. Given the
zeroth-order and the i+ 1-th order Lie derivative ([25]) of the measurement function h, we have:

L0h = h(x) (70)

Li+1
fj

h = ∇Lih · fj (71)

with the span of the i-th order Lie derivative is defined as:

∇Lih =
[
∂Lih
∂x1

∂Lih
∂x2

· · · ∂Lih
∂xm

]
(72)

Thus, we can define the observability matrix O with block rows being the span of Lie derivatives
of (69) based on [25]:

O =


∇L0h
∇L1

fi
h

∇L2
fifj

h

∇L3
fifjfk

h
...

 (73)

where i, j, k = 0 . . . l. Based on [25], the system is observable if the matrix O is of full column rank.
In the meanwhile, if we want to show the system is unobservable and determine the unobservable
direction, we need to infinitely many Lie derivatives to construct a sub-matrix O′, which is quite
challenging, and the null space of O′ will be the unobservable direction for the system. In order to
address this issue, Guo et al. [27] proposed the following theorem to decompose the matrix O and
simplify the problem.
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Theorem 1. Assume that there exists a non-linear transformation

β(x) =
[
β>1 (x) . . .β>t (x)

]>
of variable x in (69), such that:

• h(x) = h′(β) is a function of β;

• ∂β
∂x · fi, i = 0, . . . l are functions of β;

• β is a function of the variables of a set S comprising Lie derivatives from oder zero up to
infinite order.

Then, the observability matrix O can be factorized as: O = Ξ ·Ω, where Ω , ∂β
∂x and Ξ is the

observability matrix of the following system (74):{
β̇ = g0(β) +

∑l
i=1 gi(β)µi

y = h′(β)
(74)

where gi(β) , ∂β
∂x fi(x), i = 1 . . . l. Therefore, the following statements are equivalent:

• System (74) is observable.

• null(O) = null(Ω).

Please refer to [27] for the complete proof of Theorem 1. In this paper we are utilizing this
conclusion to analyze the non-linear observability for system under attacks.

C.1: Map-based Localization System Under Attacks

We first define the state vector for the Map-based localization problem (7) and (8) as:

x =
[
Gpx

>
φ
]>

(75)

Thus, we can have the system dynamic model and equivalent measurement model under attacks
as:

ẋ =

[cos(φ)
sin(φ)

]
0


︸ ︷︷ ︸

f1

v +

[
02×1

1

]
︸ ︷︷ ︸

f2

ω (76)

h
′

=

[
h
′
1

h
′
2

]
=

[
h1

h2

]
+ a =

√sp>f
spf

e>2
spf

e>1
spf

+

[
a1

a2

]
(77)

where h
′
1 represents the attacked range measurement, h

′
2 represents the attacked bearing measure-

ment. Based on sparse attack assumption, not all sensors are attacked. Hence, not all elements in

attack vector a =
[
a1 a2

]>
will be non-zeros. According to the Theorem 1 of [27], we will do the

rank test in the following way:
O = Ξ ·Ω (78)
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where O is the observability rank matrix. It can be decomposed as Ω and Ξ. If Ξ is of full rank,
then Ω will have the same unobservable direction as the O. After explaining how to construct the
74, we will elaborate the matrix rank test for Ξ in the next subsection. Based on our experiences,
a good choice of β is the relative position measurement:

β1 = [R(φ)]> (Gpf − Gpx) (79)

∂β1

∂x
=

[
∂β1

∂Gpx

∂β1
∂φ

]
=
[
− [R(φ)]> −J [R(φ)]> (Gpf − Gpx)

]
(80)

Then, the new basis functions can be constructed accordingly as:

g1 =
∂β1

∂x
f1 = −

[
1
0

]
(81)

g2 =
∂β1

∂x
f2 = −J [R(φ)]> (Gpf − Gpx) = −Jβ1 (82)

Therefore, the new dynamic and measurement model can be expressed by the basis functions
as:

β̇1 = −
[
1
0

]
v − Jβ1ω (83)

h
′

=

[
h
′
1

h
′
2

]
=

√β>1 β1 + a1

e>2 β1

e>1 β1
+ a2

 (84)

C.2: Rank Test Under Attacks

From the definition of Ξ, we can re-write Ξ as:

Ξ =

[
Ξ1

Ξ2

]
(85)

where Ξi is derived from h
′
i, i = 1, 2 respectively. As long as Ξ1 or Ξ2 is of full column rank, the

matrix Ξ of (85) will be of full column rank. Now we will inspect the column rank for the Ξ1 and
Ξ2 respectively. For Ξ1, we have:

• The zeroth-order Lie derivative:

L0h1 =

√
β>1 β1 + a1 (86)

∇L0h1 =
β>1√
β>1 β1

+

(
∂a1

∂β1

)>
(87)

• The first-order Lie derivative:

L1
g1

h1 = −e>1

 β1√
β>1 β1

+
∂a1

∂β1

 (88)

∇L1
g1

h1 = −e>1

(
β>1 β1I2 − β1β

>
1

)
(
β>1 β1

) 3
2

− e>1

∂
(
∂a1
∂β1

)
∂β1

(89)

RPNG-2017-SECURE 17



• The Ξ1 can be constructed as:

Ξ1 =

[
∇L0h1

∇L1
g1

h1

]
= −


β>1√
β>1 β1

+
(
∂a1
∂β1

)>
−e>1

(β>1 β1I2−β1β
>
1 )

(β>1 β1)
3
2

− e>1
∂
(

∂a1
∂β1

)>
∂β1

 (90)

Similarly, for Ξ2, we can have:

• The zeroth-order Lie derivative:

L0h2 =
e>2 β1

e>1 β1

+ a2 (91)

∇L0h2 =

β>1

[
0 1
−1 0

]
(
β>1

[
1 0
0 0

]
β1

)2 +

(
∂a2

∂β1

)>
(92)

• The first order Lie derivative :

L1
g1

h2 = −e>1


[
0 −1
1 0

]
β1(

β>1

[
1 0
0 0

]
β1

)2 +
∂a2

∂β1

 (93)

∇L1
g1

h2 = −e>1


(
β>1

[
1 0
0 0

]
β1

)
I2 − 4

[
0 −1
1 0

]
β1β

>
1

[
1 0
0 0

]
(
β>1

[
1 0
0 0

]
β1

)3

− e>1

∂
(
∂a2
∂β1

)>
∂β1

(94)

• The Ξ2 can be constructed as:

Ξ2 =

[
∇L0h2

∇L1
g1

h2

]
=



β>1

 0 1
−1 0


β>1

1 0
0 0

β1

2 +
(
∂a2
∂β1

)>

−e>1


β>1

1 0
0 0

β1

I2−4

0 −1
1 0

β1β
>
1

1 0
0 0


β>1

1 0
0 0

β1

3

− e>1
∂
(

∂a2
∂β1

)>
∂β1


(95)

Under the assumption of sparse attack, a1 and a2 will not be non-zero at the same time.
Therefore, we can have the following analysis for the rank of Ξ of (85):

• If a1 = 0, then the Ξ1 will be:

Ξ1 =

[
∇L0h1

∇L1
g1

h1

]
= −


β>1√
β>1 β1

−e>1
(β>1 β1I2−β1β

>
1 )

(β>1 β1)
3
2

 (96)
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It is not difficult to see that Ξ is of full column rank. Thus, from (85), we know Ξ is of full
column rank;

• If a2 = 0, then the Ξ2 will be:

Ξ2 =

[
∇L0h2

∇L1
g1

h2

]
=



β>1

 0 1
−1 0


β>1

1 0
0 0

β1

2

−e>1


β>1

1 0
0 0

β1

I2−4

0 −1
1 0

β1β
>
1

1 0
0 0


β>1

1 0
0 0

β1

3




(97)

Similarly, we can find that Ξ is of full column rank. Thus, from (85), we know Ξ is also of full
column rank.

Based on the above analysis, We can make the conclusion that, under sparse-attack assumption,
no-matter whether the attack signal is related to the state x or not, the Ξ will be of full column
rank. Therefore, according to the Theorem 1, the unobservable direction of O is the same as that
of Ω.

C.3: Unobservable Direction

In the above section, we have proved that under sparse attack assumption the system (74)’s Ξ
matrix will be full rank. Then, according to the Theorem 1, we only need to inspect the null space
of Ω and we have the following conclusions:

If only one feature Gpf is observed from the map, the matrix Ω and its null space U can be
expressed as:

Ω =
∂β

∂x
=
[
− [R(φ)]> −J [R(φ)]> (Gpf − Gpx)

]
(98)

U =

[
−J
(
Gpf − Gpx

)
1

]
(99)

In this case we know that the map-based localization system (76) and (77) is unobservable, and
the unobservable direction U is related to the rotation between the robot frame and the global
frame.

If more than 1 features have been observed (e.g., Gpf1 and Gpf2), then the matrix Ω can be
expressed as:

Ω =
∂β

∂x
=

[
− [R(φ)]> −J [R(φ)]> (Gpf1 − Gpx)

− [R(φ)]> −J [R(φ)]> (Gpf2 − Gpx)

]
(100)

In this case, the Ω is of full column rank and thus, the map-based localization system is fully
observable even under attacks.
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