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OKVIS

ROVIO

VINS-Mono SVO+GTSAM

SVO+MSF MSCKF

There are more and more VIO-VISLAM algorithms



How do we compare them?



Example Real-World Datasets
KITTI [Geiger’12]
Automobile, Laser + stereo + 
GPS, multiple tasks

EuRoC [Burri’16]
MAV with synchronized IMU 
and stereo

Blackbird [Antonini’18]
MAV indoor aggressive flight 
with rendered images and real 
dynamics + IMU

UZH Drone Racing [Delmerico’19]
MAV aggressive flight, standard + 
event cameras, IMU, indoors and 
outdoors

Devon Island [Furgale’11]
Stereo + D-GPS + inclinometer + 
sun sensor

MVSEC [Zhu’18]
Events, frames, lidar, GPS, 
IMU from cars, drones, and 
motorcycles



What metrics should be used?

Accuracy

Efficiency 
(speed, memory, and CPU load)

Robustness
(HDR, motion blur, low texture)



Evaluation is a non-trivial task…

Maybe align the first poses and measure the end-pose error?

 How many poses should be used for the alignment?

 Not robust: 

- Most VIOs are non-deterministic (e.g., RANSAC, multithreading) → 
every time you run your VIO on the same dataset, you get different 
results

- Not meaningful: 

• too sensitive to the trajectory shape 

• does not capture the error statistics

Direct difference?
• Different reference frame
• Different scale
• Different times stamps
• ...

groundtruth estimate

𝑒



Metric 1: Absolute Trajectory Error (ATE)

 Single number metric
Many parameters to specify

Absolute Trajectory Error
RMSE of the aligned estimate 
and the groundtruth. 

argmin
𝑅,𝑇,𝑠



𝑖=0

𝑁

Ƹ𝑡𝑖 − 𝑠𝑅𝑡𝑖 − 𝑇 2

Step 1: Align the trajectory

estimated positions

groundtruth positions

Alignment parameters

Step 2: Root mean squared errors between 
the aligned estimate and the groundtruth.

σ𝑖=1
𝑁 Ƹ𝑡𝑖 − 𝑠𝑅𝑡𝑖 − 𝑇 2

𝑁

• Sturm et al., "A benchmark for the evaluation of RGB-D SLAM systems." IROS 2012.
• Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS’18. PDF

http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pdf


Metric 2: Relative Trajectory Error (RTE)

 Informative statistics
 Complicated to compute and rank

Relative Error (Odometry Error)
Statistics of sub-trajectories of 
specified lengths.

 Calculate errors for all the subtrajectories 
of certain lengths.

• Geiger et al. "Are we ready for autonomous driving? the KITTI vision benchmark suite." CVPR 2012.
• Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS’18. PDF

http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pdf


Trajectory Accuracy: Error Metrics

 Both ATE and RTE are widely used in practice, but:

 Many details need to be specified which are often omitted in papers

- Number of poses used for the alignment (also, frames or keyframes?)

- Type of transformation used for the alignment:

• SE(3) for stereo VO

• Sim(3) for monocular VO

• 4DOF for VIO

- Sub-trajectory lengths in RTE
• White: Normal frames (used for real time pose update)
• Green: Keyframes (usually updated after BA)

 Results are not directly comparable with different settings
 Report the evaluation settings in detail.
 Use/develop of publicly available evaluation tools to facilitate 

reproducible evaluation.



Trajectory Evaluation Toolbox

Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS’18. PDF

 Designed to make trajectory evaluation easy!
 Implements different alignment methods depending on the sensing modalities:

SE(3) for stereo, sim(3) for monocular, 4DOF for VIO.

 Implements Absolute Trajectory Error and Relative Error.

 Automated evaluation of different algorithms on multiple datasets (for N runs).

 Code: https://github.com/uzh-rpg/rpg_trajectory_evaluation [Zhang, IROS’18]

http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pdf
https://github.com/uzh-rpg/rpg_trajectory_evaluation


What metrics should be used?

Accuracy

Efficiency 
(speed, memory, and CPU load)

Robustness
(HDR, motion blur, low texture)



Benchmarking Efficiency

 Different computational resources
 Memory

 CPU load

 Processing time

Depends not only on algorithm design, but also implementation, 
platforms, etc.

 There are different definitions of processing time in SLAM systems.

• Processing time for real-time pose:

𝑡𝑝𝑜𝑠𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑖𝑚𝑎𝑔𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙

• White: Normal frames (used for real time pose update)
• Green: Keyframes (usually updated after BA)

• Processing time for asynchronously 
executed threads (e.g., bundle 
adjustment)

• ……



Case study: VIO for Flying Robots [ICRA’18]

 Algorithms: MSCKF, OKVIS, ROVIO, VINS-Mono, SVO+MSF, SVO+GTSAM, 
VINS-Mono w/ and w/o loop closure

 Hardware: consider the limitation of flying robots

 Evaluation
 Absolute odometry error – RMSE after sim(3) trajectory alignment (7DoF)
 Relative odometry error – error distribution of the subtrajectories
 CPU usage – total load of CPU
 Memory usage – total percentage of available RAM
 Time per frame – from input until pose is updated

Intel NUC Odroid XU4 Up Board

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for 
Flying Robots, ICRA’18. PDF. Video.

Intel Lenovo 
W540  i7laptop

http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
https://youtu.be/ymI3FmwU9AY


Case study: VIO for Flying Robots [ICRA’18]

No free lunch: more computation  better accuracy

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for 
Flying Robots, ICRA’18. PDF. Video

http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
https://youtu.be/ymI3FmwU9AY


Case study: VIO for Flying Robots [ICRA’18]

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for 
Flying Robots, ICRA’18. PDF. Video

SVO+MSF: most efficient but least accurate.

http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
https://youtu.be/ymI3FmwU9AY


Case study: VIO for Flying Robots [ICRA’18]

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for 
Flying Robots, ICRA’18. PDF. Video

MSCKF: successful on all sequences, but achieves lower accuracy than 
smoothing algorithms.

http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
https://youtu.be/ymI3FmwU9AY


Case study: VIO for Flying Robots [ICRA’18]

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for 
Flying Robots, ICRA’18. PDF. Video

OKVIS: consistent performance across all HW platforms, but low 
update rate on the ODROID.

http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
https://youtu.be/ymI3FmwU9AY


Case study: VIO for Flying Robots [ICRA’18]

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for 
Flying Robots, ICRA’18. PDF. Video

ROVIO: tight bound on resource usage, competitive accuracy, but 
unable to run on Up Board due to its low clock speed.

http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
https://youtu.be/ymI3FmwU9AY


Case study: VIO for Flying Robots [ICRA’18]

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for 
Flying Robots, ICRA’18. PDF. Video

VINS-Mono: consistently robust and accurate, even more with loop 
closure enabled, but high resource usage.

http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
https://youtu.be/ymI3FmwU9AY


Case study: VIO for Flying Robots [ICRA’18]

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for 
Flying Robots, ICRA’18. PDF. Video

SVO+GTSAM: high accuracy and modest resource use, but lack of 
robustness due to numerical instability during GTSAM optimization.

http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
https://youtu.be/ymI3FmwU9AY


Case study: VIO for Flying Robots [ICRA’18]

Findings:
 Results (accuracy & efficiency) vary depending on the platforms 
 No free lunch: more computation  better accuracy

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for 
Flying Robots, ICRA’18. PDF. Video

http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
https://youtu.be/ymI3FmwU9AY


To recap:

 Do not interpret the results outside the evaluation context

 Performance varies depending on: 
Specific algorithms + specific datasets + specific platforms

 Be very careful about (many, many) details

 Parameters: how many keyframes in the sliding window?

 Are we interested in real-time poses or refined poses ?

Bottom line: be very specific 
when reporting the results!

Research question: can we 
design a theoretically grounded 
trajectory error metric?

Leutenegger et al. "Keyframe-based visual–inertial 

odometry using nonlinear optimization." IJRR 2015.

Error depending on sliding window size



Trajectory Accuracy: open problems?

 ATE and RTE are observed to be correlated in practice, but their 
theoretical connections are not clear  a unified metric?

 In practice, the temporal association is usually done by finding the 
nearest groundtruth  a more principled way?

Groundtruth

Estimate #1 Estimate #2

We can model the trajectory evaluation problem more rigorously 
in a probabilistic and continuous-time formulation and show 
theoretical connection between conventional ATE and RTE.

Zichao Zhang, Davide Scaramuzza, "Rethinking Trajectory Evaluation for SLAM: a Probabilistic, 
Continuous-Time Approach“, Best Paper Award at the ICRA’19 SLAM Benchmarking workshop.

t

http://rpg.ifi.uzh.ch/docs/WICRA19_Zhang.pdf


Algorithm Design Choices: 
Fair comparison?



Algorithm Design Choices: Fair comparison?

How can we evaluate the pros and cons of different algorithm design 
choices?

 Does the difference come from specific implementation details or the algorithm 
choice?

 Does the observed difference generalize to different situations?

 ….

It is tricky but important to separate the influence of the factors of interest by:

 Standard implementations

 Well-controlled simulation

 …



Algorithm Choices: Success stories
 Filter vs. Keyframe: representative, canonical setups 

 Sparse Joint Optimization vs. Dense Alternation: custom VO for comparison

 Dense vs. Semi-dense vs. Sparse Image Alignment : specific algorithm modules

Strasdat et al. "Visual SLAM: why filter?." Image and Vision Computing 30, no. 2 (2012): 65-77.

Platinsky et al. "Monocular visual odometry: Sparse joint optimisation or dense alternation?.“ ICRA 2017.

Forster et al.. "SVO: Semidirect visual odometry for monocular and multicamera systems." TRO 2017. PDF. Code.

http://rpg.ifi.uzh.ch/docs/TRO17_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/svo2.html


What metrics should be used?

Accuracy

Efficiency 
(speed, memory,  and CPU load)

Robustness
(HDR, motion blur, low texture)



How to cope & quantify robustness to:
• low texture 

• High Dynamic Range (HDR) scenes

• motion blur

• dynamically changing environments

• large latencies

Robustness is the greatest challenge for SLAM today!

Latency Motion blur High Dynamic Range

How can we quantify the robustness of algorithms to such situations?

Cadena, Carlone, Carrillo, Latif, Scaramuzza, Neira, Reid, Leonard, Past, Present, and Future of Simultaneous 
Localization and Mapping: Toward the Robust-Perception Age, IEEE Transactions on Robotics, 2016. PDF

http://rpg.ifi.uzh.ch/docs/TRO16_cadena.pdf


How to cope & quantify robustness to:
• low texture 

• High Dynamic Range (HDR) scenes

• motion blur

• dynamically changing environments

• large latencies

Robustness is the greatest challenge for SLAM today!

How can we quantify the robustness of algorithms to such situations?

Also, most algorithms have random components

 RANSAC

 Feature selection to constrain computation

 …

Is the performance robust to algorithmic randomness?



Robustness

 Quantify the level of the challenge properly
 E.g., optical flow for the aggressiveness for vision algorithms

 Repeated experiments to get statistically meaningful results

 Success rate

 Mean/Median error

 …
Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA’19

PDF. Video. Datasets.

http://rpg.ifi.uzh.ch/docs/ICRA19_Delmerico.pdf
https://youtu.be/G5w4ZcEzvoo
http://rpg.ifi.uzh.ch/uzh-fpv.html


Dataset Bias

Typical workflow of developing VO/VIO/SLAM algorithms:

As a community, we are overfitting the public dataset.

Potential problems:
 Generalizability: Performance on one does not guarantee to generalize to others

 E.g., KITTI  low frame rate, not friendly for direct methods

 Old datasets (e.g., KITTI) are already saturated:
 It becomes more and more difficult to tell whether we are making real progress or 

just overfitting the datasets.
 E.g., does 1 or 2 cm improvement in RMSE over a 100 meter trajectory really mean 

something?

Development 

Evaluation on 
public datasets 



Dataset Bias

We need more datasets to evaluate the performance of SLAM 
algorithms along different axes

Accuracy

Efficiency 
(speed, memory,  and CPU load)

Robustness
(HDR, motion blur, low texture)

• BlackBird [Antonini’18]
• UZH-FPV dataset [Delmerico’18]
• Event Camera [Mueggler’17]
• MVSEC [Zhu’18]
• …

• Devon Island [Furgale’13]
• KITTI [CVPR’12]
• EuRoC [Burri’16]
• TUM-RGBD [Sturm’12] 
• TUM VI Benchmark [Schubert’18]
• …

Realistic simulators:
• AirSim
• FlightGoggles [Guerra’19]
• ESIM [Rebecq’18]
• ……



UZH-FPV Drone Racing Dataset
Contains data recorded by a drone flying up to over 20m/s indoors and outdoors 
frown by a professional pilot. Contains frames, events, IMU, and Ground Truth from a 
Robotic Total Station: http://rpg.ifi.uzh.ch/uzh-fpv.html

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA’19
PDF. Video. Datasets.

http://rpg.ifi.uzh.ch/uzh-fpv.html
http://rpg.ifi.uzh.ch/docs/ICRA19_Delmerico.pdf
https://youtu.be/G5w4ZcEzvoo
http://rpg.ifi.uzh.ch/uzh-fpv.html


UZH-FPV Drone Racing Dataset

 Recorded with a drone flown by a professional pilot up to over 20m/s 

 Contains images, events, IMU, and ground truth from a robotic total station: 
http://rpg.ifi.uzh.ch/uzh-fpv.html

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA’19
PDF. Video. Datasets.

http://rpg.ifi.uzh.ch/uzh-fpv.html
http://rpg.ifi.uzh.ch/docs/ICRA19_Delmerico.pdf
https://youtu.be/G5w4ZcEzvoo
http://rpg.ifi.uzh.ch/uzh-fpv.html


Feature based (1980-2000)

Accuracy

Efficiency 
(speed and CPU load)

Robustness
(HDR, motion blur, low texture)

Feature + Direct methods (from 2000)

+IMU 

(10x accuracy)

+Event 

Cameras

My Personal View of the last 30 years of Visual Inertial SLAM



Opportunities



Active Exposure Control for Robustness in HDR scenes

37

Standard Built-in Auto-Exposure Our Active Exposure Control

Zhang, et al., Active Exposure Control for Robust Visual Odometry in HDR Environments, ICRA’17. PDF. Video

ORB-SLAM with ORB-SLAM with

http://rpg.ifi.uzh.ch/docs/ICRA17_Zhang.pdf
https://youtu.be/TKJ8vknIXbM


“UltimateSLAM”: Frames + Events + IMU
85% accuracy gain over standard visual-inertial SLAM in HDR and high speed scenes!

Rosinol et al., Ultimate SLAM? IEEE RAL’18 Best Paper Award Honorable Mention PDF. Video. IEEE Spectrum.
Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, IEEE T-RO’18. PDF

http://rpg.ifi.uzh.ch/docs/RAL18_VidalRebecq.pdf
https://youtu.be/0hDGFFJQfmA
http://spectrum.ieee.org/automaton/robotics/drones/drone-with-event-camera-takes-first-autonomous-flight
http://rpg.ifi.uzh.ch/docs/TRO18_Mueggler.pdf


Conclusion

 Current SLAM evaluation
 Many existing metrics, reflecting different aspects of the algorithms
 Evaluation is a non-trivial task: many little details affect the results
 Check out our tutorial and toolbox: 

https://github.com/uzh-rpg/rpg_trajectory_evaluation [Zhang, IROS’18]

 How to push forward SLAM research
 Take robustness into consideration
 Do not stick to a few datasets: use more diverse ones
 Take advantage of photo realistic simulators, but if you do, please share the 

datasets!
 Take the chance to 

- Actively change the parameters of the algorithm to improve robustness
- Work on new sensors (e.g., event cameras)

• Event camera dataset: http://rpg.ifi.uzh.ch/davis_data.html
• MVSEC dataset: https://daniilidis-group.github.io/mvsec/
• UZH-FPV Drone Racing dataset: http://rpg.ifi.uzh.ch/uzh-fpv.html
• Event-camera Simulator (ESIM): https://github.com/uzh-rpg/rpg_esim

https://github.com/uzh-rpg/rpg_trajectory_evaluation
http://rpg.ifi.uzh.ch/davis_data.html
https://daniilidis-group.github.io/mvsec/
http://rpg.ifi.uzh.ch/uzh-fpv.html
https://github.com/uzh-rpg/rpg_esim


Checklist for Reproducible (meaningful) SLAM Results

Running experiments

 What are the crucial parameters (# features, # keyframes, etc.)?
 Does the starting and ending time in the dataset have an obvious impact on the 

results?
 Am I running the experiments in a real-time setup (or processing new measurements 

only when the previous processing is done)?
 Have I ran the algorithm multiple times to have repeatable results/meaningful 

statistics?

Reporting results

Accuracy
 Am I reporting the accuracy of real-time poses or refined poses?
 Absolute error: how is the trajectory aligned with the groundtruth?
 Which frames are evaluated? All the frame or only keyframes?
Efficiency
 What are the experimental platforms?
 What are the exact starting and end point of the processing time?
 Is there any special optimization used that has a big impact?



How should we report results in papers? 

“We used the relative error metrics proposed in [KITTI] to obtain error statistics. The metric 

evaluates the relative error by averaging the drift over trajectory segments of different length {10; 

40; 90; 160; 250; 360 } meter.” [Author names hidden for privacy]

“To obtain a measure of accuracy of the different approaches, we aligned the final trajectory of 

keyframes with the ground-truth trajectory using the least-squares approach proposed in [Umeyama, 

1991]. Since scale cannot be recovered using a single camera, we also rescaled the estimated 

trajectory to best fit with the ground-truth trajectory. Subsequently, we computed the Euclidean 

distance between the estimated and ground-truth keyframe poses and compute the mean, median, and 

Root Mean Square Error (RMSE) in meters.” [Author names hidden for privacy]

“We aligned the estimated trajectory with the groundtruth and calculated the Root Mean Square 

Error (RMSE) to indicate the estimation accuracy.” [Author names hidden for privacy]

 Necessary references and details. 

• What type of alignment was used?
• What method was used for calculate the alignment transformation?

What not to write in a paper:

How to write in a paper:



IROS 2019 FPV VIO Competition



Dataset: UZH-FPV Drone Racing Dataset

• Aggressive motion: First-person view 
(FPV) drone racing quadrotor flown by 
expert pilots.

• Rich sensors: Time-synchronized 
stereo/monocular standard/event 
cameras + inertial measurement units.

Delmerico et al, Are We Ready for Autonomous 
Drone Racing? The UZH-FPV Drone Racing Dataset, 
ICRA2019.

 Why another dataset?

 Existing datasets with ground truth trajectories are slow and not aggressive.

 VIO has become mature and handles non-aggressive situations well.

More difficult/discriminative datasets are necessary to push the state-of-the art.



Dataset: UZH-FPV Drone Racing Dataset

Outdoor Indoor



Comparison with Existing Datasets



The Most Aggressive Drone Dataset

Challenges in the dataset:
• High flight speed
• High optical flow

The dataset contain various sensors (both 
conventional and novel sensors), providing 
different possibilities to deal with these 
challenges.

Highest optical flow



The 1st FPV Drone Racing VIO competition

 6 sequences (no public groundtruth) from the UZH-FPV datasets

Dataset Length Vmax Difficulty

indoor-forward-11 85.68 m 10.32 m/s Easy

indoor-45-3 119.82 m 3.53 m/s Easy

outdoor-forward-9 314.41 m 10.68 m/s Medium

outdoor-forward-10 455.63 m 12.58 m/s Medium

indoor-forward-12 124.07 m 15.28 m/s Hard

indoor-45-16 58.72 m 7.69 m/s Hard

https://github.com/uzh-rpg/IROS2019-FPV-VIO-Competition

https://github.com/uzh-rpg/IROS2019-FPV-VIO-Competition


The Participants

 We received 5 submissions, 3 of which agreed to disclose their 

submission information.

 Patrick Geneva, Robot Perception and Navigation group, University of 

Delaware.

 Thomas Mörwald, Leica Geosystems.

 Vladyslav Usenko, Computer Vision Group, Technical University of 

Munich.

 The reports and links to open source code are publicly available with 

the consent of the participants.



Competition Results

 Evaluation: the relative pose error as in KITTI

 Average relative pose error over sub-trajectory lengths of 40, 60, 80, 

100, 120 meters.

Detailed results available at http://rpg.ifi.uzh.ch/uzh-fpv.html

Ranking Name Sensors
Trans. Error

(%)

Rot. Error

(deg/m)

1 Patrick Geneva
binocular; 

inertial
7.023 0.264

2 Thomas Mörwald
monocular; 

inertial
7.034 0.266

3 Vladyslav Usenko
stereo; 

Inertial
7.778 0.285

4 a-u
stereo; 

inertial
11.869 0.619

5 r-u
stereo; 

inertial
36.048 1.894

http://rpg.ifi.uzh.ch/uzh-fpv.html


The Winner: Patrick Geneva

 OpenVINS (https://github.com/rpng/open_vins)

 Sensors: Binocular

- Stereo matching is not used due to the poor matching performance

 Frontend: Optical flow

- FAST detector

- Lucas-Kanade optical flow (OpenCV implementation)

 Backend: MSCKF

- Siding window of 15 frames

 Loop closing: No

 Hardware/Processing Time

 E3-1505M  @ 3.00GHz: ~ 1.5 x real-time

https://github.com/rpng/open_vins


The Runner-Up: Thomas Mörwald

 Optimization-based VIO

 Sensors: Monocular

 Frontend: Optical flow

- Shi-Tomasi Detector (OpenCV implementation)

- Lucas-Kanade optical flow

 Backend: Fixed-lag optimization (GTSAM iSAM2)

- Sliding window size: 0.5 second (= 15 frames)

 Loop closing: No

 Hardware/Processing Time

 i7-8650U CPU @ 1.9 GHz: ~ 1.3 x real-time

 Most time consuming: Backend optimization > Detection > Optical flow



Conclusion and Outlook
 “Worse” performance than existing datasets

 Best 7 % vs. commonly seen 1 % translation error (e.g., EuRoC)

 None of the participants utilized the event camera.

The UZH-FPV dataset is far from saturated compared to 
existing ones. New algorithms, possibly combined with novel 
sensing modalities, can potentially push the performance.

Easy: OK tracking Hard: erroneous tracking


