Contact-aided Invariant Extended Kalman Filtering for Legged Robot State Estimation

Ross Hartley

Why do we need legged robots?

Inspection

Search and rescue

Pavement

) OLMO -

ROBUTICS

WWAA

What states need to be estimated?

- position
- orientation
- velocity
- joint positions/velocities
- contact states

What states need to be estimated?

Visual-inertial odometry?

encoders

contact sensors

Failures of visual-inertial odometry

Vision may fail when ...

- Scarcity of features
 - ➢ snow, grass ...
- Poor lighting
 - ➢ sun glare, night …
- Obstructions
 - \succ smoke, water on lens, ...
- Dynamic environments
- Motion blur

Failures of visual-inertial odometry

Vision failure

Visual-inertial odometry Inertial odometry

Integration of IMU measurements alone leads to significant drift due to sensor noise and bias!

VectorNav-100 IMU

	Accelerometer				
	Bias Error	Horizontal Position Error [m]			
Grade	[mg]	1 s	10s	60s	1hr
Navigation	0.025	0.13 mm	12 mm	0.44 m	1.6 km
Tactical	0.3	1.5 mm	150 mm	5.3 m	19 km
Industrial	3	15 mm	1.5 m	53 m	190 km
Automotive	125	620 mm	60 m	2.2 km	7900 km

https://www.vectornav.com/support/library/imu-and-ins

Kinematic Odometry!

Odometry from **joint encoders** and **contact sensors**

- Contact *implies* that the stance foot remains fixed
- Forward kinematics is used to measure the foot position relative to the IMU
- Together these measurements can be used to estimate relative movement
- EKF to fuse with inertial data [Bloesch 2008]

Dual-estimator approach

measurements including vision-based

loop closures (SLAM)

Invariant-EKF fusing **inertial**, **encoder**, **and contact measurements** (proprioceptive only)

Types of Kalman Filters

Kalman Filter: optimal linear filter – state assumed to be a Gaussian random variable d

$$\frac{\mathrm{d}}{\mathrm{dt}}\mathbf{x}_t = \mathbf{A}_t\mathbf{x}_t + \mathbf{B}_t\mathbf{u}_t + \mathbf{w}_t$$

(Direct) Extended Kalman Filter (EKF): linearize nonlinear state dynamics (filter states directly)

$$\frac{\mathrm{d}}{\mathrm{dt}}\mathbf{x}_t = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \qquad \mathbf{A}_t = \frac{\partial f}{\partial \mathbf{x}_t}\Big|_{\mathbf{x}=\bar{\mathbf{x}}}$$

(Indirect or Error-State) EKF: linearize nonlinear error dynamics (filter error states)

$$\mathbf{e}_t \triangleq \mathbf{x}_t \boxminus \hat{\mathbf{x}}_t \qquad \qquad \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{e}_t = g(\mathbf{e}_t, \mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \\ \approx \mathbf{A}_t(\bar{\mathbf{x}}_t, \mathbf{u}_t) \ \mathbf{e}_t + \bar{\mathbf{w}}_t$$

In general, the linearization depends on the current state estimate. Bad estimate Incorrect linearization Poor performance

٠

We can choose the error-state!

• (Indirect or Error-State) EKF: linearize nonlinear error dynamics (filter error states)

$$\mathbf{e}_t \triangleq \mathbf{x}_t \boxminus \hat{\mathbf{x}}_t \qquad \qquad \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{e}_t = g(\mathbf{e}_t, \mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \\ \approx \mathbf{A}_t(\bar{\mathbf{x}}_t, \mathbf{u}_t) \mathbf{e}_t + \bar{\mathbf{w}}_t$$

Different choices of error variables lead to different linearized error dynamics

e.g. Euler angle error vs. quaternion error

Is there a choice of error variables that leads to autonomous dynamics?

(independent of the state estimate)

Yes! (group-affine systems)

Invariant Extended Kalman Filter [Barrau 2014]

Lie Group Theory – Crash Course

- \succ A **Lie group**, \mathcal{G} , is a group that is also a differentiable manifold.
 - Examples: SO(3), SE(3) are matrix Lie groups
- > The Lie algebra is defined as the tangent space at the identity element of the group $\mathcal{T}_e \mathcal{G}$
 - This vector space is isomorphic to \mathbb{R}^n
- The group's **exponential map**, $exp : \mathcal{T}_e \mathcal{G} \to \mathcal{G}$, maps a vector in the Lie algebra to the Lie group
 - Inverse is the logarithm map, $\log:\mathcal{G}\to\mathcal{T}_e\mathcal{G}$

"hat operator" $(\cdot)^\wedge: \mathbb{R}^n o \mathcal{T}_e \mathcal{G}$

Vectorized notation: $\operatorname{Exp}(\boldsymbol{\xi}) \triangleq \exp(\boldsymbol{\xi}^{\wedge})$ $\operatorname{Log}(\operatorname{Exp}(\boldsymbol{\xi})) = \boldsymbol{\xi}$

Invariant Kalman Filtering

- System defined on a matrix Lie group: $\mathbf{X}_t \in \mathcal{G}$ SO(3), SE(3), etc.
- Dynamics satisfy "group affine" property: $f_{u_t}(\mathbf{X}_1\mathbf{X}_2) = f_{u_t}(\mathbf{X}_1)\mathbf{X}_2 + \mathbf{X}_1f_{u_t}(\mathbf{X}_2) \mathbf{X}_1f_{u_t}(\mathbf{I}_d)\mathbf{X}_2$

With "group affine" systems, a particular choice of error variables will lead to log-linear error dynamics.

• Error is defined through matrix multiplication:

 $\boldsymbol{\eta}_t^r = \bar{\mathbf{X}}_t \mathbf{X}_t^{-1} \quad \text{(Right-Invariant Error)}$ $\boldsymbol{\eta}_t^l = \mathbf{X}_t^{-1} \bar{\mathbf{X}}_t \quad \text{(Left-Invariant Error)}$ $\boldsymbol{\nabla} \quad \boldsymbol{\nabla} \quad \boldsymbol{\nabla}$ True State Estimate

Error is invariant to (right or left) actions of the group $(\mathbf{L}\mathbf{X}_t)^{-1} \mathbf{L}\bar{\mathbf{X}}_t = \mathbf{X}_t^{-1} \mathbf{L}^{-1} \mathbf{L}\bar{\mathbf{X}}_t = \mathbf{X}_t^{-1} \bar{\mathbf{X}}_t$

Log-Linear Error Dynamics

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\xi}_t = \mathbf{A}_t\boldsymbol{\xi}_t$$

The nonlinear error dynamics is **exactly** determined by a linear system in the Lie algebra!!!

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\eta}_t = g_{u_t}(\boldsymbol{\eta}_t)$$

[Barrau and Bonnabel 2017]

Invariant Observations

 $\mathbf{Y}_t = \mathbf{X}_t^{-1}\mathbf{b} + \mathbf{V}_t \quad \text{(Right Invariant Observation)}$ $\mathbf{Y}_t = \mathbf{X}_t\mathbf{b} + \mathbf{V}_t \quad \text{(Left Invariant Observation)}$

measurement = state * constant + noise

[Barrau and Bonnabel 2017]

Autonomous innovation equations!

Contact-Aided Invariant EKF

Propagation

- Use **IMU** measurements to predict base frame movement.
- Use **contact** sensor measurement to predict supporting feet movement (zero translation).

Correction

• Use encoder measurements and **forward kinematics** to correct state estimate.

States and Inputs

• The state is expressed as a matrix Lie group, $\mathbf{X}_t \in SE_K(3)$

Inertial-Contact Dynamics Model

$$D(q)\ddot{q} + C(q,\dot{q})\dot{q} + C(q) = Bu + J^T(q)F$$

The "strapdown" inertial-contact model circumvents using the full dynamics

$$\begin{aligned} \dot{\mathbf{R}}_{t} &= \mathbf{R}_{t} \left(\tilde{\boldsymbol{\omega}}_{t} - \mathbf{w}_{t}^{g} \right)_{\times} \\ \dot{\mathbf{v}}_{t} &= \mathbf{R}_{t} \left(\tilde{\mathbf{a}}_{t} - \mathbf{w}_{t}^{a} \right) + \mathbf{g} \\ \dot{\mathbf{p}}_{t} &= \mathbf{v}_{t} \\ \dot{\mathbf{d}}_{t} &= \mathbf{R}_{t} \mathbf{R}_{\mathrm{BC}} (\tilde{\boldsymbol{\alpha}}_{t}) \left(-\mathbf{w}_{t}^{v} \right) \end{aligned}$$

with respect to body frame

Do we have to use to robot's complicated dynamics?

No!

Inertial-Contact Dynamics Model

$$D(q)\dot{q} + C(q,\dot{q})\dot{q} + C(q) = Bu + J^{T}(q)F$$

The "strapdown" inertial-contact model circumvents using the full dynamics

$$\begin{aligned} \dot{\mathbf{R}}_{t} &= \mathbf{R}_{t} \left(\tilde{\boldsymbol{\omega}}_{t} - \mathbf{w}_{t}^{g} \right)_{\times} \\ \dot{\mathbf{v}}_{t} &= \mathbf{R}_{t} \left(\tilde{\mathbf{a}}_{t} - \mathbf{w}_{t}^{a} \right) + \mathbf{g} \\ \dot{\mathbf{p}}_{t} &= \mathbf{v}_{t} \\ \dot{\mathbf{d}}_{t} &= \mathbf{R}_{t} \mathbf{R}_{\mathrm{BC}}(\tilde{\boldsymbol{\alpha}}_{t}) \left(-\mathbf{w}_{t}^{v} \right) \end{aligned}$$

with respect to body frame

Written in matrix form:

Log-Linear Error Dynamics

(Right Invariant Error) $\boldsymbol{\eta}_t^r \triangleq \bar{\mathbf{X}}_t \mathbf{X}_t^{-1} = \operatorname{Exp}(\boldsymbol{\xi}_t)$ $\mathbf{A}_t = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ (\mathbf{g})_{\times} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$ $\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\xi}_t = \mathbf{A}_t \boldsymbol{\xi}_t + \operatorname{Ad}_{\bar{\mathbf{X}}_t} \mathbf{w}_t$

Linearized error dynamics matrix is independent of the state estimate!

(Left Invariant Error)

$$\eta_t^l \triangleq \mathbf{X}_t^{-1} \bar{\mathbf{X}}_t = \operatorname{Exp}(\boldsymbol{\xi}_t)$$

$$\mathbf{A}_t = \begin{bmatrix} -(\tilde{\boldsymbol{\omega}}_t)_{\times} & \mathbf{0} & \mathbf{0} \\ -(\tilde{\mathbf{a}}_t)_{\times} & -(\tilde{\boldsymbol{\omega}}_t)_{\times} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & -(\tilde{\boldsymbol{\omega}}_t)_{\times} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -(\tilde{\boldsymbol{\omega}}_t)_{\times} \end{bmatrix}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\xi}_t = \mathbf{A}_t \boldsymbol{\xi}_t + \mathbf{w}_t$$

Forward Kinematic Position Measurements

Using forward kinematics, we can measure the position of the contact frame relative to the base (IMU) frame:

$${}_{\mathrm{B}}\mathbf{p}_{\mathrm{BC}}(\tilde{\boldsymbol{\alpha}}_t) \approx \mathbf{R}_t^{\mathsf{T}}(\mathbf{d}_t - \mathbf{p}_t) + {}_{\mathrm{B}}\mathbf{J}_{\mathrm{BC}}^{\dot{p}}(\tilde{\boldsymbol{\alpha}}_t)\mathbf{w}_t^{\alpha}$$

Written in matrix form:

$$\underbrace{\begin{bmatrix} \mathbf{B}\mathbf{P}_{\mathrm{BC}}(\tilde{\boldsymbol{\alpha}}_{t}) \\ 0 \\ 1 \\ -1 \end{bmatrix}}_{\mathbf{Y}_{t}} = \underbrace{\begin{bmatrix} \mathbf{R}_{t}^{\mathsf{T}} & -\mathbf{R}_{t}^{\mathsf{T}}\mathbf{v}_{t} & -\mathbf{R}_{t}^{\mathsf{T}}\mathbf{p}_{t} & -\mathbf{R}_{t}^{\mathsf{T}}\mathbf{d}_{t} \\ 0 \\ 1 \\ -1 \end{bmatrix}}_{\mathbf{Y}_{t}} \begin{bmatrix} \mathbf{0}_{3\times1} \\ 0 \\ 1 \\ -1 \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{B}\mathbf{J}_{\mathrm{BC}}^{\dot{\boldsymbol{\mu}}}(\tilde{\boldsymbol{\alpha}}_{t})\mathbf{w}_{t}^{\boldsymbol{\alpha}} \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{\mathbf{V}_{t}} \\ \underbrace{\mathbf{X}_{t}^{-1}}_{\mathbf{V}_{t}} = \underbrace{\mathbf{V}_{t}}_{\mathbf{V}_{t}} \\ \underbrace{\mathbf{Linearized observation matrix is some structure!}}_{\mathbf{D}_{t}} \\ \mathbf{H}_{t} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & -\mathbf{I} & \mathbf{I} \end{bmatrix}$$

Observability Analysis

Discrete time state transition matrix:

$$\Phi = \exp_m(\mathbf{A}_t \Delta t) = \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ (\mathbf{g})_{\times} \Delta t & \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \frac{1}{2} (\mathbf{g})_{\times} \Delta t^2 & \mathbf{I} \Delta t & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}$$

Observability matrix can be computed as:

$$\mathcal{O} = \begin{bmatrix} \mathbf{H} \\ \mathbf{H} \mathbf{\Phi} \\ \mathbf{H} \mathbf{\Phi}^2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & -\mathbf{I} & \mathbf{I} \\ -\frac{1}{2} (\mathbf{g})_{\times} \Delta t^2 & -\mathbf{I} \Delta t & -\mathbf{I} & \mathbf{I} \\ -\frac{1}{2} (\mathbf{g})_{\times} \Delta t^2 & -\mathbf{I} \Delta t^2 & -\mathbf{I} & \mathbf{I} \\ -2 (\mathbf{g})_{\times} \Delta t^2 & -2\mathbf{I} \Delta t^2 & -\mathbf{I} & \mathbf{I} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

• Absolute position and yaw are unobservable (drift will occur)

 Remaining states have local stability about any trajectory!

Simulation Results

We ran 100 simulations using the same measurements and noise statistics, while randomly initializing the orientation and velocity estimates.

Covariance Propagation

Robot walks forward with initial yaw uncertainty

Walking with Unknown Initial Yaw

- Robot walking in a straight line with completely uncertain initial yaw.
- Yaw is unobservable along with absolute position

Incorporating IMU Bias

Unfortunately, no known way to incorporate IMU bias into the Lie group while maintaining the "group affine" property

[Barrau 2015]

"Imperfect" Invariant EKF

State and errors become tuples:

New linearized dynamics and noise matrices:

$$\mathbf{A}_{t} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ (\mathbf{g})_{\times} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} -\bar{\mathbf{R}}_{t} & \mathbf{0} \\ -(\bar{\mathbf{v}})_{\times} \bar{\mathbf{R}}_{t} & \mathbf{0} \\ -(\bar{\mathbf{q}}_{t})_{\times} \bar{\mathbf{R}}_{t} & \mathbf{0} \\ -(\bar{\mathbf{d}}_{t})_{\times} \bar{\mathbf{R}}_{t} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \\ \bar{\mathbf{Q}}_{t} = \begin{bmatrix} \operatorname{Ad}_{\bar{\mathbf{X}}_{t}} & \mathbf{0}_{12,6} \\ \mathbf{0}_{6,12} & \mathbf{I}_{6} \end{bmatrix} \operatorname{Cov}(\mathbf{w}_{t}) \begin{bmatrix} \operatorname{Ad}_{\bar{\mathbf{X}}_{t}} & \mathbf{0}_{12,6} \\ \mathbf{0}_{6,12} & \mathbf{I}_{6} \end{bmatrix}^{\mathsf{T}}$$

Experimental Results

We ran the filters 100 times using the same measurements (from a walking experiment) and noise statistics, while randomly initializing the orientation and velocity estimates.

Motion Capture Experiment

Motion Capture Experiment

Motion Capture Experiment

New Torso and Perception System

- Velodyne 32 beam LiDAR (10 Hz)
- Ouster 64 beam LiDAR+IMU (10 Hz)
- Two Intel RealSense depth cameras (30 Hz)
- VectorNav-100 IMU (800 Hz, in pelvis)
- Nvidia Jetson TX2 GPU
- Router, switch, power supply

Challenges: calibration, synchronization, data collection

LiDAR Motion Compensation using InEKF

We use the high-frequency odometry from the InEKF to correct for Cassie's movement within single LiDAR scans.

without motion compensation

with motion compensation

InEKF SLAM with Landmarks

Additional Types of Invariant Measurements

Landmark Measurement (right invariant)

➢ GPS Measurement (left invariant)

[Barczyk 2011] [Barrau 2015]

[Zhang 2017]

Magnetometer Measurement (right invariant)

[Barczyk 2011] [Barrau 2015]

> Position, Velocity, or Pose Measurement (right or left invariant)

Open source C++ library (<u>https://github.com/RossHartley/invariant-ekf</u>)

Extendable to many aided-inertial navigation systems (wheeled or flying robots!)

The pose of the robot is estimated from Invariant EKF odometry in the IMU frame

Extends to Factors Graphs

[Hartley et al. IROS 2018]

Visual-Inertial-Contact Factor Graph

[Hartley et al. IROS 2018]

Thank you!

