
  

  

Abstract— Camera and IMU are widely used in autonomous 
driving cars. Fusing visual and inertial measurements can be 
used for ego-motion estimation. In real use, we need to consider 
two issues. These two sensors are out of sync and the camera is 
rolling-shutter, whose image is captured row-by-row. In this 
paper, we present an efficient method to interpolate the IMU 
pose between consecutive poses and set up a novel feature 
measurement error model to cover the time delay issues. In the 
real test, the algorithm achieves a high accuracy in autonomous 
driving application. Further, we analyze output results for time 
delay influence judgment, once the judgment under a threshold 
the VIO output can be used, which is very useful in the real 
system. 

I. INTRODUCTION 

An autonomous driving system may contain various 
sensors, including wheel odometer, IMU, GNSS, camera, 
LIDAR, RADAR, ultrasonic etc. Considering factors of both 
precision and cost, IMU and camera are usually grouped 
together for positioning purposes, known as VINS, Visual-
Inertial Navigation System. 

VINS has been well studied and widely used over the years 
[1]. Over the past two decades, visual-inertial state estimation 
has been studied extensively by the research community and 
many methods and frameworks have been presented.  The 
representative techniques are either filter-based framework [2], 
or batch optimization [3,4,13]. The above methods require 
accurate and up-to-date calibration of the equipped sensor 
model to achieve good estimation performance. However, we 
notice two problems arise when VINS is applied in our 
autonomous driving system, which may cause significant drift 
in trajectory.  

One problem is the time offset between camera and IMU. 
The temporal misalignment between IMU and camera is a 
typical issue in low-cost and self-assembled devices, which is 
widely used in autonomous driving cars.  Because of reasons 
such as different hardware time delay and different clock 
domain, sensor measurements received at the same time from 
camera and IMU may have an offset in generation time. This 
problem is also known as visual-inertial temporal calibration. 
The work can be divided into two types based on the markers 
difference. We first discuss the representative marked-based 
approaches that rely on external markers such as checkerboard 
patterns. The Kalibr calibration toolbox [5] solves the problem 
in an offline manner using continuous-time batch estimation. 
However, as the time offset changes over time, using results of 
offline calibration may suffer from deviation during operation 
and may not be applicable to an autonomous driving system. 
Different from target-based, the approaches like [6] rely on 
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natural features to calculate the time offset without the need for 
external markers such as checkerboards. [7, 8] proposed visual-
inertial online temporal calibration method in VINS systems. 
[7] takes the time offset as an additional state variable to be 
estimated in the state vector in a filter-based framework. [8] 
solves the problem by jointly estimating time offset in an 
optimization-based framework. 

The other problem is rolling shutter effect, since rolling 
shutter cameras are used as sensors in our system due to certain 
constraints. Different from a global shutter camera, which 
captures the whole image in an instant. A rolling shutter camera 
captures each row of an image sequentially, which means 
features extracted in different rows are captured at slightly 
different time. Rolling shutter effect may cause trajectory drift 
if simply ignoring the time shift. [9] solves the problem by 
assuming the camera velocity and angular velocity are constant 
between two consecutive frames. [10] gives a more accurate 
modelling of rolling shutter cameras.  

Both problems mentioned above are time related and can be 
solved with the same idea. [11, 12] consider both problems 
together. [11] expresses the residual using Tayler-series 
expansion supposing the readout time is small, which is 
roughly the same as done in [10]. Calibration parameters are 
estimated in state vector of filtering framework including time 
offset. [12] adds both the time offset between camera and IMU 
and rolling shutter readout time as variables to be estimated in 
the state vector of MSCKF. The poses of camera frames are 
estimated by interpolation. According to the analysis of [14], 
the time offset generally is observable. 

For the time offset between the camera and IMU and the 
readout-time of the rolling shutter camera, we derived a novel 
feature measurement model with these time delay and adopt 
the optimization framework. The main contributions of this 
paper are: 

• We introduce a novel feature measurement error 
model, using SO(3) to interpolate the IMU pose 
between consecutive poses corresponding to feature 
frame, considering all features the time delay between 
the IMU and camera; 

• For the optimization result, we analyze the main factor 
that influence the output accuracy and give a real test 
result; 

• We validate our algorithm in our real system in 
autonomous driving application; 
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Fig.1.  Time offset and rolling-shutter effect. 

 

The rest of the paper is structured as follows. In Sect. II, we 
discuss the feature measurement model with time delay. The 
optimization algorithm is introduced in detail in Sect. III. The 
real-world experiment is shown in Sect. IV. Finally, in Sect V, 
we give a conclusion.  

II. FEATURE MEASUREMENT MODEL WITH TIME DELAY 

In this section, we will build a feature measurement model 
with a time difference between IMU and camera in an 
optimized VIO framework. This model also takes into account 
the effects of the rolling shutter camera, establish an alignment 
relationship with IMU measurements for different features. 

Considering the characteristics of different sensors, the 
sensor devices on autonomous driving cars are mostly self-
assembled. For low-cost and self-assembled visual inertial 
sensor groups, the camera and IMU are combined and there is 
no strict time synchronization. Due to the trigger delay, the 
transmission delay and the unsynchronized clock, the 
generated timestamp is not equal to the time at which the 
sample was measured. Therefore, there is usually a time offset 
between different measurements. 

Also for rolling shutter cameras, the extra time offset 
introduced by the rolling-shutter effect should be considered. 
Specifically, the camera reads the imager row by row, so the 
time delay 𝑡" of the pixel measurement in the m-th image-row, 
can be calculated as 𝑡" = 𝑚𝑡%, where 𝑡%	is the read-out time 
of a single row. 

As depicted in Fig.1, both the time offset 𝑡' of the camera, 
as well as the rolling-shutter effect can be represented by a 
single time offset, corresponding to each row of pixels. In this 
paper, we consider the general case, where time offset 𝑡' is a 
constant but unknown value. 

Considering the effect above, the time delay of features on 
m-th image-row could be described as: 

 𝑡 = 𝑡' + 𝑡". (1) 

To handle the time effect, we present the pose, 𝐼*+, , 
corresponding to the feature j (see Fig.2) at image frame 
𝐶*,which is between two consecutive poses, 𝐼* and	𝐼*+1. For 
the three pose measurements, we apply a linear interpolation of 
position, and then interpolate the angle using the matrix 
exponential, to ensure that it remains a valid rotation matrix in 
SO(3). 

Defining {	𝑤 } as the global frame of reference and a time-
distance fraction 𝜆 between two consecutive poses as follows: 

 
Fig.2.  For the image sampling instant 𝑡*, 𝑡*+1, given two measurements 
𝐼*, 𝐼*+1 of IMU under the world coordinate system reference, we would like 
to interpolate to a new pose 𝐼*+, according to the time offset of each feature. 

 

 𝜆 = ,
,5678,5

 (2) 

where 𝑡*  and 𝑡*+1  are the timestamps of the bounding 
measurements, and 𝑡 is time we would like to interpolate to , 
can be refer to the (1).  

We interpolate between the two pose readings, define two 
consecutive poses 	𝐼*+1  as {𝑅;

<567, 𝑝<567
; }  and 𝐼*  as{𝑅;

<5, 𝑝<5
;} , 

which can be calculated by IMU propagation. The 𝑝<56?
;  

position can be easily express as: 

 𝑝<56?
; = (1 − 𝜆)𝑝<5

; + 𝜆𝑝<567
; . (3) 

According to SO(3) matrix exponential and matrix 
logarithm: 

 𝑅;
<5 = Exp(𝜃;

<5) (4) 
 𝐿𝑜𝑔𝑣L𝑅;

<5M = 𝜃;
<5 (5) 

where 𝑅;
<5,	𝜃;

<5 are the rotation matrices and angles at the pose 
𝐼*, expressed in {	𝑤 }. 

Assuming a constant motion model, the rotation matric 
and angle at pose	𝐼*+Q can be expressed as follows: 

 𝜃<5
<56?	 = 𝜆 R𝐿𝑜𝑔𝑣 S𝑅;

<567𝑅;
<5TU ×W (6) 

 𝑅;
<56? = Exp(𝜃<5

<56?) (7) 

 𝑅;
<56? = ExpS𝜆 R𝐿𝑜𝑔𝑣 S𝑅;

<567𝑅;
<5TU ×WU 𝑅;

<5 (8) 

where {𝑅;
<56?, 𝑝<56?

; } is the IMU 3D pose of  pose 	𝐼*+Q. The 
feature corresponding to the IMU can be calculated by Camera-
IMU extrinsic parameters and feature global position. 

III. ALGORITHM 

A. Propagation 
1)IMU Measurement Model: IMU measurement takes into 

account the force for countering gravity and are affected by 
acceleration bias 𝑏Y , gyroscope bias 𝑏Z , and additive noise. 
The 𝑎\,  and 	�̂�, , which are the raw gyroscope and 
accelerometer measurements, are given by: 

 𝑎\, = 𝑎, + 𝑅;, g; + 𝑏Y, + 𝑛Y, 

 �̂�, = 𝜔, + 𝑏Z, + 𝑛Z, (9) 

where g;  is the gravitational acceleration, 𝑅;, 	is the rotation 
matrix between the world-frame and the body-frame, 𝑛Y, and 
𝑛Z,	 are zero-mean white Gaussian noise processes. And the 
bias are modeled as random walk, whose derivatives are 



  

 

 
Fig.3. Illustration of the sliding window VIO. We maintain several camera 
frames and IMU measurements in a bundle and interpolate between IMU 
measurements corresponding to consecutive frames in the sliding window. 

 

Gaussian white noise: 

 �̇�Y, = 𝑛aY		, �̇�Z, = 𝑛aZ. (10) 

2)Preintegration: Considering two consecutive frames 𝑐* 
and 𝑐*+1, whose corresponding time interval is	[𝑡*, 𝑡*+1], there 
exists several inertial measurement. Given the bias estimation, 
we integrate them in the frame 𝐼* as:  

 𝛼<567
<5 = ∬ 𝑅,

<5(𝑎\, − 𝑏Y, − 𝑛Y,),∈[,5,,567]
𝑑𝑡i 

𝛽<567
<5 = k 𝑅,

<5(𝑎\, − 𝑏Y, − 𝑛Y,)
,∈[,5,,567]

𝑑𝑡 

 𝛾<567
<5 = ∫ 1

i
𝛺(�̂�, − 𝑏Z, − 𝑛Z,)𝛾,

<5
,∈[,5,,567]

𝑑𝑡 (11) 

where  

𝛺(𝜔) = o−[𝜔]× 𝜔
−𝜔T 0

q , [𝜔]× = r
0 	−𝜔s 𝜔t
𝜔s 	0 −𝜔u
−𝜔t 𝜔u 0

v. 

The covariance 𝑃<567
<5  of 𝛼 , 𝛽  and 𝛾  also propagates 

accordingly. It can be seen that by using 𝐼*  as the reference 
frame for a given deviation, the preintegration term (11) can be 
obtained only by IMU measurements. 

Given two time instants corresponding to image frames 𝑐* 
and 𝑐*+1, the position, velocity, and attitude states during the 
period, can be propagated by IMU measurements in the world 
coordinate system frame reference as follows: 

𝑝<567
; = 𝑝<5

; + 𝑣a5
; 𝛥𝑡* −

1
2 g;𝛥𝑡*i + 𝑅<5

;𝛼<567
<5  

	𝑣<567
; = 𝑣<5

; − g;𝛥𝑡* + 𝑅<5
;𝛽<567

<5  

 𝑞;
<5⨂𝑞<567	

; = 𝛾<567
<5  (12) 

where ∆𝑡* is the duration between the time interval [𝑡*, 𝑡*+1]. 

B. Optimization 
After a comprehensive analysis of the time delay, we focus 

on the establishment of the feature measurement model. Shown 
as Fig.2, we would like to interpolate a new pose 𝐼*+, between 
IMU measurements on the image sampling instant 𝑡*, 𝑡*+1, so 
as to align feature measurements with time delay. 

For the feature 𝑓~  observed on the m-th image-row, the 
corresponding measurement model is as follows: 

 𝑧*
~ = ℎ(𝑝��

�5) + 𝑛*
~ , 	𝑛*

~~𝑁(0, 𝑅*,~) (13) 

where 𝑝��
�5  is the feature position expressed in the camera 

frame of reference at the exact time instant that the m-th 
image-row was read. The corresponding IMU measurement 
here, with a time offset 𝑡 with respect to 𝑡*, is calculated by 
interpolation. The specific expression is as follows:  

 𝑝��
�5 = 𝑅<�(𝑅;

<56? S𝑝��
; − 𝑝<56?

; U − 𝑝�<). (14) 

To reduce the computational complexity of the optimization 
based VIO, marginalization is incorporated. As depicted in 
Fig.3, we maintain several camera frames and IMU 
measurements in a bundle and interpolate between IMU 
measurements corresponding to consecutive frames in the 
sliding window. 

The residual corresponding to this measurement can be 
computed as: 

 𝑟*
~ = 𝑧*

~ − ℎ(�̂���
�5). (15) 

We will add time compensation to optimize the 
measurement model based on a typical framework of visual 
inertia optimization. Visual-inertial odometry is formulated as 
a nonlinear optimization problem that tightly couples visual 
and inertial measurements. A local bundle adjustment (BA) 
jointly optimizes camera and IMU states, as well as feature 
locations. 

The state vector augmented with time offset is defined as: 
𝒳 = [𝑥<�, 	𝑥<7, … 𝑥<�, 		𝑝��

;, 	𝑝�7
;,… 	𝑝��

;, 	𝑡'] 

 𝑥<5 = [𝑝<5
; , 	𝑣<5

;, 	𝑅<5
; , 	𝑏Y, 	𝑏Z] (16) 

where the k-th IMU state consists of the position 𝑝<5
; , velocity 

𝑣<5
; , orientation 𝑅<5

;  in the world frame, and IMU bias 𝑏Y, 𝑏Z 
in the local body frame. The feature 𝑝��

;  is 3D position in the 
world frame. 

The whole problem is formulated as a cost function 
containing IMU propagation factor, reprojection factor, and a 
certain prior factor: 

 		𝑚𝑖𝑛
𝒳

�	�𝑟𝑝 − 𝐻𝑝𝒳�
2
+ ∑ �𝑟ℬL�̂�𝐼𝑘+1

𝐼𝑘 , 𝒳M�
𝑃𝐼𝑘+1
𝐼𝑘 	

2
𝑘∈ℬ +

																																		∑ �𝑟𝐶L�̂�𝑙
𝑗, 𝒳M�

𝑃𝑙
𝑗
2

(𝑙,𝑗)∈𝐶 � (17) 

where 𝑟� and 𝐻�  are priors obtained via marginalization. 
𝑟ℬ S�̂�<567

<5 ,𝒳U is the error term from IMU propagation. ℬ and 
𝒞 are the set of IMU and camera measurements. 𝑟�L�̂��

~, 𝑋M is 
the proposed visual reprojection error, which includes the time 
offset. 

C. Analysis 
Assuming the time offset is constant parameter, we put it in 

the system state for optimization. Once the time offset 
converged, the VIO output will be closed to the ground truth, 
which means time offset is influence less to the system output. 
At this moment, the system output can be used for the vehicle 
ego-motion estimate.  



  

 
Fig.4. Self-assembled measurement equipment on the autonomous driving car, 
which contains IMU Xsens MTI-G-710 and Rolling shutter camera. 

 
Fig.5. Trajectory of real-world experiment. The autonomous driving car is 
planned to travel around the playground. 

 

We try to find a factor which can describe the time delay 
convergence. After every optimization, we check the time 
offset vary value, taking into account its influence to the feature 
reprojection error. We calculate the tracking features 
reprojection error before and after every optimization, record 
the average residual value. From the test result, we can find the 
reprojection error can be used for the time delay optimization 
judgment. 

IV. EXPERIMENTS 

A. Real-world Experiments 
In this section, we validated the performance of the proposed 

algorithm on an autonomous driving car equiped with rolling 
shutter camera and IMU as shown in Fig.5. The onboard 
computation resource is an Intel i9-8900K CPU running at 3.00 
GHz .The equipped IMU is Xsens MTI-G-710, and the camera 
is Entroninc F001R100 rolling-shutter. 

We use the visual-inertial optimization framework and the 
time delay influence is taking into the proposed visual factors 
(Sect. III-B). 

We also considered the problem of degenerative motion in 
autonomous driving scenes. Owing to our vehicle motion must 
not be a constant angular velocity, so the time offset can be 
always observed during the experiment. 

 

 
(a) 

 
(b) 

Fig.6. Reprojection residual before and after optimization, (a), (b) 
representing the residual of u and v coordinate directions on the pixel 
coordinate system. 

 

In this experiment, we test the performance of autonomous 
trajectory tracking under state estimates from proposed 
algorithm. The autonomous driving car is planned to travel 
around the playground. The trajectory is as shown in Fig.5. In 
the absence of any time delay compensation, there is a scale 
difference between the real vehicle trajectory(blue line) and the 
ground truth(black dot line). Taking the time delay into account, 
the VIO output can converge quickly and the accuracy has 
significant improvement, while the result also shows our 
algorithm(green line) is closed to the ground truth.  

B. Optimization Result Analysis 
To analyze the VIO output, we compare the actual motion 

trajectory with the ground truth. We find the trajectory is closed 
to ground truth after the time delay is converged. During every 
optimization, we calculate the tracking features reprojection 
error before and after every optimization, record the average 
residual value. 

The results shown in Fig.6, at the beginning, the reprojection 
error is large either before or after optimization. After a period 
of time (similar to time delay converged time), the reprojection 
error after optimization is also converged, although 
reprojection error has some jumps. Therefore, the reprojection 
error after optimization can be used for the judgment of the 



  

time delay convergence, while the VIO output can be used for 
ego-motion. 

V. CONCLUSION 
In this paper, we have presented a novel and efficient VIO 

ego-motion system with the time delay between IMU and 
rolling-shutter camera in autonomous driving application. Our 
experimental result shows the proposed approach can achieve 
high accuracy. We also analyze output result for time delay 
influence and find out one method to describe this influence. In 
the future work, we would consider the rolling shutter and IMU 
extrinsic online calibration influence, as in autonomous driving 
application the observability of spatial calibration is restricted.  
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