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Summary: 
The paper details a machine vision algorithm developed for crop edge detection.  The 
algorithm was developed for an automated harvest application.  The harvester needed 
the location and parameterization of the cut / uncut boundary for guidance.  This paper 
details the development of one portion of the algorithm, an adaptive fuzzy sequential 
linear regression routine.  A sequential linear regression routine was used to parameterize 
the crop edge.  An adaptive fuzzy logic routine evaluated the performance of the 
regression and determined regression convergence.  A second fuzzy routine evaluated 
the resulting regression.  The regression output interfaced into fuzzy vehicle controller.  
The algorithm reduced the required processing by 77.1% versus a fixed region of interest 
and 58.6% versus a peak vertical transition region of interest. 
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INTRODUCTION 
Agriculture has changed significantly since the introduction of the moldboard plow.  
Electronics including yield monitors, hitch controllers and GPS have become 
commonplace on modern agricultural tractors.  Agricultural vehicle guidance has been 
a focus of research since the 1940’s and 50’s (Richey, 1959).  
 
Early agricultural guidance relied on mechanical or electrical control mechanisms.  The 
solutions were limited and ultimately, not widely adopted.  Advances in computing 
technology have allowed increased computational processing on the vehicle.  High 
accuracy posture sensors are now available to accurately provide the position and 
orientation of the vehicle.  Machine vision is an attractive technology for agriculture, 
combining accuracy, speed and relatively low cost in a non-contact form.  For the 
combine guidance project, machine vision was well matched to the limited control 
available on the vehicle.  Machine vision algorithms, however, can be crop and scene 
specific. 
 
One of the keys to a successful machine vision system is to extract the features of interest 
from the image.  Researchers have developed methodologies to extract the features of 
crop rows from an agricultural scene (Reid and Searcy, 1991).  Generally, the algorithms 
previously developed assume that the camera was located above and roughly parallel 
to the camera orientation.  For row crop guidance (for example, cultivation), the vehicle 
is aligned with the rows and the crop is shorter than tractor mounted camera.   
 
The situation changes when the camera is used to guide a combine.  The features of 
interest are no longer multiple crop rows, but the edge between the cut and uncut crop.   
 

The camera locations are dictated by 
practical considerations (Figure 1).  
Head mounted cameras run an 
increased chance of damage and 
require addition winter storage care 
and concerns.  Vehicle mounted 
cameras, in contrast, are less likely to 
be damaged.  A single camera 
mounted above the cab could 
potentially see the entire cutting swath, 
but would force a compromise 
between field of view and resolution.  
Perspective shift would cause 
discrepancies between the indicated 
crop and ground coordinates.  
Hoffman, et al., (1996) developed an 
automated harvester (Demeter) for 
alfalfa and other field crops.  In the 
Demeter project, cameras were 
installed on both sides of the cab.  
Multiple cameras could be installed on 
the side of the combine; the typical 
combine uses several different heads 
during the course of the season.  Each 
time the head with is changed, the 
image sensor would have to be aligned 

 

 
 
Figure 1: Several potential camera 

locations on the combine 
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and calibrated.  While potentially possible, it was not considered feasible to require the 
average farmer to periodically recalibrate the.  Head mounted cameras could be 
positioned to directly see the cut / uncut edge, eliminating the perspective shift.  Since 
the head mounted camera would remain with the head, the camera would not need to 
be recalibrated each time the head was changed.  
 
Due to the difficulties associated with a single top mounted camera, a multiple camera 
approach was investigated.  In the multiple camera system, cameras were installed on 
each end of the head.  The head mounted cameras allowed the camera to directly see 
the cut / uncut crop edge without the perspective shift issues of a high mounted 
camera.  The head-mounted camera, however, sees a drastically different image than 
the top mounted cameras.  A new image processing methodology was required to deal 
with the change in scene parameters.   
 
TYPICAL IMAGES 
A typical image from one of the head 
mounted Cohu 2100 series cameras is 
shown in Figure 2.  The images contain 
several features of interest.  The first 
feature of interest is the cut / uncut 
edge, marked by the letter A.  The goal 
of the algorithm is to accurately 
parameterize the cut / uncut edge.  To 
guide the vehicle, the lateral position of 
the cut / uncut edge needs to be 
controlled.  The second feature of 
interest is the shadowed region (Region 
B).  Many of the images contain 
shadows that obscure the actual cut / 
uncut edge.  Since the goal is to track 
the cut / uncut edge, the stalk and 
leaves (Region C) are not relevant to 
processing.  Most of the images contain 
both ground and sky, as represented 
by line D.  Since the points above the 
line are not relevant for guidance, 
scene knowledge can be used to limit 
the processing region. 
 
 
 
ALGORITHM DESCRIPTION 
A flow chart, shown in Figure 7 in Appendix A, details the basic structure of the combine 
guidance system.  A second flow chart, shown in Figure 8 in Appendix B, shows the 
structure of the adaptive fuzzy crop edge detection algorithm. 
 
The algorithm is designed to extract the guidance signal from a suitable image.  
Secondary objectives included reducing the processing region and maintaining 
sufficient quality for guidance.   
 
Several assumptions were made during the development of the algorithm.  Three major 
assumptions were: a) the wall effect, b) the camera directly viewed the cut / uncut 

 

 
Figure 2: A representative unprocessed 

image from one of the head 
mounted cameras. Features 
of interest include: 
A: Cut / Uncut edge 
B: Shadowed region 
C: Leaves and stalk 
D: Horizon 
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edge and c) the guidance objective was to control the lateral position of the cut / uncut 
edge.  The “wall effect” can be seen in the representative image in Figure 4.  It is not 
possible to see the inside rows from the outside row.  The outermost row acts a wall, 
limiting the image scene.  This creates an image in which only a single row is visible at 
any one time.  In contrast, the typical tractor guidance algorithms utilize information from 
multiple rows to calculate a guidance signal.  The cameras on the head were positioned 
to image the cut / uncut edge.  Directly viewing the cut / uncut edge eliminated 
changes in the apparent ground location due to changed in the crop height.  The third 
assumption influenced the selection of appropriate processing methods. 
 
The algorithm can be split into two portions: a row-based processing loop and a frame 
based processing component.  The algorithm utilizes two fuzzy logic functions to a) 
determine when to stop process and b) to evaluate the image processing results.  The 
algorithm is adaptive, adjusting the segmentation level, one of the fuzzy membership 
functions and the width of the region of interest (ROI) based on conditions.   
 
A goal of the algorithm was to reduce the size of the processed region to a minimum.  
The image was processed on a row-by-row basis from the bottom to the top.  The upper 
portion of a typical harvest images contains sky and stalk, neither of which is relevant for 
determining the location of cut / uncut edge.  A bottom to top processing routine 
processes the more important information first; the image processing can be terminated 
when performance reaches a satisfactory level. 
 
The key steps to the algorithm are image acquisition, extracting the image to memory, 
processing the image on a row-by-row basis, evaluating the quality of the results and 
adapting the width of the ROI for the next frame.  Within the row processing loop, the key 
steps are segmentation, classification, sequential linear regression and fuzzy 
convergence estimation. 
 
Prior experience with the system indicated that the information towards the bottom of 
the image was more relevant than the information at the top of the image.  This 
information was used to develop a fuzzy convergence evaluation scheme that weighted 
the vertical direction.   
 
Experience also showed that the crop images tended to be relatively noisy.  The images 
tended to be relatively similar from frame to frame.  Points that were far away from the 
previous regression line were highly likely to contain noise.  A horizontal weighting formula 
was developed to reduce the impact of outliers. 
 

IMAGE ACQUISITION: 
The algorithm was written to be largely hardware independent, however, the image 
acquisition commands depend on the specific frame grabber used.  An ImageNation 
(Beaverton, CA) PXC-200 frame grabber was used during the course of the project.  The 
native PXC-200 functions were used to initialize the frame grabber and grab the images. 
 
The algorithm was written with the capacity to handle multispectral images, but was 
implemented with monochrome image sources.   
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SEGMENTATION: 
An adaptive clustering algorithm was used to segment and classify the image.  The 
image was segmented into two classes with an adaptive 2-class K-means clustering 
algorithm.  The segmentation algorithm processes a given scan line point by point, 
calculating the RGB distance from each pixel to the mean class level (equation 1).  The 
points are assigned to the class with the minimum RGB distance.  The average class R, G 
and B values are calculated for each class at the end of the row and used to process 
the next row. 
 

( ) ( ) ( )222
cicicici GGBBRRD −+−+−=       (1) 

 
Where i is the pixel index, c is the class index, R is the red channel, B is the blue channel, G is the green channel 
and D is the RGB distance. 

 
After classifying the points in a given scan line as cut or uncut, a heuristic algorithm 
detected the transitions between classes.  A run length encoding algorithm reduced the 
individual transition points into a length (equation 2) and center location (equation 3).  
The run with the longest length for a given scan row and class (cut or uncut) was 
retained for future processing.   The algorithm could be tuned to use either the cut or 
uncut class for processing. 
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Where l is the distance between transitions, x is the column location of the transition, j is the row index and i is an 
index of transitions within the row. 

 

SEQUENTIAL LINEAR REGRESSION: 
A sequential linear regression 
algorithm was used to calculate the 
best-fit line for the transition points.  
The regression was performed on the 
center location of the longest run for 
a given scan line.  In a ‘normal’ linear 
regression, the regression is 
calculated upon completion of the 
image processing.  In a sequential 
linear regression, the regression 
parameters are updated during 
processing.  The regression converges 
to a value; after convergence, 
additional points have little effect on 
the regression.  The covariance matrix 
indicates the amount of scatter in the 
regression.  The covariance, or 
scatter, can be used to determine 
when the regression results have 
satisfactorily converged.  The 
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Figure 3: Various sequential linear 

regression weighting factors. 
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regression can be stopped at any point after convergence with no effect on accuracy.  
 
One of the advantages of the sequential linear regression method was the weighting 
factor.  The weighting factor can be set to unity, weighting all values equally, or can be 
used to bias towards certain results or regions.  For combine guidance, information at the 
top of the image is further away and has less importance for the immediate guidance 
correction.  False transitions, noise and outliers can cause problems for the regression.  
Two weighting formulas were developed for the sequential linear regression.  The first 
weighting formula increased the weight of the points at the bottom of the image 
(Equation 4).  The first formula was somewhat successful, but did not reduce the effect of 
noise.  A second weighting formula was developed (Equation 5) that reduced the 
weight as the distance from the previous regression line increased.  Several different 
weighting factors are shown in Figure 3.  The second weighting formula decreases the 
weight of outliers and significantly improved the performance. 
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Where w is the weight in the regression for a given transition, RowEnd is either the row indices for the peak 
vertical transition or the last processed line from the previous iteration, ImageWidth is the maximum width of the 
image in pixels, Xj is the characteristic point from above, d is the distance in pixels between the expected and 
actual transition, j is the row index, m is the linear regression slope from the previous image and b is the linear 
regression intercept from the previous image. 
 

FUZZY EVALUATION: 
Fuzzy logic has been increasingly 
applied to a wide range of 
problems since introduced by 
Zadeh in 1965.  Unlike Boolean 
logic, fuzzy logic is suited to 
evaluating subjective situations.  
For agriculture, the subjectivity of 
fuzzy logic is particularly 
appealing (Ribeiro, 1999, Wang, 
1996, Zhang and Litchfield, 1991, 
1994).  Field conditions – weather, 
the position and intensity of the 
sun and dust, just to name a few – 
and crop conditions – size, shape, 
weed and pest pressure – 
combine to create a difficult 
situation for conventional 
evaluation methods.  
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Figure 4: The adaptive fuzzy input 

membership function. 
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Fuzzy logic allows a problem to be represented as linguistic variables rather than crisply 
defined values.  Fuzzy logic allows the developer to take advantage of a priori 
knowledge about the system to describe the relationship(s) between the input and 
output.  In fuzzy logic, the range, or universe, of values is represented by U.  A fuzzy set is 
defined in U and characterized by the membership function µF in the range [0, 1].  For 
any two fuzzy sets (S1, S2) in U, three basic operations can be defined: 
 
Intersection: 

)}(),(min{ 2121 uu ssSS µµµ =∩  

Union:  
)}(),(max{ 2121 uu ssSS µµµ =∪  

Complement: 

11 1 ss µµ −=  

 
The fuzzy decision making process is based on a system of rules (rules base) that defines 
the mapping from the input to fuzzy classification and back again.  An example (Figure 
4) of a fuzzy rule would be: 
 
If (Row Location < TransitionEnd) then the fuzzy classification is “Good”. 
 
In the example above, the input is mapped into a single membership function, but in 
actual use, the membership function is typically mapped into portions of two different 
functions (continuing the example above, 0.3 Good and 0.7 Bad).  The membership 
function is represented by the intersection operator shown above. 
 
A similar procedure is used during defuzzification to map from the fuzzy membership 
functions to a crisp value.  Different methods, including center of gravity, have been 
posed for defuzzification. 
 
A generic fuzzy module was developed for the project.  The fuzzy module operated on 
the assumption of independence between parameters.  The fuzzy module membership 
functions could be static or changed during processing.  For programming convenience, 
the fuzzy module was restricted to triangular and trapezoidal membership functions.  The 
module used a center of gravity defuzzification approach. 
 
Fuzzy Convergence Evaluation: 
One of the objectives of the algorithm was to reduce the size of the processed region, 
allowing potential improvements in the processing speed.  Experience with the 
sequential linear regression algorithm showed that the solution would typically converge 
to a result well before the entire image was processed.  Processing additional points 
typically had little effect on the solution.  Each additional scan line processed added a 
significant computational load to the image processing requirements. 
 
The slope and intercept covariance estimates from the sequential linear regression 
indicated the relative amount of scatter in the data.  The covariance, or scatter, 
provided information on the regression convergence.  The minimum acceptable slope 
and intercept covariance were determined from experience with the system. 
 
In addition to the scatter, an additional parameter was the vertical position in the image.  
The fewer the scan lines processed, the faster the algorithm.  The relatively noisy images, 
however, placed a practical limitation on the minimum acceptable processing region.  
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In the interest of algorithm speed, as the size of the processed region increases, it 
becomes increasingly important to terminate processing. 
 
A three-input Fuzzy Convergence Evaluation model was developed for the system.  The 
three inputs were: slope covariance, intercept covariance and row postion.  The 
covariance membership functions were tuned to the system.  The row position 
membership function was adaptive and changed based on size of the processing region 
from the previous frame.  The row position term acted as a vertical weighting factor, 
allowing the importance of various portions of the image to be manipulated.   
 
Each of the three inputs utilized two trapezoidal fuzzy membership functions (Acceptable 
and Unacceptable).  A single output was created using a center of gravity approach 
with two trapezoidal membership functions (Stop or Continue).  The Fuzzy Convergence 
Evaluation module classes are shown in Figure 10 in Appendix C.   
 
The output from the fuzzy linear regression indicated when to stop processing the image.  
A counter was used to eliminate false positives on small data sets.  If the covariances 
and the row index did not meet the predefined quality requirements, then the next line 
of the image was processed.  If the inputs met the desired quality requirements, then the 
row-by-row image processing was halted and processing switched from row processing 
to overall frame processing.  The line index upon convergence was recorded as the 
transition end. 
 
The row location membership function was adaptively tuned.  An external specification 
file provided initial values or values in the event of an error.  The transition end value was 
used to adapt the row index membership functions for the next image.  The row end 
membership functions are shown in Figure 4. 
 
Although fuzzy logic was used to evaluate the regression, a fuzzy linear regression 
methodology was not used.  Fuzzy linear regression is different from the staged sequential 
regression and fuzzy quality analysis methodology implemented. Redden and Woodall 
(1996) note that fuzzy linear regression algorithms can be extremely sensitive to outliers.  
The transition image was characterized by a large number of outliers; a fuzzy linear 
method would be ill suited to the problem at hand. 
 
The row-by-row image processing was halted when the fuzzy linear output indicated that 
the regression had reached predefined quality measures.  Alternatives to the fuzzy linear 
quality module included peak vertical transition or a fixed vertical window position.  The 
peak vertical transition methodology consisted of a ‘voting’ approach.  Each time there 
was a transition between classes in the vertical direction, the value was recorded in a 
histogram.  The row index corresponding to the largest histogram bin was the peak 
vertical transition.  Calculating the histogram required analyzing each pixel in the image.  
The peak vertical transition was then used to restrict subsequent processing.  The peak 
vertical transition method was initially implemented in the system, but was made 
unnecessary by the Fuzzy Convergence Evaluation module. 
 
Fuzzy Quality Evaluation: 
A second fuzzy logic module evaluated the results from the regression.  The module was 
added due to harvest experience.  The cameras were positioned above and to the side 
of the snap rolls.  As the snap rolls grabbed the stalks, stalks would occasionally be forced 
in front of the camera.  Grabbing an image as the stalk passed in front of the camera 
resulted in valid, but unreasonable results. 
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The range of acceptable slopes (0 to 180, with preferred regions within the ranges) and 
intercept (within the image) were defined based on experience with the sytem.  
Experience also indicated that the images remained relatively constant frame to frame.  
Large variations from one frame to the next were most likely due to leaves or other 
obstacles passing in front of the camera.  Since the images tended to be similar frame to 
frame, the results from the previous image could be used in the event of a problem.   
 
A four-input fuzzy logic module was used to evaluate the output from the regression.  The 
four inputs for the Fuzzy Quality Evaluation function were percent change in slope, 
percent change in intercept, processed slope and processed intercept value.  The 
membership functions for the Fuzzy Quality Evaluation are shown in Figure 11 in Appendix 
D.  As in the fuzzy linear quality module, trapezoidal membership functions and the 
center of gravity approach were used.  The single output from the Fuzzy Quality 
Evaluation module indicated whether to accept the regression results or default to the 
result from the previous image. 
 

ADAPTIVE REGION OF INTEREST: 
After completion of the Fuzzy Quality Evaluation module, an adaptive region of interest 
algorithm adjusted the width of the processed region.  In this application, the ideal width 
of the processed region is a trade off between processing time and flexibility.  A smaller 
processing window improves the processing time, at the expense of eliminating 
potentially useful information.  The adaptive region of interest module adjusted the 
horizontal position of the processed region based on the regression results.  The vertical 
size of the processed region was dictated by the Fuzzy Convergence Evaluation module. 
The adaptive region of interest algorithms is not covered in this paper. 
 
PROCEDURE: 
The image processing algorithm 
described above was developed for 
combine harvester guidance.  A 
Case 2188 Axial-Flow combine (Figure 
5) was prepared for guidance use.  
The modifications relevant to the 
image processing included the 
installation of cameras on the sides of 
the Case 1083 8-row corn head and 
above the cab.  Additional 
information on the overall system is 
available in Benson, et al. (2000).  
Several different cameras were used 
during the fall harvest; the cameras 
used for this study were Cohu 2100 
series monochrome cameras 
equipped with 800 nm narrow band 
NIR filters.   
 
Before the season began, several different camera locations were tried.  For harvest, 
however, two camera locations (right and left side of the head) were used.  The camera 
was mounted in an open-ended cage for protection.  The camera underwent both 
translation and rotation as the head was raised and lowered in the field.  The camera 

 

 
 
Figure 5: The Case 2188 Combine 
research platform 
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was located approximately 2 m from 
the ground while harvesting.  The 
camera configuration is shown in Figure 
6. 
 
Initial algorithm development was done 
with video footage recorded during the 
fall 1999 harvest.  The system was 
validated using late season corn.  The 
baseline computer used for processing 
was a 266 MHz or higher Pentium-
compatible computer with an 
ImageNation PXC200 color frame 
grabber.  The image processing 
software was written in C using the 
Microsoft Visual Studio. 
 
Three methods were compared: Full 
image processing, vertical transition 

image reduction and adaptive fuzzy linear regression.  The same image sequence was 
used for all three methods. 
 
The processing methodologies were evaluated by comparing the image processing 
space for the same harvest sequence.  Fifty-one images were processed and the 
relevant statistics were determined.  The image processing was repeated three times for 
approximately the same section of video footage. 
 
RESULTS 
The fuzzy sequential linear regression 
algorithm reduced the size of the 
processed region when compared to 
other methods.  For the image sequence 
analyzed, full image processing required 
processing 476 lines.  Adding the vertical 
transition allowed the processing to be 
reduced from 476 rows to 265.7 rows (σ = 
49.4 rows).  The adaptive fuzzy linear 
regression required 109.4 rows (σ = 40.0 
rows).  The differences between each of 
the three methods were statistically 
significant (Table 1). 
 
A representative processed image is 
shown in Figure 7.  The vertical transition 
line is indicated on the image.  The 
output from the fuzzy linear regression 
quality module was used to stop the 
image processing.  The vertical transition 
line was clearly higher in the image than 
the height required for the regression.  
The additional image height increased 
the required image processing.  From the 

 

Vertical Transition Line 

Class 1 Class 2 

Regression Line 

 
Figure 7: A representative processed 

image 
 

 

 
 
Figure 6: The head mounted cameras 
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image, it can also be seen that less than 50% of the image was processed; a fixed region 
of interest (ROI) would be relatively inefficient. 
 
During validation, the image processing algorithm was used to guide the combine.  The 
algorithm satisfactorily guided the combine through the corn. 
 
Table 1: Paired z-test for unequal mean and variance 
Z Value Fixed Peak Vertical Adaptive 
Fixed  -52.70 -113.34 
Peak Vertical -52.70  -30.42 
 
CONCLUSIONS 
A machine vision algorithm was developed to determine the parameterization of a row 
of corn.  The algorithm used sequential linear regression linked to a pair of fuzzy logic 
modules to determine the processing requirements and to improve the quality.  The 
algorithm was evaluated using video recorded during harvest and validated in late 
season corn.  The algorithm was compared to a fixed and a peak vertical transition 
height region of interest methods.  The algorithm reduced the processing requirements 
by 77.2% and 58.6% respectively. 
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Appendix A: Overall system flow chart 

 
Appendix B: Algorithm flow chart 

 

 
 

 
 

Figure 8: Overall System Flow Chart 
 

 
 

 
 

Figure 9: Algorithm Flow Chart 
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Appendix C: Fuzzy Convergence Evaluation membership functions 
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Figure 10: Top: Slope input membership function 
Upper Middle: Intercept membership function 
Lower Middle: Row index membership function 
Bottom: Output membership function 
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Appendix D: Fuzzy Quality Evaluation membership functions 
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Figure 11: Top Left: Percent change in slope input membership function 
Top Right: Percent change in intercept input membership function 
Middle Left: Processed slope input membership function 
Middle Right: Processed intercept input membership function 
Bottom: Output membership function 
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