

Institute of Informatics - Institute of Neuroinformatics



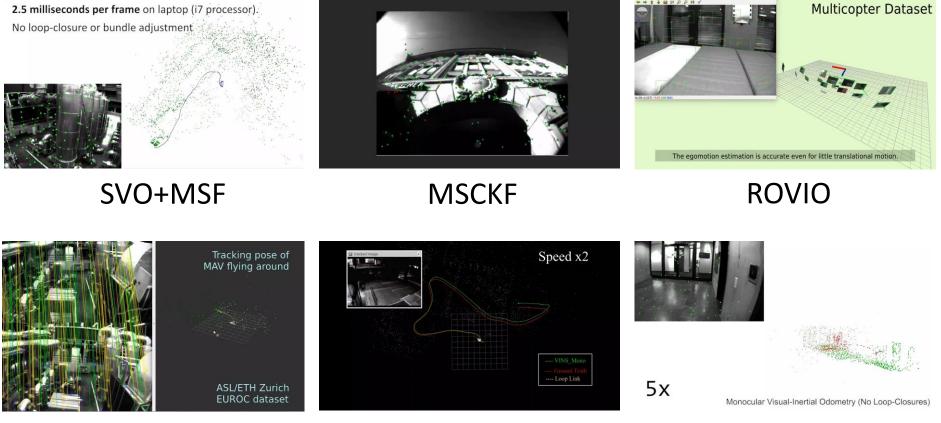
#### **Benchmarking SLAM:**

#### Current Status and the Road Ahead

#### Davide Scaramuzza & Zichao Zhang

Slides, Publications, Videos, Code: <a href="http://rpg.ifi.uzh.ch/">http://rpg.ifi.uzh.ch/</a>

#### There are more and more VIO-VISLAM algorithms



OKVIS

VINS-Mono

#### SVO+GTSAM

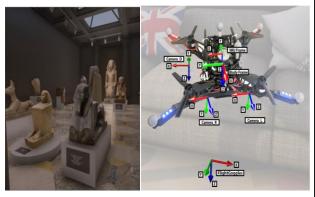
#### How do we compare them?

## Example Real-World Datasets

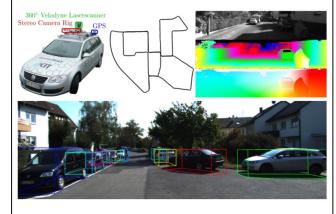
Devon Island [Furgale'11] Stereo + D-GPS + inclinometer + sun sensor



Blackbird [Antonini'18] MAV indoor aggressive flight with rendered images and real dynamics + IMU



KITTI [Geiger'12] Automobile, Laser + stereo + GPS, multiple tasks



MVSEC [Zhu'18] Events, frames, lidar, GPS, IMU from cars, drones, and motorcycles



#### EuRoC [Burri'16]

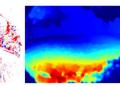
MAV with synchronized IMU and stereo



UZH Drone Racing [Delmerico'19]

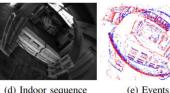
MAV aggressive flight, standard + event cameras, IMU, indoors and outdoors

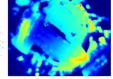




(a) Outdoor sequence

(b) Events (c) Optical flow

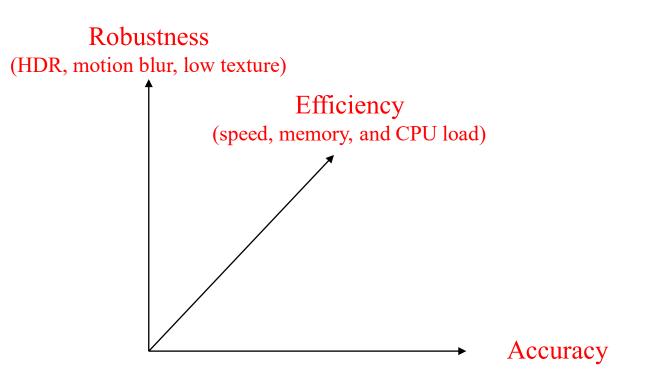




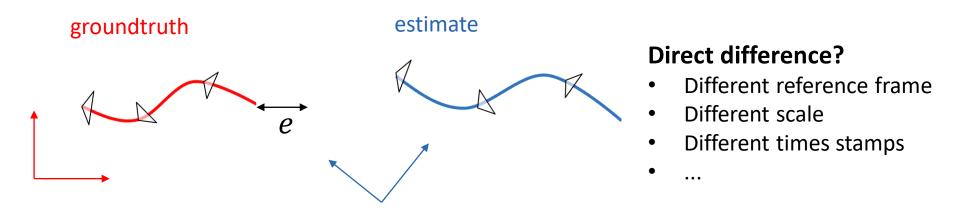
(d) Indoor sequence

(f) Optical flow

### What metrics should be used?



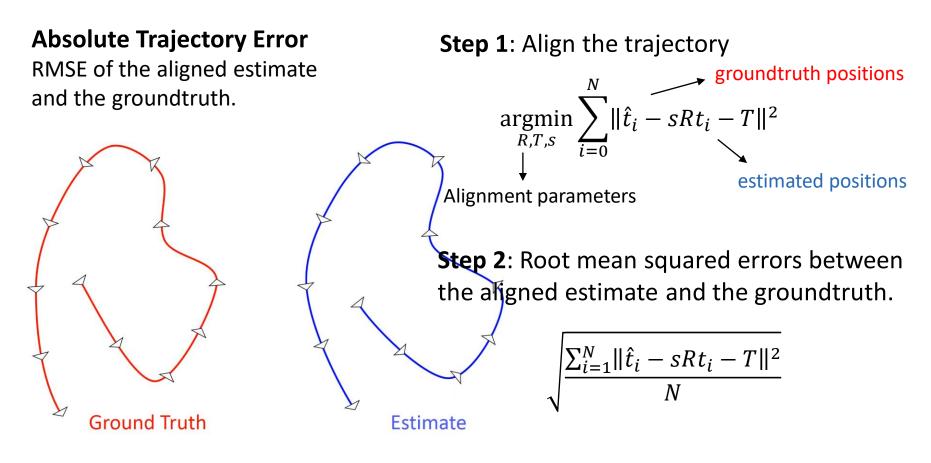
### Evaluation is a non-trivial task...



Maybe align the first poses and measure the *end-pose error*?

- How many poses should be used for the alignment?
- Not robust:
  - Most VIOs are non-deterministic (e.g., RANSAC, multithreading) → every time you run your VIO on the same dataset, you get different results
  - Not meaningful:
    - too sensitive to the trajectory shape
    - does not capture the error statistics

### Metric 1: Absolute Trajectory Error (ATE)



Single number metric

Many parameters to specify

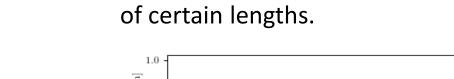
- Sturm et al., "A benchmark for the evaluation of RGB-D SLAM systems." IROS 2012.
- Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS'18. PDF

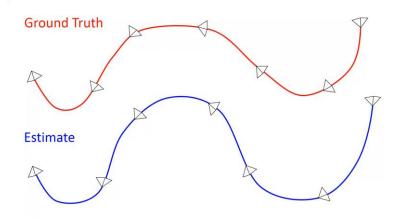
## Metric 2: Relative Trajectory Error (RTE)

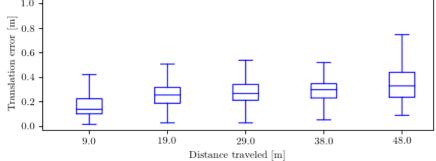
 $\geq$ 

#### **Relative Error (Odometry Error)**

Statistics of sub-trajectories of specified lengths.







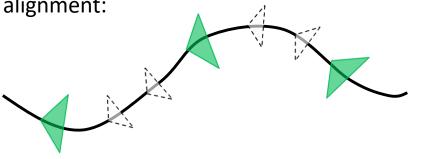
Calculate errors for all the subtrajectories

- ✓ Informative statistics
- Complicated to compute and rank
- Geiger et al. "Are we ready for autonomous driving? the KITTI vision benchmark suite." CVPR 2012.
- Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS'18. PDF

### **Trajectory Accuracy: Error Metrics**

Both ATE and RTE are widely used in practice, but:

- Many details need to be specified which are often omitted in papers
  - Number of poses used for the alignment (also, frames or keyframes?)
  - **Type of transformation used** for the alignment:
    - SE(3) for stereo VO
    - Sim(3) for monocular VO
    - 4DOF for VIO
  - Sub-trajectory lengths in RTE



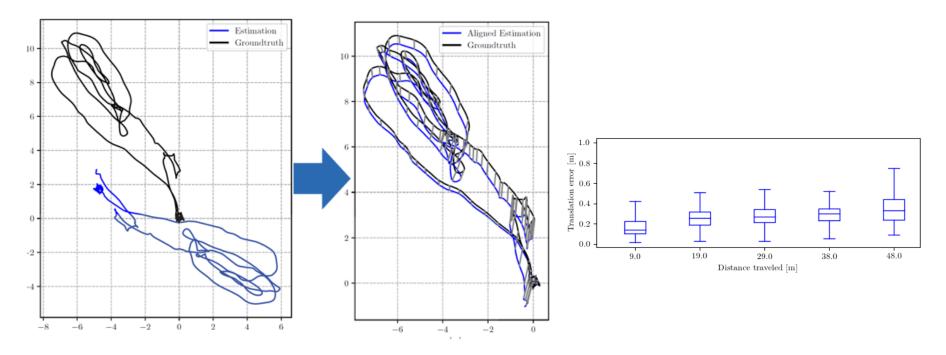
- White: Normal frames (used for real time pose update)
- Green: Keyframes (usually updated after BA)
- Results are not directly comparable with different settings
  - Report the evaluation settings in detail.
  - Use/develop of publicly available evaluation tools to facilitate reproducible evaluation.

## **Trajectory Evaluation Toolbox**

#### Designed to make trajectory evaluation easy!

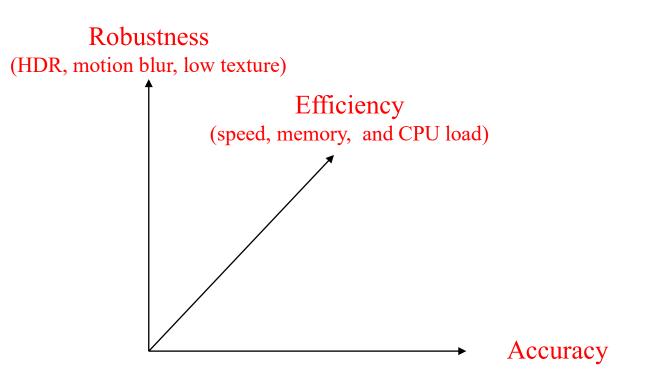
- Implements different alignment methods depending on the sensing modalities:
  SE(3) for stereo, sim(3) for monocular, 4DOF for VIO.
- Implements Absolute Trajectory Error and Relative Error.
- Automated evaluation of different algorithms on multiple datasets (for N runs).

Code: <u>https://github.com/uzh-rpg/rpg\_trajectory\_evaluation</u> [Zhang, IROS'18]



Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS'18. PDF

### What metrics should be used?



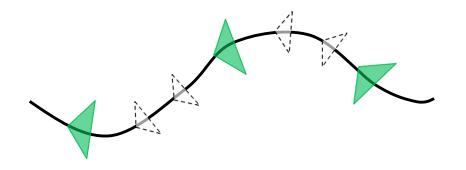
# **Benchmarking Efficiency**

#### Different computational resources

- Memory
- CPU load
- Processing time

Depends not only on algorithm design, but also implementation, platforms, etc.

There are different definitions of processing time in SLAM systems.

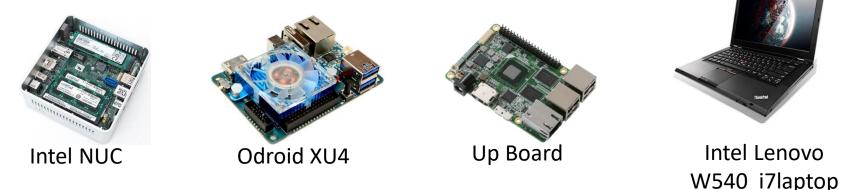


- White: Normal frames (used for real time pose update)
- Green: Keyframes (usually updated after BA)

- Processing time for real-time pose:  $t_{pose \ output} - t_{image \ arrival}$
- Processing time for asynchronously executed threads (e.g., bundle adjustment)

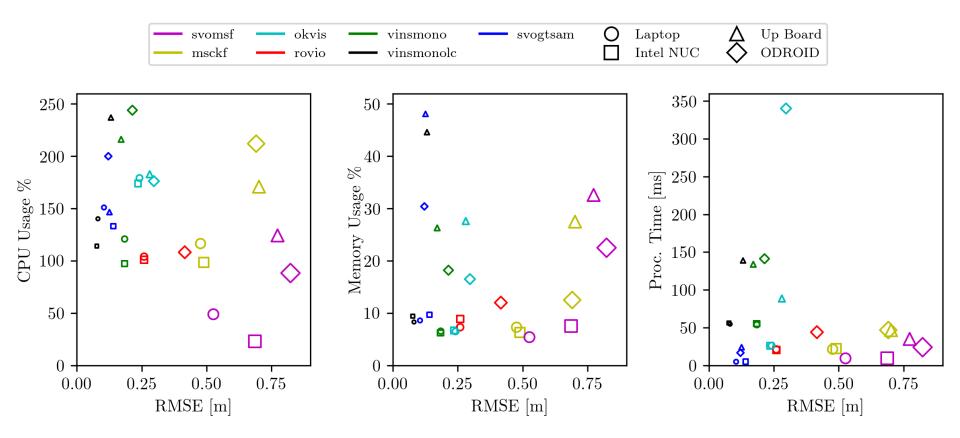
. . . . . .

- Algorithms: MSCKF, OKVIS, ROVIO, VINS-Mono, SVO+MSF, SVO+GTSAM, VINS-Mono w/ and w/o loop closure
- Hardware: consider the limitation of flying robots

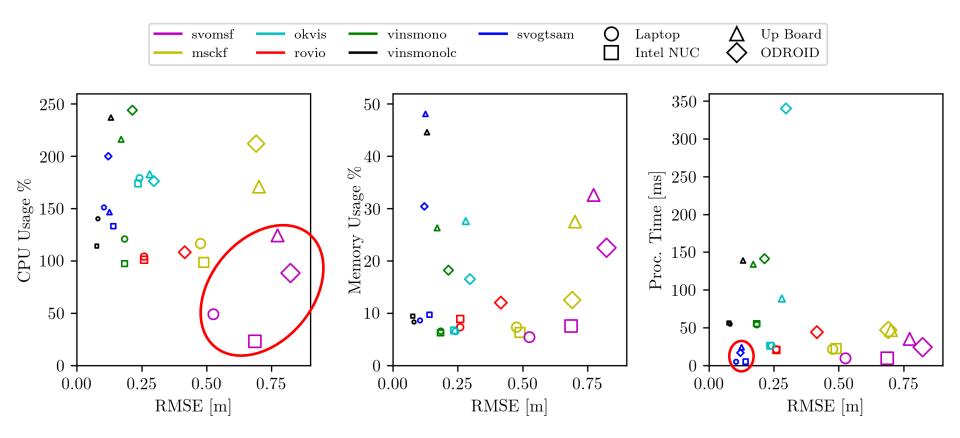


#### ➤ Evaluation

- Absolute odometry error RMSE after sim(3) trajectory alignment (7DoF)
- **Relative odometry error** error distribution of the subtrajectories
- CPU usage total load of CPU
- Memory usage total percentage of available RAM
- Time per frame from input until pose is updated



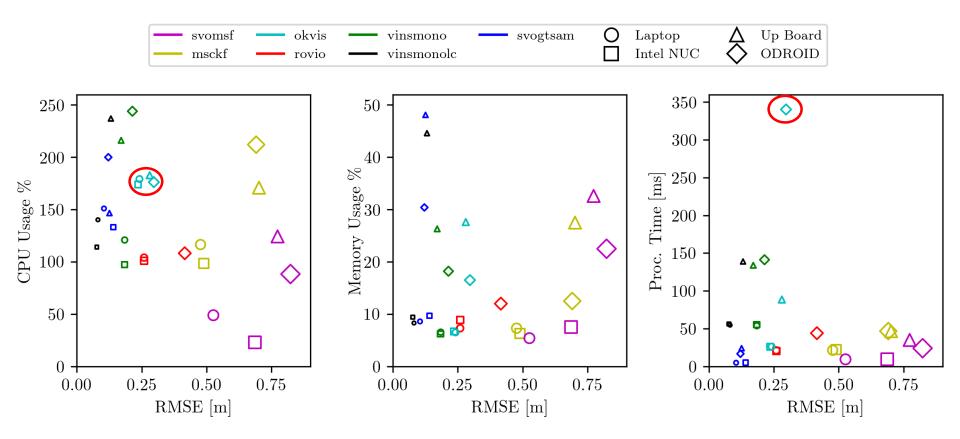
No free lunch: more computation  $\rightarrow$  better accuracy



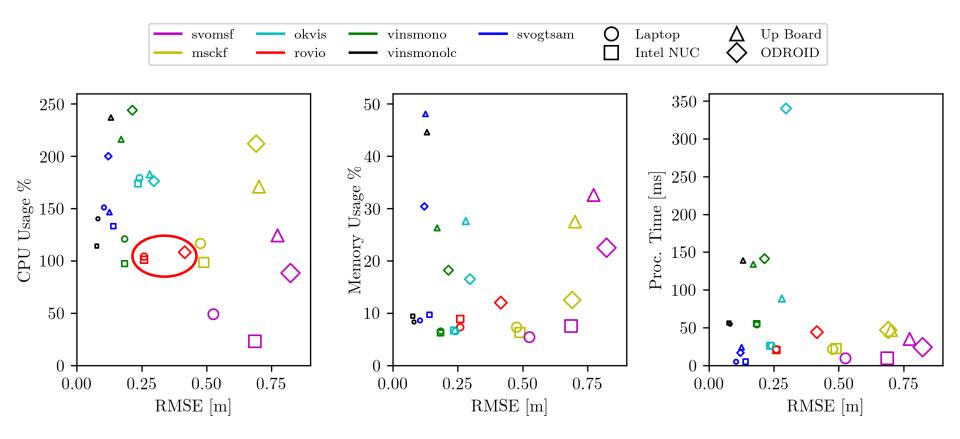
SVO+MSF: most efficient but least accurate.



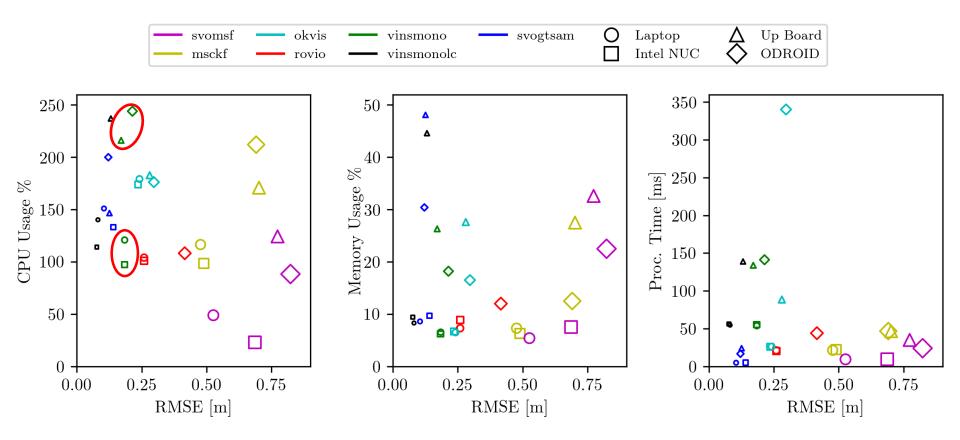
**MSCKF:** successful on all sequences, but achieves lower accuracy than smoothing algorithms.



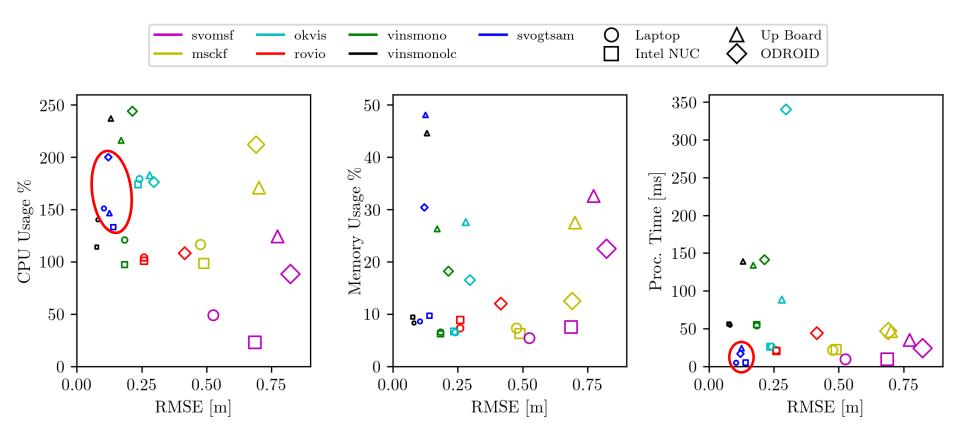
**OKVIS:** consistent performance across all HW platforms, but low update rate on the ODROID.



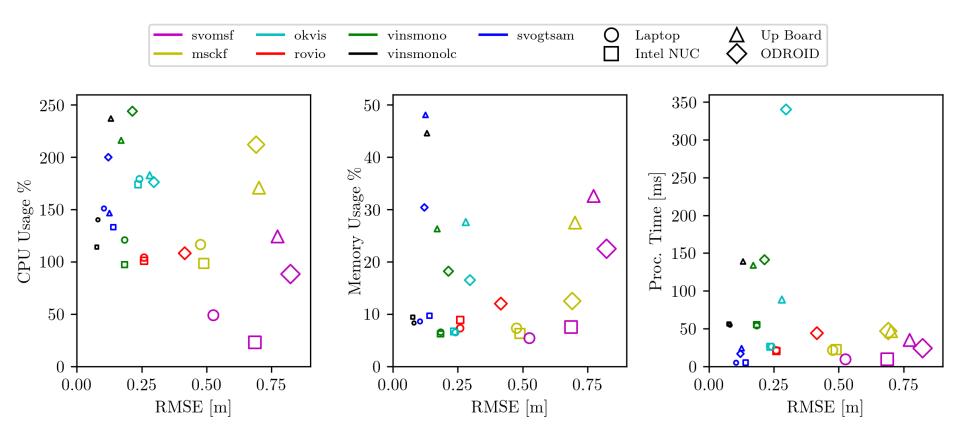
**ROVIO:** tight bound on resource usage, competitive accuracy, but unable to run on Up Board due to its low clock speed.



**VINS-Mono:** consistently robust and accurate, even more with loop closure enabled, but high resource usage.



**SVO+GTSAM:** high accuracy and modest resource use, but lack of robustness due to numerical instability during GTSAM optimization.



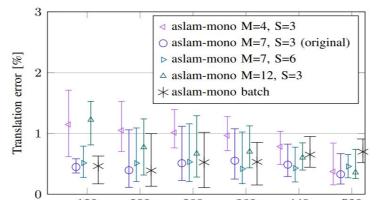
#### Findings:

- Results (accuracy & efficiency) vary depending on the platforms
- $\succ$  No free lunch: more computation  $\rightarrow$  better accuracy

#### To recap:

> Do not interpret the results outside the evaluation context

- Performance varies depending on:
  Specific algorithms + specific datasets + specific platforms
- Be very careful about (many, many) details
  - Parameters: how many keyframes in the sliding window?
  - Are we interested in real-time poses or refined poses ?



Error depending on sliding window size

Leutenegger et al. "Keyframe-based visual-inertial odometry using nonlinear optimization." *IJRR 2015*.

Bottom line: be very specific when reporting the results!

Research question: can we design a theoretically grounded trajectory error metric?

### Trajectory Accuracy: open problems?

- ➤ ATE and RTE are observed to be correlated in practice, but their theoretical connections are not clear → a unified metric?
- In practice, the temporal association is usually done by finding the nearest groundtruth Groundtruth



Estimate #1 Estimate #2

We can model the trajectory evaluation problem more rigorously in a probabilistic and continuous-time formulation and show theoretical connection between conventional ATE and RTE.

Zichao Zhang, Davide Scaramuzza, "*Rethinking Trajectory Evaluation for SLAM: a Probabilistic, Continuous-Time Approach*", **Best Paper Award** at the <u>ICRA'19 SLAM Benchmarking workshop.</u>

# Algorithm Design Choices: Fair comparison?

## Algorithm Design Choices: Fair comparison?

How can we evaluate the pros and cons of different algorithm design choices?

- Does the difference come from specific implementation details or the algorithm choice?
- > Does the observed difference generalize to different situations?

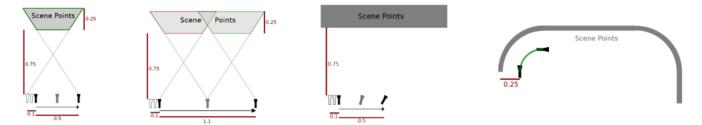
It is **tricky but important** to separate the influence of the factors of interest by:

- Standard implementations
- Well-controlled simulation
- ...

▶ ....

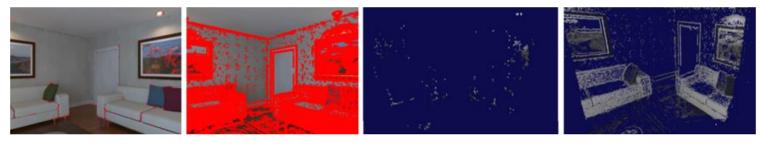
## **Algorithm Choices: Success stories**

Filter vs. Keyframe: representative, canonical setups



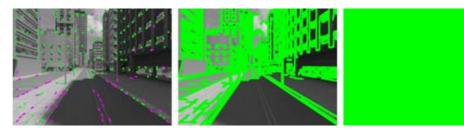
Strasdat et al. "Visual SLAM: why filter?." Image and Vision Computing 30, no. 2 (2012): 65-77.

Sparse Joint Optimization vs. Dense Alternation: custom VO for comparison



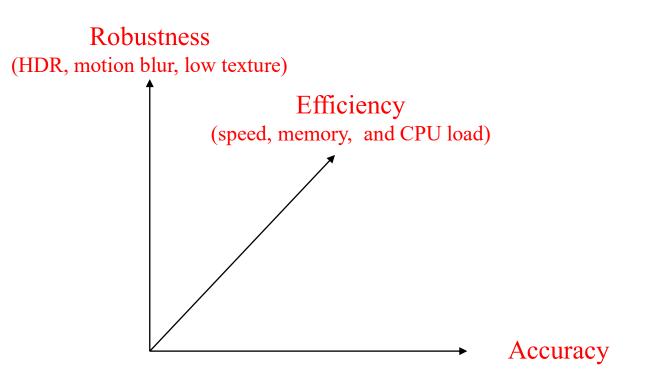
Platinsky et al. "Monocular visual odometry: Sparse joint optimisation or dense alternation?." ICRA 2017.

Dense vs. Semi-dense vs. Sparse Image Alignment : specific algorithm modules



Forster et al.. "SVO: Semidirect visual odometry for monocular and multicamera systems." TRO 2017. PDF. Code.

### What metrics should be used?



#### Robustness is the greatest challenge for SLAM today!

How to cope & quantify robustness to:

- low texture
- High Dynamic Range (HDR) scenes
- motion blur
- dynamically changing environments
- large latencies

#### How can we quantify the robustness of algorithms to such situations?





#### Motion blur

Latency



Cadena, Carlone, Carrillo, Latif, Scaramuzza, Neira, Reid, Leonard, *Past, Present, and Future of Simultaneous* Localization and Mapping: Toward the Robust-Perception Age, IEEE Transactions on Robotics, 2016. <u>PDF</u>

#### Robustness is the greatest challenge for SLAM today!

How to cope & quantify robustness to:

- low texture
- High Dynamic Range (HDR) scenes
- motion blur
- dynamically changing environments
- large latencies

#### How can we quantify the robustness of algorithms to such situations?

Also, most algorithms have random components

RANSAC

...

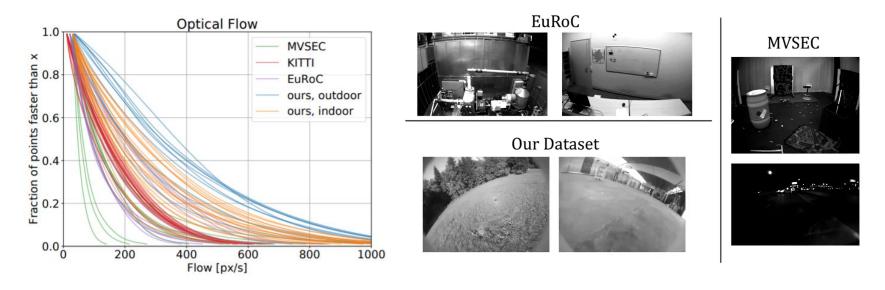
• Feature selection to constrain computation

Is the performance robust to algorithmic randomness?

#### Robustness

Quantify the level of the challenge properly

E.g., optical flow for the aggressiveness for vision algorithms



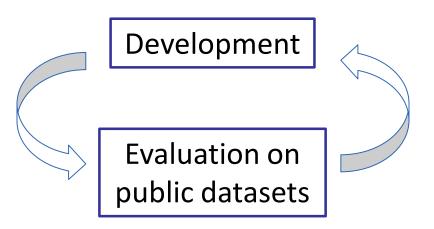
Repeated experiments to get statistically meaningful results

- Success rate
- Mean/Median error
- .

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA'19 <u>PDF</u>. Video. <u>Datasets</u>.

#### Dataset Bias

#### Typical workflow of developing VO/VIO/SLAM algorithms:



#### As a community, we are overfitting the public dataset.

Potential problems:

- Generalizability: Performance on one does not guarantee to generalize to others
  - E.g., KITTI  $\rightarrow$  low frame rate, not friendly for direct methods
- Old datasets (e.g., KITTI) are already saturated:
  - It becomes more and more difficult to tell whether we are making real progress or just overfitting the datasets.
  - E.g., does 1 or 2 cm improvement in RMSE over a 100 meter trajectory really mean something?

#### **Dataset Bias**

We need more datasets to evaluate the performance of SLAM algorithms along different axes

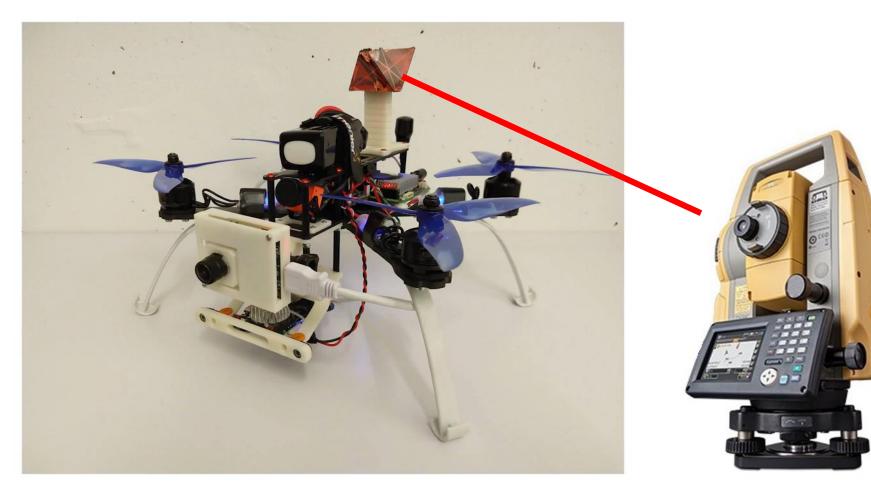
#### Robustness (HDR, motion blur, low texture) Efficiency BlackBird [Antonini'18] ٠ UZH-FPV dataset [Delmerico'18] ٠ (speed, memory, and CPU load) Event Camera [Mueggler'17] ٠ MVSEC [Zhu'18] ٠ ... Devon Island [Furgale'13] ٠ KITTI [CVPR'12] ٠ EuRoC [Burri'16] TUM-RGBD [Sturm'12] TUM VI Benchmark [Schubert'18] ٠ ... Accuracy

#### Realistic simulators:

- AirSim
- FlightGoggles [Guerra'19]
- ESIM [Rebecq'18]
- .....

#### UZH-FPV Drone Racing Dataset

Contains data recorded by a drone flying up to over 20m/s indoors and outdoors frown by a professional pilot. Contains frames, events, IMU, and Ground Truth from a Robotic Total Station: <u>http://rpg.ifi.uzh.ch/uzh-fpv.html</u>



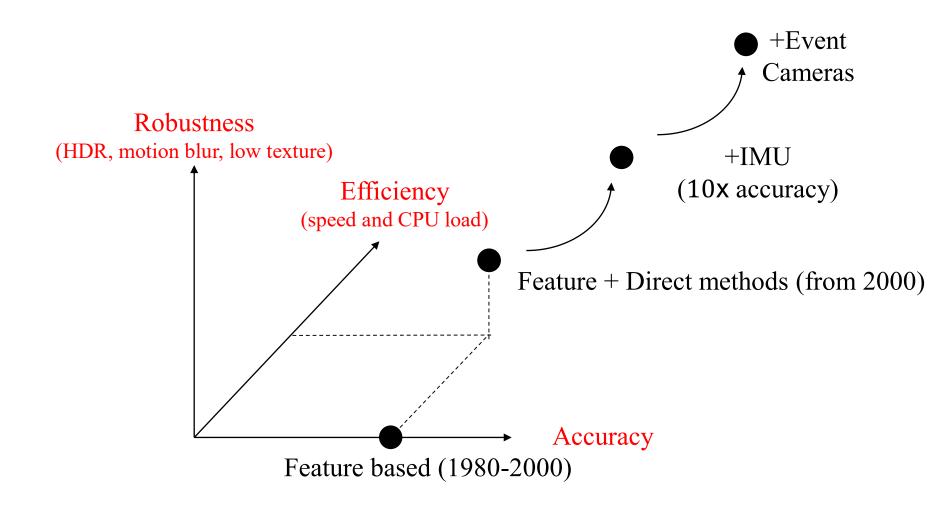
Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA'19 <u>PDF</u>. <u>Video</u>. <u>Datasets</u>.

#### UZH-FPV Drone Racing Dataset

- Recorded with a drone flown by a professional pilot up to over 20m/s
- Contains images, events, IMU, and ground truth from a robotic total station: <u>http://rpg.ifi.uzh.ch/uzh-fpv.html</u>



Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA'19 <u>PDF</u>. <u>Video</u>. <u>Datasets</u>. My Personal View of the last 30 years of Visual Inertial SLAM

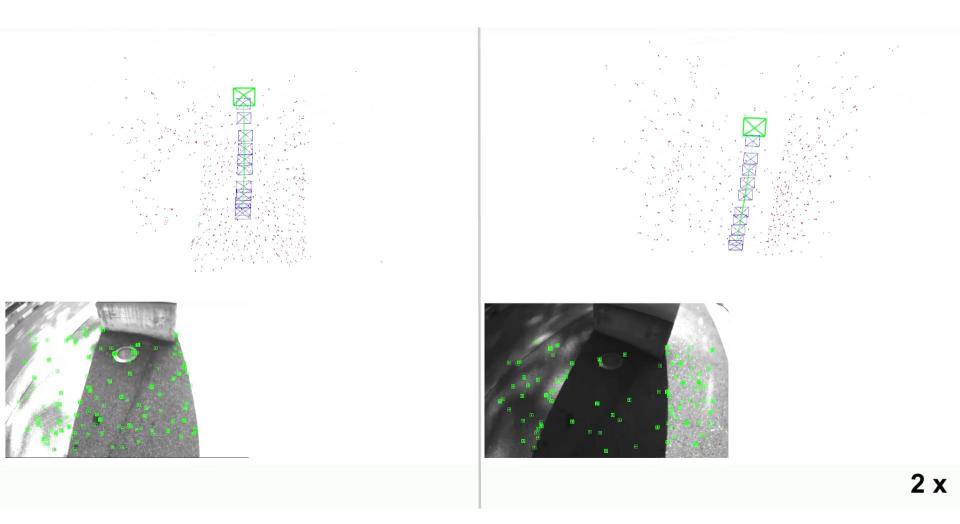


#### Opportunities

### Active Exposure Control for Robustness in HDR scenes

#### ORB-SLAM with Standard Built-in Auto-Exposure

ORB-SLAM with Our Active Exposure Control

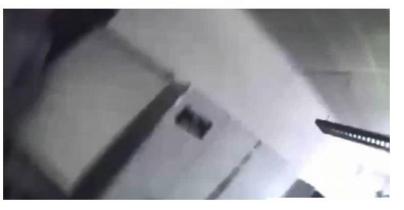


Zhang, et al., Active Exposure Control for Robust Visual Odometry in HDR Environments, ICRA'17. PDF. Video

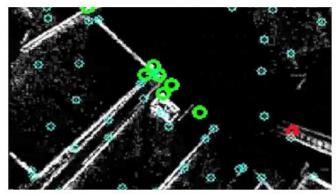
### "UltimateSLAM": Frames + Events + IMU

85% accuracy gain over standard visual-inertial SLAM in HDR and high speed scenes!

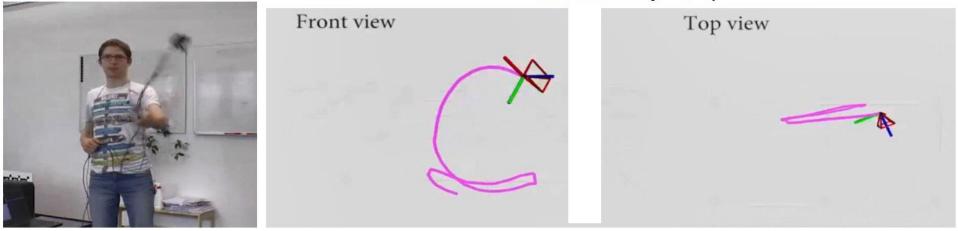
Standard camera



Event camera



**Estimated trajectory** 



Rosinol et al., *Ultimate SLAM?* **IEEE RAL'18 Best Paper Award Honorable Mention** <u>PDF</u>. <u>Video</u>. <u>IEEE Spectrum</u>. Mueggler et al., *Continuous-Time Visual-Inertial Odometry for Event Cameras*, **IEEE T-RO'18**. <u>PDF</u>

# Conclusion

### Current SLAM evaluation

- Many existing metrics, reflecting different aspects of the algorithms
- Evaluation is a non-trivial task: many little details affect the results
- Check out our tutorial and toolbox: <u>https://github.com/uzh-rpg/rpg\_trajectory\_evaluation</u> [Zhang, IROS'18]

### How to push forward SLAM research

- Take robustness into consideration
- Do not stick to a few datasets: use more diverse ones
- Take advantage of photo realistic simulators, but if you do, please share the datasets!
- Take the chance to
  - Actively change the parameters of the algorithm to improve robustness
  - Work on new sensors (e.g., event cameras)
    - Event camera dataset: <u>http://rpg.ifi.uzh.ch/davis\_data.html</u>
    - MVSEC dataset: <a href="https://daniilidis-group.github.io/mvsec/">https://daniilidis-group.github.io/mvsec/</a>
    - UZH-FPV Drone Racing dataset: <u>http://rpg.ifi.uzh.ch/uzh-fpv.html</u>
    - Event-camera Simulator (ESIM): <u>https://github.com/uzh-rpg/rpg\_esim</u>

### Checklist for Reproducible (meaningful) SLAM Results

### **Running experiments**

- What are the crucial parameters (# features, # keyframes, etc.)?
- Does the starting and ending time in the dataset have an obvious impact on the results?
- Am I running the experiments in a real-time setup (or processing new measurements only when the previous processing is done)?
- Have I ran the algorithm multiple times to have repeatable results/meaningful statistics?

### **Reporting results**

#### <u>Accuracy</u>

- Am I reporting the accuracy of real-time poses or refined poses?
- Absolute error: how is the trajectory aligned with the groundtruth?
- Which frames are evaluated? All the frame or only keyframes? <u>Efficiency</u>
- > What are the experimental platforms?
- What are the exact starting and end point of the processing time?
- Is there any special optimization used that has a big impact?

# How should we report results in papers?

### What not to write in a paper:

"We aligned the estimated trajectory with the groundtruth and calculated the Root Mean Square Error (RMSE) to indicate the estimation accuracy." [Author names hidden for privacy]

- What type of alignment was used?
- What method was used for calculate the alignment transformation?

### How to write in a paper:

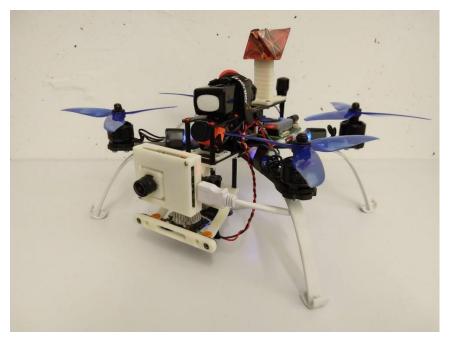
"To obtain a measure of accuracy of the different approaches, we aligned the final trajectory of keyframes with the ground-truth trajectory using the least-squares approach proposed in [Umeyama, 1991]. Since scale cannot be recovered using a single camera, we also rescaled the estimated trajectory to best fit with the ground-truth trajectory. Subsequently, we computed the Euclidean distance between the estimated and ground-truth keyframe poses and compute the mean, median, and Root Mean Square Error (RMSE) in meters." [Author names hidden for privacy]

"We used the relative error metrics proposed in [KITTI] to obtain error statistics. The metric evaluates the relative error by averaging the drift over trajectory segments of different length {10; 40; 90; 160; 250; 360 } meter." [Author names hidden for privacy]

### $\rightarrow$ Necessary references and details.

# **IROS 2019 FPV VIO Competition**

## Dataset: UZH-FPV Drone Racing Dataset



- Aggressive motion: First-person view (FPV) drone racing quadrotor flown by expert pilots.
- **Rich sensors**: Time-synchronized stereo/monocular standard/event cameras + inertial measurement units.

Delmerico et al, Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset, *ICRA2019.* 

#### Why another dataset?

- Existing datasets with ground truth trajectories are slow and not aggressive.
- VIO has become mature and handles non-aggressive situations well.

More difficult/discriminative datasets are necessary to push the state-of-the art.

### Dataset: UZH-FPV Drone Racing Dataset

our Dutubet



Outdoor



Indoor

### **Comparison with Existing Datasets**

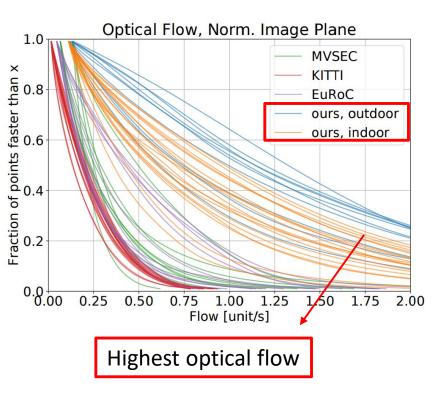
# Our Dataset





## The Most Aggressive Drone Dataset

|                      | EuRoC MAV [17]      | UPenn Fast Flight [24] | Zurich Urban MAV [19] | Blackbird [20] | <b>UZH-FPV</b> Drone Racing   |
|----------------------|---------------------|------------------------|-----------------------|----------------|-------------------------------|
| Environments         | 2                   | 1                      | 3                     | $5^{a}$        | 2                             |
| Sequences            | 11                  | 4                      | 1                     | 186            | 27                            |
| Camera (Hz)          | 20                  | 40                     | 20                    | 120            | $30/50^d$ + events            |
| IMU (Hz)             | 200                 | 200                    | 10                    | 100            | 500/1000 <sup>e</sup>         |
| Motor Encoders (Hz)  | n/a                 | n/a                    | n/a                   | ~190           | n/a                           |
| Max. Distance (m)    | 130.9               | 700                    | 2000                  | 860.8          | 340.1/923.5 <sup>f</sup>      |
| Top Speed (m/s)      | 2.3                 | 17.5                   | $3.9^{b}$             | 7.0            | <b>12.8/23.4</b> <sup>g</sup> |
| mm Ground Truth (Hz) | 20/100 <sup>c</sup> | n/a                    | n/a                   | 360            | 20                            |



### **Challenges in the dataset:**

- High flight speed
- High optical flow

The dataset contain various sensors (both conventional and novel sensors), providing different possibilities to deal with these challenges.

# The 1<sup>st</sup> FPV Drone Racing VIO competition

➢ 6 sequences (no public groundtruth) from the UZH-FPV datasets

| Dataset            | Length   | V <sub>max</sub> | Difficulty |
|--------------------|----------|------------------|------------|
| indoor-forward-11  | 85.68 m  | 10.32 m/s        | Easy       |
| indoor-45-3        | 119.82 m | 3.53 m/s         | Easy       |
| outdoor-forward-9  | 314.41 m | 10.68 m/s        | Medium     |
| outdoor-forward-10 | 455.63 m | 12.58 m/s        | Medium     |
| indoor-forward-12  | 124.07 m | 15.28 m/s        | Hard       |
| indoor-45-16       | 58.72 m  | 7.69 m/s         | Hard       |

https://github.com/uzh-rpg/IROS2019-FPV-VIO-Competition

## The Participants

- We received 5 submissions, 3 of which agreed to disclose their submission information.
  - Patrick Geneva, Robot Perception and Navigation group, University of Delaware.
  - Thomas Mörwald, Leica Geosystems.
  - Vladyslav Usenko, Computer Vision Group, Technical University of Munich.

The reports and links to open source code are publicly available with the consent of the participants.

## **Competition Results**

- Evaluation: the relative pose error as in KITTI
  - Average relative pose error over sub-trajectory lengths of 40, 60, 80, 100, 120 meters.

| Ranking | Name             | Sensors                | Trans. Error<br>(%) | Rot. Error<br>(deg/m) |
|---------|------------------|------------------------|---------------------|-----------------------|
| 1       | Patrick Geneva   | binocular;<br>inertial | 7.023               | 0.264                 |
| 2       | Thomas Mörwald   | monocular;<br>inertial | 7.034               | 0.266                 |
| 3       | Vladyslav Usenko | stereo;<br>Inertial    | 7.778               | 0.285                 |
| 4       | a-u              | stereo;<br>inertial    | 11.869              | 0.619                 |
| 5       | r-u              | stereo;<br>inertial    | 36.048              | 1.894                 |

Detailed results available at <a href="http://rpg.ifi.uzh.ch/uzh-fpv.html">http://rpg.ifi.uzh.ch/uzh-fpv.html</a>

# The Winner: Patrick Geneva

### OpenVINS (<u>https://github.com/rpng/open\_vins</u>)

- <u>Sensors</u>: Binocular
  - Stereo matching is not used due to the poor matching performance
- Frontend: Optical flow
  - FAST detector
  - Lucas-Kanade optical flow (OpenCV implementation)
- Backend: MSCKF
  - Siding window of 15 frames
- Loop closing: No
- Hardware/Processing Time
  - E3-1505M @ 3.00GHz: ~ 1.5 x real-time



# The Runner-Up: Thomas Mörwald

### Optimization-based VIO

- <u>Sensors</u>: Monocular
- <u>Frontend</u>: Optical flow
  - Shi-Tomasi Detector (OpenCV implementation)
  - Lucas-Kanade optical flow
- <u>Backend</u>: Fixed-lag optimization (GTSAM iSAM2)
  - Sliding window size: 0.5 second (= 15 frames)
- Loop closing: No

- Hardware/Processing Time
  - i7-8650U CPU @ 1.9 GHz: ~ 1.3 x real-time
  - Most time consuming: Backend optimization > Detection > Optical flow

## **Conclusion and Outlook**

"Worse" performance than existing datasets

- Best 7 % vs. commonly seen 1 % translation error (e.g., EuRoC)
- > None of the participants utilized the event camera.

The UZH-FPV dataset is far from saturated compared to existing ones. New algorithms, possibly combined with novel sensing modalities, can potentially push the performance.

