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Abstract

In this paper, we introduce a novel acoustic-inertial navigation system (AINS) for Au-
tonomous Underwater Vehicles (AUVs), aiming to reduce the cost and latency of most of current
underwater navigation systems that typically employ high-accuracy and thus high-cost inertial
sensors. In particular, the proposed approach efficiently fuses the acoustic observations from a
2D imaging sonar and the inertial measurements from a MEMS inertial measurement unit (IMU)
within a tightly-coupled EKF framework, while having no need to keep the acoustic features in
the state vector. As a result, the computational complexity of the proposed AINS is independent
of the scale of the operating environment. Moreover, we develop a new acoustic feature linear
triangulation to provide accurate initial estimates for iteratively solving the corresponding batch
maximum likelihood estimation, and perform an in-depth observability analysis to investigate
the effects of sensor motion on the triangulation. Additionally, since it is typically challenging
to perform a priori sensor extrinsic calibration underwater, we advocate to calibrate IMU-sonar
online. The proposed AINS has been validated extensively in Monte-Carlo simulations.

1 Introduction

Over the years, there has been increasingly growing demands of Autonomous Underwater Vehicle
(AUVs) for a wide range of applications, such as seabed mapping, deep ocean exploring, routine
harbor monitoring and oil pipeline maintenance. To successfully accomplish these tasks, an efficient
and accurate localization solution is required for AUVs. However, this is challenging for underwater
navigation, in part because GPS signal cannot be received underwater, and acoustic beacons require
tedious and costly installation before applications. Although high accuracy inertial sensors, such as
Doppler Velocity Loggers (DVLs) and fiber optic gyroscopes (FOGs), may provide good localization,
the high cost limits their widespread deployments.

Due to the water turbidity and weak illumination in underwater environments, optical cameras
only have limited applications and the relatively less expensive two dimensional (2D) forward-
looking sonar (FLS) is preferable, which has larger field of view (FOV) and faster operating fre-
quency [1][2], and is often used for short-range underwater detection and imaging [3]. For this
reason, substantial research efforts have been taken on sonar-based underwater navigation. Walter
et al. [4] used Exactly Sparse Extended Information Filter (ESEIF) with manually extracted sonar
features to estimated the trajectory of AUV. Johannsson et al. [5] and Hover et al. [6] both adopted
incremental smoothing and mapping (iSAM [7]) to estimate the vehicle motion and produce the
environment maps for harbor surveillance and ship hull inspection. In their work automatic feature
extraction and Normal Distribution Transformation (NDT) based image registration were intro-
duced. This is different from Hurtos et al. [8], who registered images with Fourier-based methods.
Aykin et al. [9] improved [5] by using Gaussian Distribution Transform for image registration
instead of NDT. Based on that, Negahdaripour [10] integrated visual cues from acoustic shadows
of stationary objects and devised 3D sonar motion estimation solution. Mallios et al. [11] utilized
two extended Kalman filters (EKFs) together with a mechanical scanning imaging sonar (MSIS) to
solve the full simultaneous localization and mapping (SLAM) problem. Assalih [12] tried a similar
idea of stereo vision. Instead of optical cameras, the author imaged with two sonars and estimated
the sonar motion by matching corresponding acoustic features between image pairs. Similarly, Ne-
gahdaripour et al. [13] proposed an opti-acoustic stereo system, which combined both a DIDSON
sonar and an optical camera. But this system is not applicable when there exists strong water
turbidity. Based on bundle adjustment (BA) [14], Huang et al. [15] introduced acoustic structure
from motion (ASFM), which uses multiple sonar viewpoints to reconstruct 3D structure as well as
the motion of sonar.
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In contrast to the aforementioned work, in this paper, rather than solely relying on acous-
tic/optical images, we propose to employ an acoustic sonar and IMU and to develop a low-cost
acoustic-inertial navigation system (AINS), by efficiently fusing acoustic measurements from 2D
imaging sonar and inertial measurements from a MEMS IMU within a tightly-coupled EKF frame-
work, without keeping the acoustic features in the state vector. In particular, the main theoretical
contributions of this work are as follows:

• We develop a novel acoustic-inertial odometry algorithm to fuse acoustic and inertial in-
formation without keeping the sonar features in the state vector. Thus, the computational
complexity of the proposed approach is independent of the number of features observed.

• We propose a novel acoustic feature triangulation method to provide accurate initial esti-
mates for the iterative algorithms for solving the corresponding batch least-squares problem.
Moreover, an in-depth observability analysis is conducted to examine the effects of sensor
motion on acoustic feature triangulation.

• We perform online extrinsic calibration between the sonar and the IMU, due to the fact
that it is often challenging in practice to pre-calibrate these sensors in operating underwater
environments.

The rest of the paper is structured as follows: After formulating the problem in the next section,
we present in detail the proposed acoustic-inertial odometry algorithm in Section III. Section IV
describes the proposed acoustic feature triangulation as well as the observability analysis. The
simulation results of the proposed algorithm are shown in Section V. Finally, we conclude the
paper in Section VI as well as possible directions for future research.

2 Problem Statement

In this work, we consider a low-cost AUV navigating underwater equipped with a 2D forward
looking sonar (FLS) and a MEMS IMU and we aim to efficiently localize the vehicle only using
onboard sensor measurements. To this end, in what follows, we briefly describe the IMU kinematic
model and the acoustic sonar measurement model within the EKF framework, which will serve as
the basis for our proposed AINS.

2.1 IMU Kinematic Model

The IMU navigation state xIMU is typically given by [16]:

xIMU =
[
I
Gq̄

T bTg
GvTI bTa

GpTI
]T

(1)

where I
Gq̄ is the quaternion representing the rotation from the global frame {G} to the current

IMU frame {I} [17]. bg and ba are gyroscope and accelerometer biases for IMU measurements,
respectively. GvI and GpI are the IMU velocity and position in the global frame {G}.

The time evolution of the IMU is described as [16, 18]:

I
G

˙̄q(t) =
1

2
Ω(ωm(t)− bg(t)− ng(t))

I
Gq̄(t) (2)

ḃg(t) = nωg(t) (3)
Gv̇I(t) = RT (IGq̄)(

Iam − ba(t)− na(t)) + Gg (4)

ḃa(t) = nωa(t) (5)
GṗI(t) = Gv̇I(t) (6)
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Figure 1: System model introduction: {G} describs the global frame, which the robot motion
trajectory will refer to. {I} describes the IMU frame, which the local motion measurements will
refer to. {S} is the sonar frames, which the local sonar measurements will refer to. Since IMU is
fixed with the sonar sensor, the red doted line represents the rigid transformation between {I} and
{S}. Pf denotes the features sensed by sonar.

where Ω(ω) =

[
−bω ×c ω
−ωT 0

]
, and R(IGq̄) represents the rotation matrix corresponding to I

Gq̄. ωm

and Iam are the direct measurements of angular velocity and linear acceleration from IMU, while
ng and na denote the white Gaussian noises that corrupt the corresponding measurements. nωg
and nωa represents white Gaussian noise vectors driving the IMU biases bg and ba.

2.2 Sonar Measurement Model

An imaging sonar (e.g., FLS) provides ranges and azimuth angles to features in the surrounding
underwater environment. The acoustic measurement model is depicted in Figure 2. We assume a
single feature fj has been observed and tracked in a set of n sonar frames, where the set is denoted
as Mj .

We denote fj in the i-th frame of Mj as Sipfj , and in the global frame as Gpfj , then:

Sipfj =

 Sixj
Siyj
Sizj

 =

 r
(j)
Si

cosφ
(j)
Si

cos θ
(j)
Si

r
(j)
Si

sinφ
(j)
Si

cos θ
(j)
Si

r
(j)
Si

sin θ
(j)
Si

 (7)

From the sonar measurement, we can get the range r
(j)
Si

and the azimuth angle φ
(j)
Si

measure-
ments. Thus, the measurement model can be described as:

z
(j)
Si

=

[
r
(j)
Si

φ
(j)
Si

]
+ n

(j)
Si

=

 √Six2j + Siy2j + Siz2j

arctan
(

Siyj
Sixj

) + n
(j)
Si

(8)

where n
(j)
i is white Gaussian noise vectors with covariance matrix R

(j)
Si

. We can linearize the
measurement model around the state estimate x̂ and obtain the measurement Jacobian matrix as
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Figure 2: Illustration of the sonar measurement model: The feature fj in the sonar frame {Si},
Sipfj , can be represented in a spherical coordinate form: (r

(j)
i , φ

(j)
i , θ

(j)
i ). Note that the range r

(j)
i

and the azimuth angle φ
(j)
i of feature fj can be derived from this sonar measurement, while the

elevation angle θ
(j)
i is lost in the 2D sonar image.

(which can be used for the EKF update):

∂z
(j)
Si

∂Sipfj
=

 Si x̂j
Si r̂j

Si ŷj
Si r̂j

Si ẑj
Si r̂j

−
Si ŷj

ix̂2j+
Si ŷ2j

Si x̂j
Si x̂2j+

Si ŷ2j
0

 (9)

∂Sipfj
∂SδθI

=
⌊
R(SI ˆ̄q)(R(IiG ˆ̄q)(Gp̂fj −

Gp̂Ii)− I p̂S) ×
⌋

(10)

∂Sipfj
∂IpS

= −R(SI ˆ̄q) (11)

∂Sipfj
∂IiδθG

= R(SI ˆ̄q)
⌊
R(IiG ˆ̄q)(Gp̂fj −

Gp̂Ii) ×
⌋

(12)

∂Sipfj
∂GpIi

= −R(SI ˆ̄q)R(IiG ˆ̄q) (13)

∂Sipfj
∂Gpfj

= R(SI ˆ̄q)R(IiG ˆ̄q) (14)

where Si r̂j =
√
Si x̂2j + Si ŷ2j + Si ẑ2j .

2.3 EKF with Stochastic Cloning

Determining the AUV’s poses is often performed using SLAM problem and the EKF (or its variants)
is frequently used for solutions (e.g., see [4]). To better address the nonlinear partially-observable
sonar measurement [see (8)], we propose to employ stochastic cloning [19] in the EKF framework.
Also, we advocate to perform online IMU-Sonar extrinsic calibration, because it is often difficult
(if not possible) to pre-calibrate these sensors in an underwater workspace. Specifically, the state
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vector at time-step k contains current IMU state xIMUk
, the extrinsic calibration (i.e., 6 DoF rigid

transformation) between IMU and sonar xcalib, the cloned N latest IMU poses xIi , i = 1 . . . N and
all the detected features xf :

xk =
[

xTIMUk
xTcalib xTI1 . . . xTIN xTf

]T
(15)

where xcalib =
[
S
I q̄

T IpTS
]T

is the extrinsic IMU-Sonar calibration; xIi =
[
Ii
G q̄

T GpTIi

]T
is

the i-th cloned IMU pose, and xf =
[
GpTf1 · · · GpTfNL

]T
contains all NL features detected

thus far. The standard EKF is then employed to propagate and update the state estimates and
covariance [20]. In particular, as a new sonar image is acquired and processed, the current IMU
pose estimate (IG ˆ̄q and Gp̂I) and newly detected features corresponding to this sonar image will be
appended to the state vector and the covariance matrix is augmented accordingly [19]:

Pk|k ←
[

I6N+21

J

]
Pk|k

[
I6N+21

J

]T
(16)

where the Jacobian J is given by (see [19]):

J =

[
I3×3 03×9 03×3 03×(6N+6)

03×3 03×9 I3×3 03×(6N+6)

]
Note that when cloning a new IMU pose, the oldest pose will be removed if the total number of
cloned states exceeds the pre-defined threshold.

3 Acoustic-Inertial Odometry

It is clear from the preceding section that in the SLAM formulation, as new features are included
in the state vector, it may suffer from ever-increasing computational/storage complexity, in partic-
ular, when operating in large-scale environments. To address this issue, inspired by visual-inertial
odometry [21], we introduce acoustic-inertial odometry for low-cost underwater navigation. In
particular, we linearly marginalize out the acoustic features to keep the state vector of constant
size, while still utilizing the information of sonar measurements to these features to update state
estimates.

Specifically, based on the sonar measurement model (8), the measurement residual for feature
fj is given by:

r
(j)
Si

= z
(j)
Si
− ẑ

(j)
Si

(17)

Linearizing the above equation around the current state estimates and feature estimates, the mea-
surement residual can be computed as:

r
(j)
Si
' H

(j)
xSi

x̃∗ + H
(j)
fSi

Gp̃fj + n
(j)
Si

(18)

where H
(j)
xSi

and H
(j)
fSi

are the Jacobians corresponding to the state vector x∗ =
[

xTIMUk
xTcalib xTI1 . . . xTIN

]T
and the sonar feature fj respectively. By stacking all the measurement residuals corresponding to
the same feature fj within the set of Mj , we have:

r(j) ' H
(j)
x x̃∗ + H

(j)
f
Gp̃fj + n(j) (19)
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where H
(j)
x and H

(j)
f are the stacked Jacobians corresponding to state vector and feature fj in the

set of Mj . Note that since features are no longer in the state vector, we cannot perform EKF
update based on this residual equation (19).

To overcome this issue, similar to [21], we multiply the left nullspace U of the Jacobian matrix

H
(j)
f to both sides of (19), and arrive at:

r(j)o ' UTH
(j)
x x̃∗ + UTn(j) (20)

= H(j)
o x̃∗ + n(j)

o (21)

where r
(j)
o = UT r(j). Note that here we essentially have linearly marginalized out the features from

the linearized measurement model, thus eliminating the need to keep features in the state vector.
With the measurement residual formulation (20) for a single sonar feature, we can stack all the

available feature measurements, and thus the stacked residual vector for all features is written as:

r = Hx̃∗ + n (22)

where r and n are the stacked residual vectors r
(j)
o and noise vectors r

(j)
o respectively, and H is

the stacked Jacobian matrix of H
(j)
o corresponding to the state vector. Once we have (22), the

standard EKF can be used to update state estimate and covariance [20].

4 Determining Acoustic Feature Positions

In order to perform the linear marginalization for the acoustic features as explained in the previous
section, the 3D position estimate of the acoustic feature fj is needed [see (19)]. Thus, in this
section, we present in detail our method of localizing acoustic features.

4.1 Linear Triangulation

We first formulate a linear triangulation to obtain the feature position estimates by transforming
the nonlinear sonar measurements (8) into linear equations. These triangulation results will be
used as the initial estimates for the iterative solver for the nonlinear least-squares (see Section 4.2).

Specifically, let us first consider the bearing constraint. With (7), it is not difficult to see that
the bearing of feature fj in {Si} can be written as:

b
(j)
Si

=

 cosφ
(j)
Si

cos θ
(j)
Si

sinφ
(j)
Si

cos θ
(j)
Si

sin θ
(j)
Si

 (23)

and its perpendicular vector can be computed as:

b
(j)⊥
Si

=
[
− sinφ

(j)
Si

cosφ
(j)
Si

0
]T

(24)

Assuming that {SN} is the first sonar frame of Mj and using (23) and (24), we have:

SN pfj = SN pSi + RT (Si
SN
q̄)Sipfj ⇒

R(Si
SN
q̄)SN pfj = b

(j)
Si
r
(j)
Si

+ R(Si
SN
q̄)SN pSi ⇒

(b
(j)⊥
Si

)TR(Si
SN
q̄)SN pfj = (b

(j)⊥
Si

)TR(Si
SN
q̄)SN pSi (25)
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where we have employed the identities that Sipfj = b
(j)
Si
r
(j)
Si

and (b
(j)⊥
Si

)Tb
(j)
Si

= 0.
Now consider the range constraint whose geometry is shown in Figure 3. Based on the law of

cosine, we have:

(r
(j)
SN

)2 + |SN pSi |2 − (r
(j)
Si

)2 = 2r
(j)
SN
|SN pSi |

(
SN pSi

|SN pSi |

)T
b
(j)
SN

⇒ SN pTSi

SN
pfj =

1

2
((r

(j)
SN

)2 + |SN pSi |2 − (r
(j)
Si

)2) (26)

Figure 3: Illustration of the geometry of the acoustic feature triangulation.

Figure 4: Multiple bearing and range measurements from a sonar to the feature fj , which has been
observed and tracked in a set of n sonar frames Mj . Feature fj is first observed in the sonar frame
{SN}, which is also one frame of Mj .

Since the feature fj has been observed and tracked in the set of Mj frames, which contain
n sonar images, we collect all the measurements from this set and formulate the following linear

RPNG-2016-AINS 7



least-squares equations:

(b
(j)⊥
S1

)TR(S1
SN
q̄)

SN pTS1
...

(b
(j)⊥
Si

)TR(Si
SN
q̄)

SN pTSi
...

(b
(j)⊥
Sn

)TR(Sn
SN
q̄)

SN pTSn


︸ ︷︷ ︸

B2n×3

SN pfj =



(b
(j)⊥
S1

)TR(S1
SN
q̄)SN pS1

1
2((r

(j)
SN

)2 + |SN pS1 |2 − (r
(j)
S1

)2)
...

(b
(j)⊥
Si

)TR(Si
SN
q̄)SN pSi

1
2((r

(j)
SN

)2 + |SN pSi |2 − (r
(j)
Si

)2)
...

(b
(j)⊥
n )TR(Sn

SN
q̄)SN pSn

1
2((r

(j)
SN

)2 + |SN pSn |2 − (r
(j)
Sn

)2)


︸ ︷︷ ︸

b2n×1

(27)

It is clear from (27) that each sonar measurement can provide 2 constraint equations. Therefore,
if there are n (n ≥ 2) measurements, we are able to determine the feature 3D position in the local
sonar frame. Thus, the solution of (27) is given by the normal equation:

SN pfj = (BTB)−1BTb (28)

4.2 Nonlinear Least-Squares

Since the above linear triangulation does not take into account the measurement uncertainty, the
result would not be optimal in maximum likelihood sense. In order to find the maximum likelihood
estimate of the feature, we thus formulate the equivalent (under mild assumptions) nonlinear least-
squares optimization to refine the triangulation result:

Sipfj =
[
Sixj

Siyj
Sizj

]T
(29)

= R(Si
SN
q̄)

( SNxj
SN yj
SN zj

− SN pSi

)
(30)

=

 hi1(
SNxj ,

SN yj ,
SN zj)

hi2(
SNxj ,

SN yj ,
SN zj)

hi3(
SNxj ,

SN yj ,
SN zj)

 (31)

where hi1, hi2, hi3 are scalar functions of SNxj ,
SN yj and SN zj . Substituting into Eq.(8) we can

express the measurement equations as functions containing SNxj ,
SN yj and SN zj :

z
(j)
Si

= h(SNxj ,
SN yj ,

SN zj) + n
(j)
Si

(32)

=

 √
h2i1 + h2i2 + h2i3

arctan(
hi2(

SN xj ,
SN yj ,

SN zj)

hi1(
SN xj ,

SN yj ,
SN zj)

)

+ n
(j)
Si

(33)

We can setup the cost function as following:

min
SN pfj

n∑
i=1

∣∣∣∣∣∣z(j)Si
− h(SNxj ,

SN yj ,
SN zj)

∣∣∣∣∣∣2
R

(j)
Si

(34)

The Gauss-Newton iterative algorithm can be employed to solve this problem by using the trian-
gulation solution (28) as the initial guess.

RPNG-2016-AINS 8



4.3 Observability Analysis

A close inspection of matrix B in (28) reveals that it comprises three components: the bearing per-

pendicular vector b
(j)⊥
Si

, the sensor rotation R(Si
SN
q̄), and the sensor translation SN pSi . Therefore,

it would be important to examine how the sensor motion impacts the feature triangulation and
what are the necessary conditions for feasible feature triangulation. In fact, our rigorous analysis
shows the following:

Lemma 4.1. The effects of sensor motion on feature triangulation are summarized in Table 1.

• If the sonar rotates solely around z axis, moves along only x axis or y axis, or has any
other combined motion pattern of the three basic movements, the sonar feature cannot be
triangulated.

• Once the sonar motion contains one of the other three basic motion pattern (including x
rotation, y rotation and z translation), the sonar feature can be triangulated with at least 2
or 3 measurements.

Table 1: Effects of Sonar Motion on Feature Triangulation

Sensor Motion Conditions for Feature Triangulation

pure x rotation φ
(j)
Si
6= 0 for at least 3 measurements

pure y rotation φ
(j)
Si
6= 0 for at least 3 measurements

pure z rotation Not applicable

pure x translation Not applicable

pure y translation Not applicable

pure z translation φ
(j)
Si
6= 0 for at least 2 measurements

Proof. See Appendix A.

5 Simulation Results

To validate our proposed AINS algorithm, we perform 50 Monte-Carlo simulations under various
conditions. For the results presented in this section, we consider an AUV randomly move in the
environments where point features are also randomly populated. Figure 3 shows the vehicle’s
trajectory and the feature map. All pertinent parameters of the simulation setup are summarized
in Table 2. It should be pointed out that the sensor parameters used in this test are realistic and
similar to actual sensors. The performance metrics used are the root mean squared error (RMSE)
and the normalized estimation error squared (NEES) [20]. The former quantifies the estimation
accuracy while the latter is the standard criterion for estimation consistency.

In particular, Figure 6 (a) and (b) show the average RMSE of Monte-Carlo simulations for
the vehicle’s orientation and position. Note that the total distance travelled is about 40 meters,
while the average position RMSE is about 1 meter, which indicates that the navigation error of
the proposed AINS is about 2.5% of the distance travelled. Figure 7 depicts the average NEES

RPNG-2016-AINS 9
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Figure 5: Simulated AUV’s trajectory and the feature map.

Table 2: Simulation Setup Parameters

Parameter Value

Sonar Range (m) [0.1, 7]

Sonar Azimuth FOV (deg) [-60,60]

Sonar Elevation FOV (deg) [-10,10]

Sonar Angular Resolution (deg) 1

Sonar Range Resolution (m) 0.01

Calib Orientation Error (deg) [3 -3 0]

Calib Orientation σ (deg) 4.58

Calib Position Error (m) [0 0 0.01]

Calib position σ (m) 0.2

IMU rotation σ (rad/s) 1.1220× 10−4

IMU rotation bias σ (rad/s) 5.6323× 10−5

IMU acc. σ (m/s2) 5.0119× 10−4

IMU acc. bias σ (m/s2) 3.9811× 10−5

Monte-Carlo Trials 50
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Figure 6: Average RMSE of Monte-Carlo Simulations for the AUV’s position and orientation.
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Figure 7: Average NEES of Monte-Carlo Simulations for the AUV’s position and orientation.
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Figure 8: Estimation errors vs. 3σ bounds. Note that these results are obtained for one typical
realization of the 50 Monte-Carlo simulations.

Table 3: Calib Uncertainty

Calib Orientation(rad) Calib Position(m)

Initial σθ Stable σθ Initial σ Stable σ

σθx = 0.08 σθx = 0.0083 σx = 0.2 σx = 0.0008

σθy = 0.08 σθy = 0.0102 σy = 0.2 σy = 0.0010

σθz = 0.08 σθz = 0.0007 σz = 0.2 σz = 0.0063

of 50 Monte-Carlo simulations for the vehicle’s orientation and position, while Figure 8 shows the
estimation errors and the corresponding 3σ bounds that are obtained from one typical trial of the
50 Monte Carlo simulations. As evident from these results, the proposed AINS achieves reasonably
consistent performance. Figure 6 (c) and (d) show the average RMSE of calibration parameters
(rotation and translation). The RMSE for calibration rotation decreases quickly within the first
10 seconds and then stays at a low error value and similarly, the average RMSE for calibration
translation converges to a small value. This implies that the online calibration achieves a better
accuracy than the initial estimate which is typically obtained by manual measure in practice.
Moreover, Figure 9 shows estimate errors and their 3σ bounds of the online calibration for a typical
trial. Table 3 shows the uncertainty changes for calibration parameters during the representative
trial shown in Figure 8. These results show that the online extrinsic calibration for IMU and sonar
converges quickly provided good initial estimates and thus in practice, we may stop performing
online calibration after a short period of time once its estimate get matured in order to save
resources.
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Figure 9: Online calibration errors vs. 3σ bounds from one typical run of the 50 Monte-Carlo
simulations. (a) and (b) show the 3σ bounds and errors of calib orientation and position respectively
in one typical realization of the 50 Monte-Carlo simulations.
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6 Conclusions and Future Work

We have developed a low-cost acoustic-inertial navigation system (AINS) that efficiently fuses
acoustic and inertial measurements within a tightly-coupled, stochastic cloning-based EKF frame-
work. In particular, we linearly marginalize out the acoustic features from the state while still
utilizing all the corresponding sonar measurements. As a result, the computational complexity of
the proposed approach is independent of the scale of the environment where an AUV operates. We
have also introduced a novel acoustic feature linear triangulation to generate initial estimates for
the nonlinear least-squares based feature localization. A rigorous, detailed observability analysis
has been performed to understand the impact of the sensor motion on the feature triangulation.
Additionally, motivated by the practical pre-calibration challenges, the proposed AINS advocates
online sonar-IMU extrinsic calibration. Our ongoing work is focusing on validating the proposed
AINS algorithm on the real data collected with a Teledyne Gavia [22]. In processing real data,
there are two challenging issues that need to be addressed: i) time synchronization between IMU
and sonar, and ii) acoustic feature detection and tracking. For time synchronization, we plan to
leverage the techniques for IMU-camera synchronization [23] for visual-inertial navigation; and for
feature registration, we will investigate the sorting correspondence space (SCS) algorithm that is
point-based and proved to be fast and robust in [12].
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Appendix A: Proof of Lemma 4.1

We first introduce the following notations that will be useful for the ensuing analysis:

Si
SN

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (35)

SN pSi =
[
SN ∆xSi

SN ∆ySi
SN ∆zSi

]T
(36)

SN pfj =
[
SNxj

SN yj
SN zj

]T
(37)

A.1: Pure rotation around x axis

If the sonar only rotates around the x axis of the local frame, then the rotation matrix Si
SN

R and

the translation vector SN pSi become:

Si
SN

R =

 1 0 0
0 r22 r23
0 r32 r33

 ,SN pSi =

 SN ∆xSi
SN ∆ySi
SN ∆zSi

 =

 0
0
0


This yields:

(b
(j)⊥
Si

)TR(Si
SN
q̄)SN pfj =

[
− sinφ

(j)
Si

r22 cosφ
(j)
Si

r23 cosφ
(j)
Si

]
SN pfj (38)

Thus, from (27), we have:

B =


...

...
...

− sinφ
(j)
Si

r22 cosφ
(j)
Si

r23 cosφ
(j)
Si

0 0 0
...

...
...

 (39)

Clearly, in this case, at least 3 measurements of feature fj with φ
(j)
Si
6= 0 are needed for the

triangulation when the sonar is purely rotating around its x axis.

A.2: Pure rotation around y axis

Similarly, if the sonar only rotates around the y axis, then we have:

Si
SN

R =

 r11 0 r13
0 1 0
r31 0 r33

 ,SN pSi =

 0
0
0



B =


...

...
...

−r11 sinφ
(j)
Si

cosφ
(j)
Si
−r13 sinφ

(j)
Si

0 0 0
...

...
...

 (40)

In this case at least 3 measurements of feature fj with φ
(j)
Si
6= 0 are needed for the triangulation.
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A.3: Pure rotation around z axis

If the sonar only rotates around the z axis of the local frame, then we have:

Si
SN

R =

 r11 r12 0
r21 r22 0
0 0 1

 ,SN pSi =

 0
0
0



B =


...

...
...

−r11 sinφ
(j)
Si

+ r21 cosφ
(j)
Si
−r12 sinφ

(j)
Si

+ r22 cosφ
(j)
Si

0

0 0 0
...

...
...

 (41)

In this case, we notice that no matter how many measurements are acquired for feature fj ,
Rank(B) ≤ 2. So BTB will always be singular and the feature cannot be triangulated.

A.4: Pure translation along x or y axis

If the sonar only has translations along the x or y axis of the local frame, then we have:

Si
SN

R =

 1 0 0
0 1 0
0 0 1

 ,SN pSi =

 SN ∆xSi
SN ∆ySi

0



B =


...

...
...

− sinφ
(j)
Si

cosφ
(j)
Si

0
SN ∆xSi

SN ∆ySi 0
...

...
...

 (42)

In this case, Rank(B) ≤ 2. So the feature cannot be triangulated, no matter how many measure-
ments are acquired.

A.5: Pure translation along z axis

If the sonar only has translations along the z axis of the local frame, then we have:

Si
SN

R =

 1 0 0
0 1 0
0 0 1

 ,SN pSi =

 0
0

SN ∆zSi



B =


...

...
...

− sinφ
(j)
Si

cosφ
(j)
Si

0

0 0 SN ∆zSi

...
...

...

 (43)

In this case, at least 2 measurements of feature fj with φ
(j)
Si
6= 0 are needed for the triangulation.
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