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Abstract— Sensor calibration is a prerequisite for multi-
sensor fusion system. This paper presents a novel method
for calibrating the extrinsic transformation between a multi-
beam LiDAR and an Inertial Measurement Unit (IMU) based
on continuous-time batch optimization. The continuous-time
formulation is well suitable for the problem with a large number
of measurements, such as the LiDAR points in this calibration
problem. Furthermore, since poses at every time instant are
available in this continuous-time formulation, LiDAR distortion
even under severe motion can be corrected. Experiments on
both simulated and real-world datasets are carried out, which
confirms the feasibility and high accuracy of the proposed
method.

I. INTRODUCTION

Sensor calibration is an essential fundamental problem
when it comes to multi-sensor fusion. And some sensors,
such as LiDAR, camera, Inertial Measurement Units (IMU),
etc. are usually used together in a fused way for the sake of
robustness and high accuracy. Intensive research has gone
into camera-IMU calibration and camera-LiDAR calibra-
tion. However, However, few works are focusing on the
LiDAR-IMU calibration. Inspired by [1], this paper proposes
a method based on a continuous-time batch optimization
framework to calibrate the extrinsic transformation between
a multi-beam LiDAR and an IMU.

The poses are modeled by a continuous-time trajectory
which is defined as B-Spline[2]. LiDAR points will be
constrained by point-to-plane distance inside the continuous-
time framework. Meanwhile, the continuous-time formula-
tion eases the inclusion of high-rate inertial measurements.
Specifically, the main contributions of this paper are as
follows:
• We propose a novel method for LiDAR-IMU calibration

based on continuous-time batch optimization, which is
easy-to-use and efficient.A short time of data collection
around 10 Secs is enough for a good calibration result.

• Both simulated and real-world experiments demonstrate
the proposed approach can give an accurate extrinsic
calibration result.

II. RELATED WORKS

For calibrating a setup of a rigidly connected LiDAR and
an IMU, Geiger et al.[3] propose an approach by solving
a hand-eye problem[4]. However, it is not easy to get two
high-precision trajectories with respect to the IMU and the
LiDAR, respectively. Cedric et al.[5] propose an automatic
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Fig. 1. (a) The environment and the sensor frames in our real-world
experiments. The planes play an essential role in the proposed calibration
problem. (b) Estimated continuous-time trajectory aligned with the ground-
truth. The color indicates ATE.

method to calibrate a LiDAR-IMU sensor pair. They use GP
regression to interpolate inertial data and based on prein-
tegrated [6] measurements over interpolated IMU readings,
the motion distortion of 3D-point clouds can be removed.
Furgale et al.[1] propose a continuous-time framework for
calibrating the visual-inertial system and Joern et al.[7]
extend it to a general approach to calibrate the visual-inertial
system with a single beam LiDAR.

III. METHOD

Fig.1(a) shows several frames used in this paper. {M}
denotes the map frame, which is the first IMU reference
frame when the calibration is started. The frame of IMU
{I} is rigidly connected to the LiDAR frame {L}. We
employ B-Spline to parameterize the trajectory in the IMU
frame. The transformation from the IMU frame to the map
frame at any time t could be expressed as M

I T (t), and
M
I T (t) =

[
M
I R(t) MpI(t)

0T 1

]
. Furthermore, derivatives of

the splines with respect to time can be easily computed [8]
for generating the linear accelerations Ma(t) and angular
velocities Mω(t), which are also reported by IMU sensor in
the local IMU reference frame. LIR, LpI are the extrinsic
rotation and translation from IMU to LiDAR frame.

For simplicity, we reconstruct the environment for cali-
bration beforehand by LiDAR odometry, and the RANSAC-
based[9] plane-fitting algorithm is used to extract several
massive planes from the map. The plane is characterized
by its normal unit vector n and its distance d to the origin.
The LiDAR odometry also provides the poses in the map
at discrete time instants. Let Ltjx be a LiDAR point in
instantaneous LiDAR frame {Ltj} which is collected at time
tj . The NDT [10] algorithm is used to relocate in the map
to obtain a pose for each LiDAR scan. With an initial guess



TABLE I
SIMULATION RESULTS

Experment LiDAR noise IMU noise translation rotation
error(cm) error(◦)

Exp1 no no 0.184 0.047
Exp2 yes no 0.589 0.041
Exp3 no yes 0.896 0.035
Exp4 yes yes 1.525 0.088

of L
IR, LpI and the discrete LiDAR poses, we are able to

initialize the continuous-time trajectory M
I T (t). At the same

time, we associate some LiDAR points to the planes if the
point-to-plane distance is below a certain threshold ε:

Dtj =

∣∣∣∣[nT 0]MI T (tj)T
I
L

[
Ltjx
1

]
+ d

∣∣∣∣ , Dtj < ε (1)

Only the LiDAR points associated with one of these planes
will be considered in the optimization step.

The calibration problem is formulated as a maximum
posterior estimation. The state to be estimated is defined as:

X = {LIR, LpI ,M g, CR, Cp, bω, bα} (2)

where Mg is the gravity in the map frame. Since the
magnitude of gravity is known, we only optimize the di-
rection of gravity. CR and Cp are the control points for
the continuous-time trajectory. As only a few seconds datas
are needed for the proposed calibration method, the bias of
the accelerometer bω and gyroscope bα are considered as
constants. The cost function is as follows:

J (X ) =
∑
k∈A

∥∥Ikam −M
I R(tk)

T
(
Ma(tk)−Mg

)
+ ba

∥∥2
Σa

+
∑
k∈W

∥∥Ikωm −M
I R(tk)

TMω(tk) + bw
∥∥2
Σω

+
∑
j∈L

∥∥Dtj

∥∥2
ΣL

(3)

where A,W,L denotes all the linear acceleration, angular
velocity, valid LiDAR points measurements, and Σa, Σω ,
ΣL are the corresponding covariance matrices, respectively.
The IMU measurement model could be found in [8] and
Ikam, Ikωm are the discrete-time raw measurement at time
tk. The optimization framework of Kalibr 1 is employed for
solving this nonlinear problem. Since the data sequence for
calibration last for only a few seconds and the B-Spline has
a good property of local control, this nonlinear least-square
problem is sparse and can be solved quickly by Levenberg-
Marquardt algorithm.

IV. EXPERIMENT

A. Simulation

To make the simulation as realistic as possible, the charac-
teristics of the simulated sensors are consistent with the ac-
tual sensors used in Section IV-B. The typical measurement
accuracy of LiDAR is ±2cm and zero-mean Gaussian noise

1https://github.com/ethz-asl/kalibr

TABLE II
ATE OF THE ESTIMATED TRAJECTORIES IN REAL-WORLD

EXPERIMENTS

Data 1 2 3 4 5 6
Duration(sec) 32.6 35.1 24.3 12.1 12.4 22.4

ATE(cm) 2.3 2.5 3.4 1.8 3.2 3.0

TABLE III
CALIBRATION RESULTS IN REAL-WORLD EXPERIMENTS

Statistics mean std min max median
Translation error(cm) 2.240 0.511 1.237 3.717 2.299

Rotation error (◦) 0.737 0.244 0.407 1.263 0.692

is added to the simulated LiDAR measurements. We assume
that the additive noise in acceleration and gyroscope mea-
surements are zero-mean, independent Gaussian and refer to
the manufacturer datasheets to determine the noise parame-
ters. Four sets of simulated data are generated to observe the
impact of the different noise configurations. Table.I presents
the final results which shows that the calibration accuracy is
sensitive to IMU noise. The probable reason could be that the
Signal-to-noise ratio(SNR) of IMU measurements are lower
than LiDAR measurements since the motion in simulation is
relatively gentle.

B. Real-world Data

We use Velodyne VLP-16 and MTi-300 for real data
experiment as shown in Fig. 1(a). The motion capture system
gives the ground-truth of the trajectory. To render all quan-
tities of the calibration observable, we ensure that sufficient
linear acceleration and rotational velocity exist in all the 6
sequences. The duration of these sequences is among 12−35
sec. For every sequence, the whole trajectory is evaluated by
the average absolute trajectory error(ATE) using EVO [11].
The results are shown in TABLE II which indicates that the
spline is able to model the trajectory accurately. Fig.1(b)
shows one of the estimated trajectory which is aligned with
the ground-truth.

Then the recorded sequences are randomly split into
17 consecutive segments and the duration of segments are
among 4− 20 Secs. The final calibration result is shown in
TABLE III. The mean of the rotation error is about 0.737◦

while the translation error is 2.24cm. Note that we compare
the estimated results with the relative pose inferred from
CAD assembly drawings. Although this inferred extrinsic
transformation includes some minor errors inevitably, it can
be used for reference as the ground-truth.

V. CONCLUSIONS

In this paper, we propose an efficient LiDAR-IMU cal-
ibration approach in a continuous-time batch optimization
framework. There are many possible avenues for the future
work, such as improving the data association, estimating the
time-offset together with the spatial extrinsic transformation.
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