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Why do we need legged robots?

All terrain 
access

Delivery 
and home 

robots

Inspection

Search and 
rescue





What states need to be estimated?

§ position 
§ orientation
§ velocity
§ joint positions/velocities
§ contact states



What states need to be estimated?

Visual-inertial odometry?

encoders 
contact sensors 

§ position 
§ orientation
§ velocity
§ joint positions/velocities
§ contact states



Failures of visual-inertial odometry

• Scarcity of features

Ø snow, grass ...
• Poor lighting

Ø sun glare, night ...
• Obstructions

Ø smoke, water on lens, …

• Dynamic environments
• Motion blur

Vision may fail when …



Failures of visual-inertial odometry

https://www.vectornav.com/support/library/imu-and-ins

VectorNav-100 IMU

Integration of IMU measurements alone leads to significant drift due to sensor noise and bias!

Vision failure
Visual-inertial

odometry
Inertial

odometry

https://www.vectornav.com/support/library/imu-and-ins


Kinematic Odometry!
Odometry from joint encoders and contact sensors

• Contact implies that the stance foot 
remains fixed

• Forward kinematics is used to measure 
the foot position relative to the IMU

• Together these measurements can be 
used to estimate relative movement  

[Bloesch 2008]
• EKF to fuse with inertial data



Dual-estimator approach
We want stability and autonomy!

• Only local map information is needed
• High-frequency orientation/velocity for control

• Global map and pose needed for long-term planning
• Low-frequency estimate of pose is fine

Invariant-EKF fusing inertial, encoder, and 
contact measurements (proprioceptive only)

Factor graph smoother that fuses all 
measurements including vision-based 

loop closures (SLAM)



Types of Kalman Filters
• Kalman Filter: optimal linear filter – state assumed to be a Gaussian random variable

• (Direct) Extended Kalman Filter (EKF): linearize nonlinear state dynamics (filter states directly)

• (Indirect or Error-State) EKF: linearize nonlinear error dynamics (filter error states)

In general, the linearization depends on the current state estimate.

Bad estimate              Incorrect linearization             Poor performance



We can choose the error-state!

• (Indirect or Error-State) EKF: linearize nonlinear error dynamics (filter error states)

Different choices of error variables lead to 
different linearized error dynamics

e.g. Euler angle error vs. quaternion error



Yes! (group-affine systems)                                     Invariant Extended Kalman Filter
[Barrau 2014]

Is there a choice of error variables that leads to 
autonomous dynamics?
(independent of the state estimate) 



Lie Group Theory – Crash Course
Ø A Lie group,   , is a group that is also a differentiable manifold.

• Examples: SO(3), SE(3) are matrix Lie groups

Ø The Lie algebra is defined as the tangent space at the identity 
element of the group
• This vector space is isomorphic to 

• The group’s exponential map,                          , maps a vector in 
the Lie algebra to the Lie group
• Inverse is the logarithm map,  

“hat operator”

Vectorized notation:



Invariant Kalman Filtering
• System defined on a matrix Lie group:

• Error is defined through matrix multiplication:

With “group affine” systems, a particular choice of error 
variables will lead to log-linear error dynamics.

True State Estimate

• Dynamics satisfy “group affine” property:

Error is invariant to (right or left) 
actions of the group

[Barrau and Bonnabel 2017]



Log-Linear Error Dynamics

The nonlinear error dynamics is exactly determined 
by a linear system in the Lie algebra!!!

[Barrau and Bonnabel 2017]



Invariant Observations

Autonomous innovation equations!

measurement = state * constant + noise

[Barrau and Bonnabel 2017]

Both the linearized dynamics and measurement 
models will be state independent!



Contact-Aided Invariant EKF
Propagation

Correction

• Use IMU measurements to predict base 
frame movement.

• Use contact sensor measurement to predict 
supporting feet movement (zero translation).

• Use encoder measurements and forward 
kinematics to correct state estimate.

IMU

Contact

Encoders

Base Pose and 
Velocity

Contact Positions

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



States and Inputs
• The state is expressed as a matrix Lie group,

Orientation, velocity, and 
position of IMU in world frame

Position of contact points 
in world frame

Shorthand notation
(only one contact)

accelerometer and gyroscope measurements

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



The “strapdown” inertial-contact model 
circumvents using the full dynamics

Inertial-Contact Dynamics Model

orientation of contact frame 
with respect to body frame

Do we have to use to robot’s 
complicated dynamics?

No!

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



The “strapdown” inertial-contact model 
circumvents using the full dynamics

Inertial-Contact Dynamics Model

Satisfies group affine property!

Written in matrix form:

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]

orientation of contact frame 
with respect to body frame



Log-Linear Error Dynamics
(Right Invariant Error)

Linearized error dynamics matrix is independent of the state estimate!

(Left Invariant Error)

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



Forward Kinematic Position Measurements
Using forward kinematics, we can measure the position of 
the contact frame relative to the base (IMU) frame:

Written in matrix form:

Has right invariant 
observation structure!

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]

Linearized observation matrix is 
constant!



Right Invariant EKF Equations
Propagation: Correction:

Linearizations are 
constant!

Computing 
Kalman Gain

correction vector

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



Observability Analysis
Discrete time state transition matrix:

Observability matrix can be computed as:

• Absolute position and yaw are 
unobservable (drift will occur)

• Remaining states have local 
stability about any trajectory!

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



Robot walks forward with 
initial yaw uncertainty Covariance Propagation

Position uncertainty 
cannot be captured 
with a simple 
covariance ellipse.

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



Walking with Unknown Initial Yaw
• Robot walking in a straight line with 

completely uncertain initial yaw.

• Yaw is unobservable along with 
absolute position

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



Incorporating IMU Bias

State and errors become tuples:

Unfortunately, no known way to incorporate IMU bias into 
the Lie group while maintaining the “group affine” property

Invariant EKF Error-State EKF

New linearized dynamics and noise matrices:
“Imperfect” Invariant EKF

[Barrau 2015]

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



Motion Capture Experiment

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



Motion Capture Experiment

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



Motion Capture Experiment

[Hartley et al. RSS 2018]
[Hartley et al. IJRR 2019]



Long-term Odometry



New Torso and Perception System

• Velodyne 32 beam LiDAR (10 Hz)

• Ouster 64 beam LiDAR+IMU (10 Hz)

• Two Intel RealSense depth cameras (30 Hz)

• VectorNav-100 IMU (800 Hz, in pelvis)

• Nvidia Jetson TX2 GPU 

• Router, switch, power supply 

Challenges:   calibration, synchronization, data collection



LiDAR Motion Compensation using InEKF

without motion compensation with motion compensation

We use the high-frequency odometry from the InEKF to correct for Cassie’s 
movement within single LiDAR scans.







InEKF SLAM with Landmarks



Additional Types of Invariant Measurements

Ø Landmark Measurement (right invariant)

Ø GPS Measurement (left invariant)

Ø Magnetometer Measurement (right invariant)

Ø Position, Velocity, or Pose Measurement (right or left invariant)

Open source C++ library 
(https://github.com/RossHartley/invariant-ekf)

Extendable to many aided-inertial navigation systems (wheeled or flying robots!)

[Barczyk 2011]

[Barczyk 2011]

[Zhang 2017]

[Barrau 2015]

[Barrau 2015]

https://github.com/RossHartley/invariant-ekf




Unary 
Forward Kinematic Factor

Binary 
Contact Factor

Unary 
Forward Kinematic Factor

Extends to Factors Graphs

[Hartley et al. IROS 2018]



Visual-Inertial-Contact Factor Graph

Loop 
closure

IMU Visual Forward 
Kinematic

Hybrid 
Contact

Prior

[Hartley et al. IROS 2018]



Thank you!



Questions?


