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Abstract— This paper presents a new method, called depth-
enhanced visual-inertial odometry (DVIO), for real-time pose
estimation of a robotic navigation aid (RNA) for assistive
wayfinding. The method estimates the device pose by using
an RGB-D camera and an inertial measurement unit (IMU).
It extracts the floor plane from the camera’s depth data and
tightly couple the floor plane, the visual features (with depth
data from the RGB-D camera or unknown depth), and the
IMU’s inertial data in a graph optimization framework for 6-
DOF pose estimation. Due to use of the floor plane and the depth
data from the RGB-D camera, the DVIO method has a better
pose estimation accuracy than its VIO counterpart. To enable
real-time computing on the RNA, the size of the sliding window
for the graph optimization is reduced to trade some accuracy
for computational efficiency. Experimental results demonstrate
that the method achieved a pose estimation accuracy similar to
that of the state of the art VIO but ran at a much faster speed
(with a pose update rate of 18 Hz).

I. INTRODUCTION

According to Lancet Global Health [1], there are about 253
million people with visual impairment, of which 36 million
are blind. Since age-related diseases (glaucoma, macular
degeneration, diabetes, etc.) are the leading cause of vision
loss and the world population is rapidly aging, more people
will become blind in the coming decades. Therefore, there
is a crucial need in developing navigation aids to help the
blind with their daily mobility need and live independent
lives. The problem of independent mobility for a blind person
includes wayfinding and obstacle avoidance. Wayfinding is
a global problem of planning and following a path towards
the destination while obstacle avoidance is a local problem
of taking steps without colliding, tripping, or falling. In the
literature, a number of Robotic Navigation Aids (RNAs)
[2]-[3] have been introduced to assist the blind people for
wayfinding and/or obstacle avoidance. Among these RNAs,
vision-based systems are becoming more popular because
the cameras used in these RNAs can provide all of the
needed information for navigation, including 6-DOF device
pose (position and orientation) estimation and obstacle/object
detection. The pose information of an RNA can be used
to build a 3D map of the environment, locate the blind
traveler in the environment, and guide the traveler to the
destination. In the existing literature, monocular camera
[4], stereo-cameras [5], [6], RGB-D cameras [7], [8], [9]
or 3D time-of-flight (TOF) [10], [11], have been used in
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these RNAs. Because of the large amount of data to be
processed for navigational decision making, these RNAs
require an off-board computer, such as a server [6], [8], [10],
[11], a laptop [4], [S], [7], [9], or a tablet computer (e.g.,
Google Tangle with a quad-core Nvidia Tegra K1 processor
[12], [3]) to run the compute-intensive navigation software.
This approach has hampered the practical use of RNAs. To
address this issue, more computationally efficient methods
must be developed for real-time computing on the RNA that
has limited computing power. This paper concerns itself with
real-time and robust RNA pose estimation for the wayfinding
application.

In the robotics community, a visual-inertial system
(VINS), consisting of a monocular camera and an inertial
measurement unit (IMU), has been popularly used for ro-
bust motion estimate. A VINS employs a technique that
couples the camera’s visual data with the inertial data to
estimate the camera’s ego-motion. Such a technique is termed
visual-inertial odometry (VIO) in the literature. VIO uses
a filtering/smoothing algorithm to estimate the state vector
consisting of the system’s pose, velocity, IMU biases, and the
depth values of the visual features. The technique requires
computing the depth values by structure-from-motion (SFM)
for hundreds of visual features to initialize these features and
re-computing them over the course of pose estimation. The
computation can be time-consuming and the update of the
depth values is subject to the pose estimation error. In this
paper, we propose a so-called depth-enhanced visual-inertial
odometry (DVIO) to estimate the RNA’s pose for wayfinding.
The DVIO method uses a sensor package including an RGB-
D camera and an IMU for pose estimation. The method
improves the state-of-the-art VIO approach’s performance in
terms of pose estimation accuracy and computational time
by: 1) using the geometric feature (the floor plane extracted
from the camera’s depth data) to create additional constraints
between nodes of the graph to limit the accumulative pose
error; 2) using depth data directly from the RGB-D camera
for visual feature initialization to avoid the computation
incurred by the SFM and the update of the visual features’
depth values. To further reduce the computational cost, the
proposed method trades some pose estimation accuracy with
computation speed by using a smaller number of nodes for
pose graph optimization. This treatment allows the method
to attain a pose estimation accuracy equivalent to the state-
of-the-art VIO method but run in a much faster speed (with
an 18 Hz pose update rate). The computational efficiency
allows for real-time computation of the entire wayfinding
system, consisting of the DVIO and other modules such as



Fig. 1. The RNA prototype. The RNA body, camera, and world coordinate
systems are denoted by {B}, {C}, {W}, respectively.

Data Acquisition, Path Planner, Obstacle Avoidance, etc., on
a credit-card-sized board computer. As a result, the system’s
hardware is compact for installation on a traditional white
cane and make a highly portable RNA possible.

II. RNA PROTOTYPE

As depicted in Fig. 1, the RNA uses an Intel Realsense
D435 (RGB-D) Camera and an IMU (VN100 of VectorNav
Technologies, LLC) for motion estimate. The D435 consists
of a color camera that produces a color image of the scene
and an IR stereo camera that generates the corresponding
depth data. Their resolutions are set to 424 %240 to produce a
20 fps data stream to the UP-Board. The D435 is mounted on
the cane with a 25° tilt-up angle to keep the cane’s body out
of the camera’s field-of-view. The VN100 is set to output the
inertial data at 200 Hz. The RNA uses a mechanism called
active rolling tip (ART) [11] to steer the cane to the desired
direction of travel to guide the user. The ART consists of
a rolling tip, a gearmotor, a motor drive, and a clutch. A
custom control board is built to engage and disengage the
clutch. When it is engaged, the gearmotor drive the rolling
tip and steer the cane. When it is disengaged, the rolling tip
is disconnected with the gearmotor and the user can swing
the RNA just like using a white cane. Both clutch controller
is controlled by the general IO port and the motor drive are
controlled by the RS-232 port of the UP-Board.

III. NOTATIONS AND TASK DESCRIPTION

The coordinate systems of the IMU and the camera of
the RNA, denoted as {B}(X;Y3Z,) and {C} (X.Y.Z.),
are shown in Fig. 1 The initial {B} is taken as the world
coordinate system {W} (X, Y, Z,) after performing a ro-
tation to make the Z-axis level and align the Y-axis with

the gravity vector ? In this paper, we use interchangeably
rotation matrices R and Hamilton quaternions q to describe
a rotation. The right subscript k is used to indicate camera
frames. by and cj are the body coordinate system and the
camera coordinate system when capturing the k*" frame. At
the time when the k" frame is obtained, the IMU’s state is
denoted by xi’ = {t{’,vi{’,q} ,ba, by}, which contains
translation, velocity, rotation, and accelerometer bias and
gyroscope bias of the IMU. The IMU’s 3D pose is denoted
as & = {t{’ ,q}’ }. The transformation from {C} to {B}
is pre-calibrated and denoted as T% = [RY t%] is obtained
ahead of time by calibration. The camera pose in {B} is
£ = {tl;, qlc’}. The intrinsic parameters of the color camera
and the depth camera have been calibrated and the data
association between the cameras has been established.

IV. WAYFINDING SOFTWARE

The wayfinding software system of the RNA was de-
veloped based on the ROS framework. Each ROS node is
an independent function module that communicates with
others through a messaging mechanism. The pipeline of the
software is depicted in Fig. 2 The Data Acquisition node
acquires and publishes the camera’s and the IMU’s data,
which is subscribed by the DVIO node for real-time pose
estimation and 3D map building. The 3D map is a point cloud
map that is generated by registering the camera’s depth data
acquired at different positions. The 3D map and the 3D pose
are sent to the Path Planner node to calculate the shortest
path from the RNA current location to the destination. It
uses our path planning method [10] to construct a graph
by using the points-of-interest (hallway junctions, entrances,
stairways, etc.) and uses the graph to determine the shortest
path, based on which the RNA’s heading for path tracking
is determined. The heading is then adjusted by the Obstacle
Avoidance (OA) node. The OA module extracts the floor
plane from the 3D point cloud map and treats the point
clusters above the floor plane as obstacles. It then projected
the point data of the obstacles onto the floor plane to generate
a 2D occupancy map and compute numerous candidate
directions for obstacle avoidance [13]. The direction that is
closest to the path-tracking direction is selected as the desired
movement direction for the RNA, from which the needed
motion control parameters for the motor drive are determined
and used to control the motor to steer the cane. The OA
node also generates the navigational message (i.e., the text
related to the desired turning angle), which is conveyed to
the traveler via the Bluetooth earphone after text-to-speech
conversion.

Path /3d_map /rgb /dpt Data
DVIO e
Planner |/3d pose simu |Acquisition
/terrian_map
Obstacle /navigation_msg | Motor Controller &
Avoidance Text-to-Speech
Fig. 2. Software pipeline
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Fig. 3. An example graph of the DVIO method

V. DVIO

The DVIO consists of three components: feature tracker,
floor detector and state estimator. The feature tracker extracts
visual features from the color image and tracks them across
images. The floor detector extracts the floor plane from the
depth data. The state estimator estimates the IMU’s state
using the tracked visual features and their depth data, the
extracted floor plane, and the IMU measurements. The IMU’s
state includes the pose, velocity, and biases. The details of
the components are described below.

A. Feature Tracker

The feature tracker detects Harris [14] corner features for
each image frame. To retain an affordable computation cost,
each image is evenly divided into 8x8 patches. At most 4
features are extracted and tracked for each patch. Therefore,
a maximum of 256 feature points are detected for each frame.
These features are tracked across image frames by employing
the KLT [15] method. A fundamental matrix based RANSAC
process is devised to remove the outliers and the inliers are
passed to the state estimator for pose estimation.

B. Floor Plane Detector

The floor plane is extracted from the first frame and
tracked across frames. In this work, the floor plane is
described by its normal and the distance from the origin
to the plane. At the time the world coordinate system is
initialized, the floor plane’s normal is [0, 0, 1] and the
distance can be approximated as d;é’ = Lsin(6). Data points
with a z-coordinate value in [J? -0, ch +0](6 = 10cm) are
used to extract the floor plane. After the extract, the floor
plane will be tracked into the next frame by using the pose
estimated by the DVIO for the current frame.

C. State Estimator

State estimation is formulated as a graph optimiza-
tion problem. Each graph node represents the state
vector and the edge between two nodes represent
the constraint between them. The state vector is de-
fined as xx = {xp,x; ,..,X, }, where xp =
{ty v’ q¥ ,ba, by} is the IMU’s state at the time when
the k'" image frame is captured, and m (m = 3 in our

implementation) is the number of nodes used for graph
optimization. m is called the size of the sliding window.
Similar to Tong’s method [16], the visual features with a
known depth are used to estimate X in the graph opti-
mization process. According to the works in [17] and [18],
the visual features with unknown depth are also useful
for state estimation as they contain the information about
the rotation and the direction of translation of the VINS.
Therefore, we also use these features to create edges in the
graph to incorporate them into state estimation. Moreover,
the extracted floor plane is incorporated into the graph to
further reduce the pose estimation error by using our previous
method [19]. Fig. 3 shows one example graph of the DVIO
method.

The optimization problem is to find a maximum a poste-
riori pose estimation that minimizes the sum of the Maha-
lanobis norms of all measurement residuals given by:

Xy =
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where 7’2,1, > r’f”  and rf) i are the residual errors relate
to the IMU, floor plane, and visual feature measurements,
respectively. C,, Cj, Cy1, and C,o represent the set of
edges for the floor plane, IMU pre-integration, visual features
with a known depth, and visual features with an unknown
depth, respectively. We employ the Ceres solver to solve this
nonlinear problem. To do so, we need to define the function
for each measurement residual and the Jacobian matrix with
respect to the variables of xy. In this work, 7 | , is defined
in the same way as Tong’s method [16] while r?;k is defined
by using our earlier method [19]. The residual functions
and the Jacobians related to ], for visual features with a
known depth and unknown depth are described later in this
Section. As the D435 uses an IR stereo camera to measure
depth, the measurement error increases quadratically with
the true depth. To attain a good pose estimation accuracy,
DVIO should only use the depth data of near-range visual
features. To determine the depth threshold, we carry out an
experiment to characterize the D435 camera. The result is
shown in Fig. 4 It can be seen that the measurement is of
high accuracy (error < 2.2 cm) if the depth is no greater
than 2.2 m. Therefore, a near-range (< 2.2 m) visual feature
is assigned the depth measurement from the RGB-D camera
and a far-range visual feature is assigned an unknown depth.

1) Visual Features with a known depth: According to
Tong’s method [16], the residual for a visual feature that
has been observed in the i*" and k' images is computed as

P

Vo __ Ck o

,r’i,k =P |ﬁck| (2)
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Fig. 4.  Characterization of the D435’s depth measurement: the linear
motion table moves the D435 from 40 mm to 240 mm with a step-size of
10 mm. At each position, 300 frames of depth data were captured and used
to compute the mean and RMS of the measurement error. The method in
[20] was employed to estimate the ground truth depth, which is then refined
by using the known camera movement (10 mm) to obtain the ground truth
depth. Given a camera pose, the wall plane is projected to the camera frame
as the ground truth plane.

projection that maps a pixel from the image onto the nor-
malization plane (defined by 2°* = 1). w and v represent
the coordinates of the visual feature on the image plane
while superscript k& and i denote the k*" and i*" images,
respectively. p; is the depth of the visual feature on the i
camera frame. The Jacobian matrices of 7}, with respect
to the IMU poses, 55‘2 and 62’2, can be found in the open-
source implementation [16]. Apparently, the error of p; plays
a critical role in attaining a good pose estimation accuracy for
DVIO. For this reason, the depth data of a visual feature is
used only if it is no greater than 2.2 meters. In addition, the
depth data remains constant during the graph optimization
process. This is advantageous over a monocular VIO method
that needs to update the depth value throughout the pose

estimation process. The re-computation of the depth can
introduce error and degrade the pose estimation accuracy.
Unlike a monocular VIO method that uses the depth estimate
of a feature point at its first observation [16], DVIO uses the
smallest depth value of the frames within the sliding window
for p;. In addition, if the feature is tracked into the next frame
with a smaller depth, then p; is updated with that depth value.
These treatments are to minimize measurement error for p;.

2) Visual Feature Measurement with unknown depth: The
residual function for the visual features with an unknown
depth is based on epipolar geometry. A feature point is
observed as visual features X = [u® 0%, 1]" and X =
[u*, v, 1]" on the i*" and k' images, respectively. Given
the ground truth camera motion, X, X, O, and O,
should stay on the epipolar plane, where O., and O,
are the camera focus points for image frames ¢ and k,
respectively. Since the camera motion is estimated, X is
off the plane. The distance between X °* and the epipolar
plane is computed as the residual error

i = (REX)T (8], X°) @)

where RS = (R®) ™" (R®) and t& = (R®) ™" (t2 —t»).
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In this way, the feature points whose depth measurements are
greater than 2.2 meters are also added to the graph for pose
estimation without using their depth data (which incur large
error). These feature points contribute to the estimation for
the IMU’s rotation and the direction of the IMU’s translation.

VI. EXPERIMENTS
A. DVIO Performance Evaluation

The performance of the DVIO method is compared with
three state-of-the-art VIO methods, ROVIO [21], OKVIS
[22], and VINS-Mono [23], by experiments. Ten datasets
were collected by holding the RNA and walking along a
20-meters straight at a speed of ~0.7 m/s. The ground
truth position of the endpoint is [0, 0, 20]. We use the
end-point-error-norm (EPEN) to evaluate the accuracy of
the pose estimation methods. The DVIO’s pose estimation
accuracy and computational cost can be tuned by adjusting
the size of the sliding window. For the sake of real-time
computation on the RNA, we use a small window size (4
pose-nodes), which trades some accuracy for speed. The
results on pose estimation accuracy are tabulated in Table



TABLE I
COMPARISON FOR THE FINAL END POSITION ERRORS

Dataset ROVIO | OKVIS VINS-Mono DVIO
1 1.70 2.24 1.24 0.57

2 1.40 3.54 0.99 0.55

3 1.80 2.24 0.51 1.24

4 1.14 1.44 0.97 0.82

5 1.18 1.19 0.73 0.79

6 0.72 1.37 0.69 1.23

7 1.94 3.05 1.23 1.07

8 3.51 6.83 0.24 1.06

9 4.70 6.59 1.39 0.78
10 4.06 6.54 0.56 1.04
Mean, Std (meters) 2.22, 3.50, 0.85, 0.35 0.92,
1.30 2.18 0.24

I and the run times on the Up Board are plotted in Fig. 5
From Table I, we can see that the DVIO achieves a pose
estimation accuracy that is comparable to (slightly worse
than) VINS-Mono and much better than OKVIS and ROVIO.
(OKVIS and ROVIO cannot be used for our application due
to their much worse accuracies.) Fig. 5 shows that DVIO
is about two times faster than VINS-Mono. It is run time
performance is equal to OKVIS but worse than ROVIO.
The low computational cost of DVIO allows for the real-
time implementation (~18 fps) of the RNA’s wayfinding
software (see Fig. 2). It is noted that our VINS does not have
hardware level time synchronization between the camera and
the IMU data. VINS-Mono calibrated the time offset between
the camera and the IMU in its optimization process [23]
and thus resulted in a more accurate pose estimation result.
Although DVIO does not consider this time offset, it achieves
comparable accuracy to that of VINS-Mono.
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B. Wayfinding experiment of the RNA

To test the practicability of the DVIO in assistive wayfind-
ing of RNA, a sighted human subject (blindfolded) is re-
cruited to perform a navigation task (Fig. 6) from Room
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Fig. 6. Left: RNA Test; Right: Scenario snapshot at start point

2264 to Room 2253 in the West Engineering building five
times. Seven obstacles are placed evenly along the 30-meter
path. The human subject stopped at a point when the RNA
indicated that the destination had been reached. If the user
stopped at a point close enough to the destination (within 1.5
meters), the test was regarded as a successful one. Otherwise,
it was a failure. In each test, the number of times that the
RNA hits an obstacle is recorded. The experimental results
show that: 1) out of five tests, four were successful; 2) the
RNA succeed in guiding the user to avoid the obstacles
thirty-one times and failed four times in obstacle avoidance.
This means that the RNA is able to provide assistance in
indoor wayfinding and obstacle avoidance. One test case of
the RNA is given in the attached video clip.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a new DVIO method is introduced to
estimate the pose of an RNA for assistive wayfinding.
The method produces in real-time accurate pose estimation,
which is used for 3D map-building and locating the RNA
in a floorplan for wayfinding. The experimental results
demonstrate the efficacy of the proposed method. In terms
of future work, re-localization method, such as [3], will be
employed to eliminate the accumulative pose error and reset
the user’s location in the floorplan. This will allow human
subject study in a much larger scale environment.
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