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Abstract: A variety of real-world levee underseepage problems can best be modeled using an axisymmetric analysis
approach. In current practice, axisymmetric levee underseepage analyses are performed using numerical modeling
approaches, such as the FEM. In contrast, levee underseepage analyses of planar cross sections are often analyzed using
a blanket theory analytical approach, which is quicker and more convenient than numerical modeling. To address this
problem, this paper provides a derivation of a series of closed-form blanket theory analytical equations that can be used to
perform an axisymmetric levee underseepage analysis. This derivation begins from the governing equation of semiconfined
fluid flow beneath a levee in a shallow semiconfined aquifer. The equations that result from this derivation can be used
to calculate the total head in the pervious foundation layer and the seepage quantity that passes through the levee
foundation over time. Different equations are presented for different seepage directions relative to the axis of rotation
and different model boundary conditions. A typical example problem is used to compare results from the axisymmetric
analytical equations that are derived with those from axisymmetric finite-element analyses. For this example problem,
the analytical equations yield results that are equal to or more conservative than those from the finite-element analysis,
where conservative results correspond to greater seepage under the levee and higher heads at the levee toe.
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1 Introduction

When protecting low-lying areas from flooding, it is com-
mon practice to encircle the at-risk region with a flood
protection embankment, which is commonly referred to as
a ring dike or ring levee (e.g., FEMA 2003; Trimbath 2006;
Jonkman et al. 2008). In a similar fashion, approximately
circular levee-type embankment containment systems are
often constructed at the ground surface to create an area
for fluid impoundment during the construction of storm
water/wastewater retention ponds or drinking/irrigation
water retention facilities (e.g., Wooding 1968; Weir 1987;
Haman et al. 1991). Circular embankment fluid contain-
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ment facilities are also often constructed to contain the
highly fluidic spoils that result from marine dredging or the
tailings that result from a variety of industrial or mining-
related processes (e.g., Bouwer 1982; Ormann et al. 2011;
Brixel et al. 2012).

When constructing these facilities, it is of paramount
importance to check the overall stability of the embank-
ment to ensure that catastrophic failure does not occur
[e.g., Foster et al. 2000; U.S. Army COE (USACE) 2000;
Van et al. 2005]. It is also important to assess the quantity
of seepage that will pass through and/or beneath the em-
bankment over time, assuming steady-state seepage con-
ditions corresponding to the maximum level of differen-
tial fluid head that is expected from one side of the em-
bankment barrier to the other, which is a worst-case seep-
age scenario (Turnbull and Mansur 1961; USACE 2000,
2005). Proper determination of the steady-state seepage
flow regime is also important for assessing the pore pres-
sures and seepage gradients in the embankment and foun-
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dation soils to ensure that uplift, erosion, and piping are
not a problem for the embankment that has been con-
structed (Van Zyl and Harr 1981; McCook 2007).

Through proper design, it is fairly easy to construct an
embankment that is relatively impermeable in comparison
with the foundation soils at a given site. In this situa-
tion, seepage through the foundation soils will control the
overall seepage behavior of the containment system. For
long straight levee stretches, planar cross-section analyses
are typically performed to model the seepage that occurs
through the levee foundation (e.g., USACE 2000). How-
ever, for the seepage beneath a circular levee system, an
axisymmetric modeling approach provides a more accurate
model of the seepage that is occurring (Strack 1989). Ax-
isymmetric modeling of the seepage that occurs beneath
a circular levee system can be performed using numeri-
cal modeling approaches, such as finite-element or finite-
difference analyses (e.g., Tracy 1973; Inci 2008). How-
ever, an equivalent closed-form analytical approach for
axisymmetric seepage modeling does not currently exist.
This is unfortunate because many engineers in practice
in the United States are currently using closed-form an-
alytical approaches for seepage analysis of planar levee
cross sections (e.g., USACE 2000) and are quite comfort-
able with this analysis framework. Closed-form analyti-
cal approaches also offer significant advantages over nu-
merical modeling tools for probabilistic modeling because
the coupling of numerical modeling tools with repetitive-
calculation approaches such as Monte Carlo simulation can
be somewhat computationally expensive (e.g., Pula and
Bauer 2007).

This paper provides a derivation of a series of closed-
form blanket theory analytical equations that can be used
to perform an axisymmetric levee underseepage analy-
sis. This derivation begins from the governing equation
of semiconfined fluid flow beneath a levee in a shallow
semiconfined aquifer. The equations that result from this
derivation can be used to calculate the total head in the
pervious foundation layer and the seepage quantity that
passes through the levee foundation over time. Different
equations are presented for different seepage directions rel-
ative to the axis of rotation and different model boundary
conditions. A typical example problem is used to compare
results from the axisymmetric analytical equations that
are derived with those from axisymmetric finite-element
analyses.

2 Semiconfined Groundwater Flow:
Cartesian Coordinate System (Planar
Seepage)

Meehan and Benjasupattananan (2012) provide a detailed
discussion for the rationale behind using a closed-form
blanket theory analytical approach to model planar seep-
age behavior in the foundation soil beneath levees. This
type of analytical approach for modeling levee underseep-
age has a long history of use by the USACE (USACE
1956a, b, 2000; Turnbull and Mansur 1961) and other pri-
vate engineering firms in the United States. It is widely
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Fig. 1: Seepage in a semiconfined aquifer described by a Carte-
sian coordinate system: (a) subsurface seepage between soil
confining layers; (b) continuity of seepage in an element of
a confined aquifer (A. Verruijt, Theory of Groundwater Flow,
published 1970 Macmillan reproduced with permission of Pal-
grave Macmillan).

accepted as a reasonable levee underseepage analysis tool,
given the many uncertainties that are typically present
when characterizing seepage model input parameters for
levee analysis.

Typical blanket-theory analytical models assume that
the flow of seepage beneath a levee can be characterized
as shallow semiconfined groundwater flow in an aquifer.
As used here, the term confined flow applies to the field
case where leakage through subsurface soil-confining beds
is negligibly small [Fig. 1(a)]. If the leakage through the
confining beds is significant enough that it cannot be ne-
glected, the aquifer is considered to be semiconfined. The
term shallow semiconfined flow is used whenever an aquifer
is sufficiently shallow such that the resistance to flow in the
vertical direction may be neglected (Strack 1989).
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When modeling seepage in a semiconfined aquifer us-
ing a Cartesian coordinate system characterized by x, y,
z-coordinates [Fig. 1(b)], existing analytical models typi-
cally assume (1) that the permeable foundation layer is
of constant thickness, d, and (2) that vertical velocities in
the permeable foundation layer (vz) are small compared
with the horizontal velocities (vx, vy) (Meehan and Benja-
supattananan 2012). The second assumption is important
in the derivation because it indicates that the change in
head along the thickness of the permeable layer (∂h/∂z)
will be relatively small compared with the change in head
that occurs in the other spatial directions throughout the
aquifer (∂h/∂x, ∂h/∂y). Following this assumption and
utilizing Darcy’s law and Laplace’s equation, the govern-
ing differential equation of fluid flow throughout a shallow
semiconfined aquifer in a Cartesian coordinate system can
be derived to be (Meehan and Benjasupattananan 2012;
Benjasupattananan 2013)

kfd

(
∂2h

∂x2
+
∂2h

∂y2

)
=

(
k1 (h− h1)

z1

)
+

(
k2 (h− h2)

z2

)
(1)

where h = total head in the pervious foundation layer (the
semiconfined aquifer); kf = horizontal hydraulic conduc-
tivity of the pervious foundation layer in units of length
per time; d = thickness of the pervious foundation layer;
k1 and k2 = vertical hydraulic conductivities of the upper
and lower confining layers, respectively; h1 = total head
in the layer above confining layer 1; h2 = total head in
the layer below confining layer 2; and z1 and z2 = thick-
nesses of the upper and lower confining layers, respectively
[Fig. 1(b)].

For modeling planar seepage beneath a uniform levee
cross section that has an impermeable base layer, i.e., the
type of seepage modeling that is typically performed using
the USACE (2000) approach, Eq. (1) can be simplified to
(Meehan and Benjasupattananan 2012)

d2h

dx2
=
k1 (h− h1)

z1kfd
=
h− h1
λ2

(2)

where the leakage factor, λ, is defined as

λ =

√
z1kfd

k1
(3)

Beneath the levee itself, where no leakage is occurring,
Eq. (2) simplifies to d2h/dx2 = 0. Meehan and Benjasu-
pattananan (2012) solve the associated differential equa-
tions for head beneath a planar (uniform) levee cross sec-
tion for different model boundary condition combinations
that are commonly encountered during levee underseep-
age modeling. The closed-form equations that result from
this solution process can be used to define the head in
the foundation layer on the riverside of a levee, beneath
the levee itself, and on the landside of a levee. Meehan
and Benjasupattananan (2012) also present equations for

determining the quantity of seepage that passes beneath a
levee over time for the different boundary condition combi-
nations that are commonly utilized for levee underseepage
modeling.

3 Semiconfined Groundwater Flow:
Cylindrical Coordinate System
(Axisymmetric Seepage)

As noted in the introduction, the current paper is focused
on the development of closed-form analytical solutions that
can be used for axisymmetric modeling of levee underseep-
age. The general assumptions that are made during the
derivation that is summarized in this paper are the same
as those that are made by Meehan and Benjasupattananan
(2012) during the derivation of a similar set of planar flow
equations, in particular, that the seepage in the levee foun-
dation can be reasonably characterized as shallow semicon-
fined flow. These assumptions are also the same as those
that are made in the derivation of the USACE (2000) levee
underseepage analysis approach (Bennett 1946).

Following these assumptions, it is possible to transform
the governing equation of seepage [Eq. (1)] for a Cartesian
coordinate system (x, y, and z, as shown in Fig. 1) to a
cylindrical polar coordinate system (r, θ, and z, as shown
in Fig. 2) that is more appropriate for use in axisymmetric
analyses. The general mathematics that is involved in this
sort of transformation is fairly straightforward and well
accepted (e.g., Kreyszig 2010). For brevity, minor alge-
braic substitution and chain rule steps in this derivation
are omitted here; interested readers are referred to Benja-
supattananan (2013). The governing equation of shallow
semiconfined flow that results from this process for the el-
ement shown in Fig. 2(b) is

kfd

(
∂2h

∂r2
+

1

r

∂h

∂r
+
∂2h

∂θ2

)
=

(
k1 (h− h1)

z1

)
+ ...

...

(
k2 (h− h2)

z2

)
(4)

In a similar fashion as for the Cartesian underseepage
model described in the previous section, Eq. (4) assumes
(1) that the permeable foundation layer is of constant
thickness, d, and (2) that vertical velocities in the per-
meable foundation layer (vz) are small compared with the
radial and angular velocities (vr, vθ).

For typical levee underseepage analyses, the base of the
foundation layer is assumed to be relatively impermeable,
which means that k2 = 0. For axisymmetric flow condi-
tions, there will be no variation in head in the θ-direction,
and thus the seepage in the foundation layer will only be
occurring in the radial (r) direction. Following these as-
sumptions, the governing equation for axisymmetric shal-
low semiconfined seepage reduces to

d2h

dr2
+

1

r

dh

dr
=

(
k1 (h− h1)

z1kfd

)
=
h− h1
λ2

(5)
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Fig. 2: Seepage in a semiconfined aquifer described by a cylin-
drical coordinate system: (a) subsurface seepage between soil
confining layers; (b) continuity of seepage in an element of a
confined aquifer.

The general similarity between Eqs. (1) and (4) and be-
tween Eqs. (2) and (5) can be readily observed. The addi-
tional term in Eq. (5) makes the solution to the differential
equation that governs two-dimensional (2D) axisymmetric
seepage beneath levees more complex than the solution for
2D planar seepage.

4 Defining the Problem Geometry

Fig. 3(a) shows a plan view schematic of an axisymmetric
levee system. For axisymmetric levee systems that are be-
ing designed to protect an area from flooding, the radial
seepage pattern that occurs is from the outside of the bar-
rier to the inside, as shown in Fig. 3(b). For axisymmetric
levee systems that are being used for fluid impoundment,

the radial seepage pattern that occurs is from the inside
of the barrier to the outside, as shown in Fig. 3(c). The
two different levee configurations defined by these two di-
rections of seepage relative to the axis of rotation will be
referred to as the convex and concave levee configurations,
respectively.
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Fig. 3: Schematic view for axisymmetric levee underseepage
(not to scale): (a) plan view of an axisymmetric levee system;
(b) axisymmetric seepage from the outside of the levee to the
inside (section A-A, convex levee configuration); (c) axisymmet-
ric seepage from the inside of the levee to the outside (section
A-A, concave levee configuration).

To solve Eq. (5), a reference coordinate system must
be established; for the equations that are derived here,
the radial distance r is measured from the axis of rota-
tion (Fig. 4). For the convex and concave seepage patterns
shown in Fig. 3, it is necessary to divide the levee foun-
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dation into three distinct zones that each have a different
pattern of leakage through the semipervious blanket: (1)
Zone 1 on the side of the levee where water is being retained
and where water is infiltrating through the semipervious
blanket layer into the more pervious foundation layer; (2)
Zone 2 beneath the levee where there is no leakage oc-
curring into or out of the foundation layer through the
overlying levee; and (3) Zone 3 on the dry side of the levee
where water is flowing out of the pervious foundation layer
through the semipervious blanket. Figs. 4(a and b) show
these three foundation zones for convex and concave levee
configurations, respectively.

Fig. 4 also shows the other input variables that are
needed to determine the total fluid head in the pervious
foundation layer (h); as can be observed, radial dimensions
of interest (r, L0, L1, L2, and L3) are measured from the
axis of rotation. The values of head in the pervious foun-
dation at the outer boundaries of the analysis (hA, hD)
and the values of head in the pervious foundation at ei-
ther toe of the levee (hB , hC) can be measured from any
consistent reference datum; for simplicity, the imperme-

able base layer is used here. To be consistent with typical
levee parlance, the upper semipermeable confining layer in
the foundation is referred to as the semipervious blanket,
which has a thickness of zb = z1 and a vertical hydraulic
conductivity of kb = k1. Consequently, the corresponding
values of λ needed in the analyses may be calculated using
the equation λ =

√
zbkfd/kb.

For a given axisymmetric levee underseepage problem,
it is also necessary to define the inner- and outer-radius
boundary conditions that will govern the seepage behavior.
As shown on the left and right side of the idealized cross
section in Fig. 4, two boundary conditions are commonly
used in levee underseepage analyses, a no-flow condition at
the boundary, which is commonly referred to as a seepage
block, or an applied head condition at the boundary, which
is commonly referred to as a seepage opening (USACE
2000; Meehan and Benjasupattananan 2012).
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5 Solving the Governing Differential
Equations for Axisymmetric Levee
Underseepage

In Zone 1, leakage is occurring into the pervious founda-
tion layer, and in Zone 3, leakage is occurring out of the
pervious foundation layer. In both of these zones, the total
fluid head in the pervious foundation layer can be deter-
mined by solving Eq. (5). In Zone 2, because no leakage is
occurring into or out of the pervious foundation layer, the
governing equation for the seepage reduces to

d2h

dr2
+

1

r

dh

dr
= 0 (6)

This equation is a second-order ordinary differential equa-
tion, and its solution has the following functional form:

h = C1 ln r + C2 (7)

where C1 and C2 = unknown constants that are deter-
mined when the specific boundary conditions are applied.

In Zones 1 and 3, where leakage is occurring, the gov-
erning differential equation is a second-order ordinary dif-
ferential equation with a nonconstant coefficient. In this
case, the general solution cannot be determined using a
simple mathematical expression, and a power series expan-
sion approach can be utilized to solve the equation. For
this particular approach, variable substitution allows the
functional form of the governing equation [Eq. (5)] to be
transformed to a functional form that can be solved using
modified Bessel functions (e.g., Watson 1922; Abramowitz
and Stegun 1964)

d2S

dX2
+

1

X

dS

dX
= S (8)

where S = drawdown = h1 − h; and X = r/λ.
Assuming that h1 is a constant, which is typical for

levee applications, and using a modified Bessel function
approach, the solution to Eq. (8) has the following func-
tional form:

S = C3I0(X) + C4K0(X) (9)

where C3 and C4 = unknown constants that are deter-
mined when the specific boundary conditions are applied;
and I0 and K0 = zero-order modified Bessel functions of
X of the first and second kind, respectively. Using substi-
tution, Eq. (9) can also be written as

h = h1 − C3I0(r/λ) − C4K0(r/λ) (10)

Boundary conditions for Zones 1-3 can then be applied,
which allows the preceding differential equation solutions
[Eqs. (7) and (10)] to be solved separately for each zone to
yield an equation for the head beneath the blanket layer

(hr) as a function of radial distance (r) from the axis of
rotation, as shown in Fig. 4. As noted previously, two anal-
ysis boundary conditions are common in levee underseep-
age analyses, a no-flow condition at the boundary (e.g.,
dh/dr = 0), which is commonly referred to as a seepage
block or an applied head condition at the boundary (e.g.,
h = known head value), which is commonly referred to as
a seepage opening (Fig. 4). These two boundary conditions
are the same as those that are used for analysis of planar
cross sections in the USACE levee underseepage analysis
approach (i.e., Cases 7b and 7c; USACE 2000).

Tables 1 and 2 provide the resulting differential equa-
tion solutions for Zones 1-3, for convex and concave levee
configurations, respectively. These solutions allow for the
calculation of the total fluid head in the pervious founda-
tion as a function of distance from the axis of rotation. As
shown in Tables 1 and 2, the equations that should be used
in Zones 1 and 3 are different, depending upon whether
a seepage block or seepage opening boundary condition
is present on the outermost boundary of each zone. For
interested readers, Benjasupattananan (2013) provides a
detailed step-by-step derivation of the equations shown in
Tables 1 and 2; for brevity, the minor algebraic steps that
are utilized during the solution process are omitted here.

In Tables 1 and 2, I0 and K0 are zero-order modified
Bessel functions of the first and second kind, respectively,
and I1 and K1 are first-order modified Bessel functions
of the first and second kind, respectively. These modi-
fied Bessel functions are power expansions, and they can
be easily utilized with built-in functions that are readily
available in typical engineering software such as Microsoft
Excel or MATLAB 7.12.

For a specific levee underseepage problem, the position
of the head line in any one of the three foundation zones is
affected by the seepage behavior in the other two founda-
tion zones. To include this effect in the analytical solution,
seepage continuity needs to be applied at the interface be-
tween each zone. Specifically, the seepage through Zone 1
has to be equal to the seepage through Zone 2, and the
seepage through Zone 2 has to be equal to the seepage
through Zone 3. By applying seepage continuity in this
fashion, intermediate values of head at the interior zone
boundaries (hB and hC) can be determined; in this ap-
proach, the two equations of continuity are used to solve
for the values of the two unknowns (Benjasupattananan
2013). The equations for hB and hC that result from this
process are

hB =
(A+ 1)BhA +AhD
A+ (A+ 1)B

(11)

hC = (B + 1)hB −BhA (12)

where the coefficients A and B are determined using the
equations provided in Tables 3 and 4 for convex and con-
cave levee geometries, respectively. As shown in Tables 3
and 4, there are four possible combinations of boundary
conditions that may be selected during this process, each
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Fig. 5: Simple levee underseepage case (not to scale).

of which yield different coefficients for use in Eqs. (11) and
(12): (1) Zone 1 seepage block and Zone 3 seepage block;
(2) Zone 1 seepage opening and Zone 3 seepage block; (3)
Zone 1 seepage block and Zone 3 seepage opening; and (4)
Zone 1 seepage opening and Zone 3 seepage opening.

For design purposes, the total head beneath the
semipervious blanket layer at the landside levee toe is equal
to hC . For the datum that is used in the derivation, the
net pressure head across the semipervious blanket layer at
the landside levee toe (htoe) can be calculated using the
equation

htoe = hC − hD (13)

For a convex levee configuration, the total quantity of seep-
age (Q) passing through the foundation layer for a unit arc
levee (L3/T/radian) can be calculated using the equation

Q/radian = kfd

(
hB − hC

ln (L2/L1)

)
(14)

In a similar fashion, for a concave levee configuration, the
total quantity of seepage (Q) passing through the founda-
tion layer for a unit arc levee can be calculated using the
equation

Q/radian = kfd

(
hC − hB

ln (L1/L2)

)
(15)

6 Simple Levee Underseepage Case

To illustrate how the analytical solutions that are de-
scribed in the previous sections work, it is instructive to
examine the behavior of a simple axisymmetric levee sys-
tem (Fig. 5) that is being used to either (1) protect an area
from flooding or (2) impound water. As shown, a homoge-
neous, impermeable axisymmetric levee, 10 m high, with
a 6-m-wide crest and 2.5:1 side slopes, is constructed on

top of a two-layer foundation. The foundation consists of a
long, finite-length semipervious blanket that is 2 m thick,
which overlies a more pervious foundation layer that has
a thickness of 32 m. At the design flood level, the levee
is intended to either hold back 8 m of water (convex levee
configuration) or impound 8 m of water (concave levee con-
figuration). For this example, a relatively high hydraulic
conductivity of 10−1 cm/s was selected for the foundation
soil (kf = 10−1 cm/s), and the hydraulic conductivity of
the blanket layer soil (kb) was varied parametrically from
10−9 to 10−1 cm/s (a range of low to high permeabilities).
Also explored in the analysis is the effect of the lateral
boundary conditions on the model results. As noted pre-
viously, four boundary condition combinations are possi-
ble, and the analyses that were performed consequently
examined each combination.

6.1 Axisymmetric Levee Underseepage Analysis
Using the Analytical Method

This section utilizes the analytical equations that are de-
rived in this paper to determine the levee underseepage
behavior for the example problem that is shown in Fig. 5.
Fig. 6 shows two critical design parameters of interest that
result from the axisymmetric analytical analyses that were
performed for this example problem: the net pressure head
across the semipervious blanket layer at the landside levee
toe (htoe) and the normalized quantity of seepage (Q) that
passes through the levee foundation per unit time. Results
are presented for a convex levee configuration [Fig. 6(a)]
and a concave levee configuration [Fig. 6(b)], and for vary-
ing blanket permeabilities and boundary condition combi-
nations. Note that the different values of λ that are shown
correspond to the different values of kb that were analyzed.
Also shown on these figures are the results from the ax-
isymmetric finite-element analyses that are described in
the following section for comparison purposes.

As shown in Fig. 6, as the hydraulic conductivity of the
semipervious blanket changes, as shown by the changing
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Fig. 6: Comparison of results from the analytical equations that are presented in this paper and finite-element analysis for seepage
block and seepage opening boundary conditions; results are presented for the net pressure head beneath the blanket layer at the
landside levee toe and the normalized quantity of seepage that passes through the levee foundation per unit time for varying blanket
permeabilities: (a) convex levee configuration; (b) concave levee configuration.

values of λ along the x-axis of the figure, the net pressure
head beneath the blanket layer at the landside levee toe
and the normalized quantity of seepage that passes through
the levee foundation per unit time changes. This is not a
surprising observation because the blanket hydraulic con-
ductivity controls the rate at which leakage occurs into
and out of the pervious foundation layer, all other input
parameters being equal.

Also as shown in Fig. 6, for semipervious blanket layers
that are relatively permeable (the lower values of λ that are
shown), the boundary conditions that are selected tend to
not have a significant effect on the results because a large
portion of the buildup and dissipation of excess hydraulic
head is occurring due to vertical flow near the levee toes
rather than horizontal flow to and from the model bound-
aries. However, for semipervious blanket layers that are
relatively impermeable, the boundary conditions that are
selected have a very significant effect on the results. As
shown in Fig. 6, if one focuses on the net pressure head
at the landside levee toe (htoe) and the seepage quantity
through the levee foundation (Q) as the design parameters

of interest for this example problem, then the boundary
conditions begin to have an effect at blanket permeabili-
ties less than 10−3 cm/s or so (at λ values greater than
80). At blanket permeabilities less than 6 × 10−6 cm/s
or so (at λ values greater than 1,000), the curves for net
pressure head at the levee toe and quantity of seepage in
the levee foundation per unit time begin to level off, in-
dicating that the blanket layer is relatively impermeable
at this point. This behavior is generally consistent with
observations that have been made by Meehan and Benja-
supattananan (2012).

6.2 Axisymmetric Levee Underseepage Analysis
Using the FEM

To validate the closed-form analytical solutions that are
presented in this paper, a series of axisymmetric steady-
state levee underseepage analyses was performed using the
FEM. For simplicity, these simulations were conducted
in parallel for the simple axisymmetric levee case that
is shown in Fig. 5 for both the convex and concave pat-
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Fig. 7: Axisymmetric levee underseepage analysis using the FEM: (a) analysis mesh and boundary condition setup for a convex
levee with seepage block-block boundary conditions; (b) analysis mesh and boundary condition setup for a concave levee with seepage
open-open boundary conditions (levee shown for schematic purposes only, not included in the finite-element seepage model).

terns of seepage that were examined using the analytical
equations. For purposes of analysis, the commercial finite-
element code SEEP2D (Aquaveo 2009) was utilized.

Fig. 7(a) shows a typical analysis mesh and boundary
condition setup for the example problem that was simu-
lated for a convex levee geometry and for seepage block
boundary conditions on both sides of the problem (block-
block). Fig. 7(b) shows a typical analysis mesh and bound-
ary condition setup for a concave levee geometry and for
seepage opening boundary conditions on both sides of the
problem (open-open). As shown in both of these figures,
quadrilateral four-node elements were utilized in the finite-
element analyses, with different material properties being
assigned for the semipervious blanket and pervious foun-
dation layer, respectively.

As shown in Fig. 7, for all of the simulations that were
performed, a constant-head boundary condition was uti-
lized for the seepage infiltration and exfiltration areas
along the upper boundary of the mesh, with different val-
ues of head being applied for the elements on either side
of the levee. The difference between these two head values
drives the direction of flow relative to the axis of rota-
tion, which determines if a convex or a concave seepage
problem is being simulated. To be consistent with the an-
alytical approach, the inside mesh boundary was set to be
40 m away from the axis of rotation in the finite-element

model (Fig. 7). The levee itself and the portion of the
blanket layer immediately beneath it were considered im-
permeable in the analyses (no flow), and are consequently
not part of the analysis mesh; this is consistent with the
assumptions that were made during the analytical equa-
tion derivation. Along the lower boundary of the mesh
(the impermeable base layer), a no-flow boundary condi-
tion was applied. At the left- and right-most boundaries,
the boundary condition was set to be either a no-flow
boundary or a constant-head boundary, depending upon
the type of problem that was being modeled. To be con-
sistent with the analytical problems that were simulated,
four left- and right-side boundary condition combinations
were examined using finite-element analysis.

Fig. 6 shows the htoe and normalized Q values that re-
sult from the finite-element analyses that were performed.
In this figure, finite-element analysis results are presented
alongside the corresponding analytical model results for a
convex levee configuration [Fig. 6(a)] and a concave levee
configuration [Fig. 6(b)], for varying blanket permeabili-
ties and boundary condition combinations. As shown in
Fig. 6, the results between the analytical equations and
the FEM are in exact agreement with each other at values
of λ greater than 80 (at blanket hydraulic conductivities
less than 10−3 cm/s). At values of λ less than 80, the re-
sults predicted by the two analysis methods are still fairly
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Fig. 8: Axisymmetric levee underseepage finite-element results: (a) contours of head in the foundation layer for a high permeability
(low λ) blanket (convex levee, open-open boundary conditions); (b) contours of head in the foundation layer for a low permeability
(high λ) blanket (convex levee, open-open boundary conditions).

close together; however, the analytical model results tend
to diverge from those predicted by the FEM, with a larger
difference being observed at smaller values of λ (higher
blanket hydraulic conductivities).

The difference in results between these two analysis ap-
proaches that was observed at lower values of λ is caused by
an assumption that is made in the derivation of the axisym-
metric blanket theory equations: that vertical velocities in
the permeable foundation layer (vz) are small compared
with the radial velocities (vr). This assumption has an im-
portant effect in the derivation, and it is only reasonable
for cases where the change in head along the thickness of
the permeable layer (∂h/∂z) is relatively small compared
with the change in head that occurs in the radial direction
(∂h/∂r). For highly permeable blankets that do not signif-
icantly restrict flow into or out of the pervious foundation
layer (i.e., low λ blankets), one-dimensional flow behav-
ior is not a realistic assumption [Fig. 8(a)]. However, for
more semipermeable blankets that do exhibit some flow
restriction (i.e., high λ blankets), the assumption of one-
dimensional flow is quite reasonable [Fig. 8(b)].

In any case, the analytical equations presented in this
paper yield results that are equal to or more conservative
than those from the finite-element analyses. The results
shown in Fig. 6 support this observation; if any divergence
in model results does occur, the analytical results yield
higher values of htoe and Q for both the convex and con-
cave levee configurations over all of the values of λ that
were analyzed (i.e., 101 ≤ λ ≤ 105). This makes the blan-
ket theory assumption that was used in the derivation of

the axisymmetric levee underseepage equations a reason-
able one for most axisymmetric levee problems, an obser-
vation which is consistent with the widely accepted use
of blanket theory analysis for planar levee sections in the
United States (e.g., USACE 2000).

The general usefulness of the equations that are pre-
sented herein is only limited by the assumptions that are
used in their derivation, in particular, the need for con-
stant layer thicknesses and simplified geometry. In situa-
tions where the foundation layer thickness and/or blanket
thickness are not fairly consistent, the use of the proposed
equations will not produce results that are as reliable as
finite-element analyses that take into account the nature
of the varying geology. Simplified blanket-theory equa-
tions of the type that are derived herein also do not work
well for certain multilayer geologies that cannot be reason-
ably represented using a two-layer system (e.g., Gabr et
al. 1996); finite-element analyses or the three-layer model-
ing approach suggested by Gabr et al. (1996) are recom-
mended in this situation.

7 Summary and Conclusions

This paper provides a derivation of a series of closed-
form blanket theory analytical equations that can be used
to perform an axisymmetric levee underseepage analysis.
This derivation assumes that a given axisymmetric levee
problem can be generalized using a simplified two-layer ge-
ometry, where a lower permeability blanket layer overlies
a more pervious foundation layer through which seepage
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occurs. For more complex geologies, USACE (2000) pro-
vides equations for transforming multilayer systems into an
equivalent two-layer system that can be used in conjunc-
tion with the equations that are presented herein. Within
the defined two-layer system, the flow in the pervious foun-
dation layer is assumed to be analogous to the seepage that
occurs in a shallow semiconfined aquifer, where the flow is
predominantly horizontal in the pervious foundation layer,
with some fluid infiltration and exfiltration occurring due
to the effect of leakage through the semipervious blanket.

The equations that result from the derivation can be
used to calculate the total head in the pervious foundation
layer and the seepage quantity that passes through the
levee foundation over time. For demonstration purposes,
a simple axisymmetric levee example problem is analyzed
using these equations. For the given levee cross section,
convex and concave patterns of seepage are analyzed for
varying blanket permeabilities for each of the four possible
boundary condition combinations that can occur. Side-
by-side axisymmetric finite-element analyses are also per-
formed for each of the different cases that were assessed
using the analytical equations. From these analyses, the
following observations can be made:

1. For the given example problem, the analytical equa-
tions in this paper yield results that are equal to or
more conservative than those from the finite-element
analysis, where conservative results correspond to
greater seepage under the levee and higher heads at
the levee toe. This observation supports the use of
a blanket theory approach for axisymmetric analysis
of levee underseepage, a conclusion that is consistent
with the use of blanket theory analytical methods for
underseepage analyses of planar cross sections (US-
ACE 2000).

2. For the example problem, the results predicted by the
analytical method are the same as those predicted by
the FEM at values of λ greater than 80. At values
of λ less than 80, some divergence between the re-
sults begins to occur due to the assumption that only
horizontal flow can occur in the pervious foundation
layer.

3. For the example problem, the effect of the assumed
boundary conditions becomes apparent at values of λ
greater than 80. At λ values greater than 1,000 or so,
the curves for net pressure head at the levee toe and
quantity of seepage in the levee foundation per unit
time begin to level off, indicating that the blanket
layer is relatively impermeable at this point.

The analytical equations that are presented in this pa-
per provide engineers with a practical tool for perform-
ing axisymmetric levee underseepage analyses. They can
be easily coded into a spreadsheet or other type of com-
puter program for day-to-day analysis purposes. Given
their relative computational efficiency, they are particu-
larly well-suited for reliability analyses, especially for prob-
lems that require computationally expensive Monte Carlo
simulations. They also have the potential for use in evalu-
ating the three-dimensional effects of river bends on levee
underseepage, as described by Benjasupattananan (2013).
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Notation

The following symbols are used in this paper:

A = coefficient whose value is determined using the
analytical solution process;

B = coefficient whose value is determined using the
analytical solution process;

C1 = unknown constant that is solved for when the
analysis boundary conditions are known;

C2 = unknown constant that is solved for when the
analysis boundary conditions are known;

C3 = unknown constant that is solved for when the
analysis boundary conditions are known;

C4 = unknown constant that is solved for when the
analysis boundary conditions are known;

d = thickness of the pervious foundation layer (the
semiconfined aquifer);

H = net head on levee;
h = total head in the pervious foundation layer

(the semiconfined aquifer);
hA = total head in the pervious foundation at the

outermost boundary of Zone 1;
hB = total head in the pervious foundation at the

inner boundary of Zone 1;
hC = total head in the pervious foundation at the

inner boundary of Zone 3;
hD = total head in the pervious foundation at the

outermost boundary of Zone 3;
hr = total head in the pervious foundation layer at

a distance r from the axis of rotation;
htoe = net pressure head across the semipervious

blanket layer at the landside levee toe;
h1 = total head in the layer above confining layer 1;
h2 = total head in the layer below confining layer 2;
I0 = zero-order modified Bessel function of the first

kind;
I1 = first-order modified Bessel function of the first

kind;
K0 = zero-order modified Bessel function of the

second kind;
K1 = first-order modified Bessel function of the

second kind;
kb = vertical hydraulic conductivity of the

semipervious blanket;
kf = horizontal hydraulic conductivity of the

pervious foundation layer;
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k1 = vertical hydraulic conductivity of
semipermeable layer 1;

k2 = vertical hydraulic conductivity of
semipermeable layer 2;

L0 = distance from the axis of rotation to the
nearest edge of the semipervious blanket;

L1 = distance from the axis of rotation to the
nearest levee toe;

L2 = distance from the axis of rotation to the
farthest levee toe;

L3 = distance from the axis of rotation to the
farthest edge of the semipervious blanket;

Q = quantity of seepage passing through the levee
foundation per unit time;

r = cylindrical polar coordinate direction;
S = drawdown = h1 − h;
vr = specific discharge (Darcy velocity) in the

r-direction;
vx = specific discharge (Darcy velocity) in the

x-direction;
vy = specific discharge (Darcy velocity) in the

y-direction;
vz = specific discharge (Darcy velocity) in the

z-direction;
vθ = specific discharge (Darcy velocity) in the

θ-direction;
X = variable used in the modified Bessel function

substitution = r/λ;
x = Cartesian coordinate direction;
y = Cartesian coordinate direction;
z = Cartesian coordinate direction and cylindrical

polar coordinate direction;
zb = thickness of the semipervious blanket (the

levee foundation top stratum);
z1 = thickness of semipermeable layer 1;
z2 = thickness of semipermeable layer 2;
θ = cylindrical polar coordinate direction; and
λ = leakage factor.
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