Remarks
and
Replies

Algonquian Languages Have A-Movement and A-Agreement

Benjamin Bruening

Ritter and Rosen (2005) claim that Algonquian languages lack A-movement and A-binding, and they theorize that all agreement in Algonquian is agreement with A-positions. I show that this proposal cannot be maintained, given facts of quantifier scope in Passamaquoddy. These facts require recognizing a step of A-movement to a derived A-position, comparable to Spec,TP in languages like English. I further contrast this movement with the movement involved in cross-clausal agreement (Branigan and MacKenzie 2002) and show that the two differ in exactly the ways that A-movement and A-movement differ. Algonquian languages clearly have A-movement as distinct from A-movement.

Keywords: Algonquian, A-movement, agreement, scope, quantifiers

1 Introduction

Ritter and Rosen (2005) claim that Algonquian languages lack A-movement and A-binding, and they theorize that all agreement in Algonquian is agreement with A-positions. The latter proposal comes from Branigan and MacKenzie (2002), who analyze a rather exceptional pattern of cross-clausal agreement as A-agreement. Ritter and Rosen generalize this analysis to all instances of agreement in Algonquian languages. They claim that analyzing all agreement as A-agreement explains the purported absence in Algonquian languages of Case, Case-motivated A-movement, and A-binding. In their analysis, overt NP arguments appear in A-positions like topic, focus, ‘point of view’ (see below), and wh-positions. These A-positions are what matter for agreement.

I show that Ritter and Rosen’s proposal cannot be maintained. To account for scope and binding in Passamaquoddy, one must recognize a type of movement distinct from A-movement. This movement affects agreement, it circumvents weak crossover, and only elements in A-positions...
tions can undergo it, all properties associated with A-movement. It can also reconstruct, indicating that it is, in fact, movement, and not base generation as Ritter and Rosen claim. It also differs in every respect from the movement that feeds the cross-clausal type of agreement analyzed by Branigan and MacKenzie (2002) as A-agreement. If the A-agreement analysis is correct for that type of agreement, it is not correct for all other types of agreement in Algonquian, since their properties differ. The conclusion is that Algonquian languages are just like languages such as English that have A-movement and A-agreement.

2 Algonquian Agreement and the Inverse

Algonquian languages like Passamaquoddy have very free word order, make extensive use of null anaphora, and have some discontinuous constituents, all properties that Hale (1983) identified as hallmarks of “nonconfigurational” languages. Nevertheless, there is ample evidence that Passamaquoddy is a configurational language; see Bruening 2001b and LeSourd 2006. I will assume that overt NPs are generated in their thematic argument positions, as the scope and binding facts discussed here in fact require.

Agreement in Algonquian languages operates on a direct/inverse system, where agreement morphemes index relative prominence rather than grammatical role. In (1), the prefix n- indexes the first person argument, whether it is a subject or an object, and the suffix -(o)k indexes the third person argument. A direct or inverse morpheme indicates whether the argument indexed by the prefix is the subject or object, respectively.1

(1) a. N-ucem-a-k.
 1-kiss-Dir-3P
 ‘I kiss them.’
 b. N-ucem-ku-k.
 1-kiss-Inv-3P
 ‘They kiss me.’

Most descriptions of this phenomenon treat the agreement as tied to a participant hierarchy like the following:2

1 Examples are given in the orthography in use in the Passamaquoddy community. Letters have their usual values except that o = schwa, q = [kʷ], c = alveopalatal affricate, ‘ = initial h (phonic effect is aspiration of the following stop or devoicing of s). Obstruents are voiced in many environments.

Abbreviations used for Passamaquoddy examples: AN = animate; COMP = complementizer; CONJ = conjunct inflection; DIM = diminutive; DIR = direct voice; DIRS = ditransitive; EMPH = emphatic particle; FUT = future; IC = initial change (ablaut); INAN = inanimate; INV = inverse voice; LOC = locative; NEG = negative; OBV = obviative; P = plural; PRET = preterite; PROG = progressive; SecObj = marker of secondary object.

2 There is some debate about the relative ranking of first and second persons. I follow Goddard and Bragdon (1988: 513) in treating them as unranked and as participating in their own interaction, different from the inverse. See also Bruening 2001b:124–125.
(2) Participant hierarchy: 1,2 > 3 > Obv(iative) > Inan(imate)

The prefix agrees with whichever argument is more prominent on the hierarchy, and the suffix with the less prominent. The direct/inverse marking indicates their grammatical relations.

Animate third persons are divided into proximate (labeled 3 here) and obviative (Obv) categories. If there are two (or more) animate third persons in the same syntactic domain, one must be proximate and the other(s) obviative. This division interacts with the direct/inverse opposition: if the subject is proximate, the verb is marked as direct; if the object is proximate, it is inverse.

(3) a. Pukcinsqehs ’t-iy-a-l sakoma-l, . . .
 Pukcinsqehs 3-say.to-Dir-Obv chief-Obv
 ‘Pukcinsqehs (Prox) says to the chief (Obv), . . .’
 (Mitchell 1976b:line 16)

b. . . tahalu=te=hp mahtoqehs[w]ok eli-sikte-hpawol-oku-hit
 like=EMPH=would rabbit-3P IC.thus.to.death-frighten-Inv-3pConj
 posuw-ol.
 bobcat-Obv
 ‘. . . like rabbits (Prox) scared by a bobcat (Obv).’
 (Mitchell 1976a:line 78)

In Passamaquoddy, proximate singular NPs are unmarked, but proximate plural NPs take a suffix -(o)k. Obviative singulars have a suffix -(o)l; obviative plurals are marked with a final pitch-accent (indicated with a grave accent), and final truncation is also suppressed.3

Although (3b) is translated as a passive, it is important to note that the inverse is not a passive. There is no change in valence—the verb is still transitive, and the subject is not demoted to an oblique.

3 Ritter and Rosen’s Analysis of the Inverse

Following proposals in Bruening 2001b, Ritter and Rosen (2005) hypothesize that the prefix (and other agreement morphemes) that indexes the most prominent argument on the participant hierarchy is triggered by agreement with a designated syntactic position. In the direct voice, the subject occurs in that position, while in the inverse, the object does. Ritter and Rosen identify this position as Point of View (POV), following Speas and Tenny (2003). It is an A¯-position in the CP layer of the clause, as shown in (4).

3 Final truncation deletes the final vowel of most stems if it is not followed by a suffix. As an example, the underlying form of ‘rabbit’ is /mahtoqehsu/, but the proximate singular is mahtoqehs. The vowel surfaces in suffixed forms, often with an epenthetic glide: proximate plural mahtoqehsuw-ok, obviative singular mahtoqehsuw-ol, obviative plural mahtoqehsu`, with a final pitch accent suppressing truncation.
In the inverse, according to Ritter and Rosen (they say nothing about the direct), the object does not move to Spec,POV; rather, it is base-generated there, coindexed with a null pronoun in the thematic object position, as shown in (4). If the object is a wh-phrase, this base generation in Spec,POV, higher than the subject (followed by wh-movement), results in weak crossover being absent.

(5) Wen pihce w-itapih-i nekol-iht kcihku-k?

‘Who did his friend abandon in the forest a long time ago?’

(Bruening 2001b:114, (259a))

In this analysis, the only A-positions are the thematic positions of the subject and object. If the arguments appear in other positions, those positions are A¯-positions associated with interpretive properties like point of view, focus, and topic. The inverse circumvents weak crossover, a property of A-movement; since Ritter and Rosen want to deny the existence of A-movement in Algonquian languages, they have to claim that the inverse involves base generation rather than movement.

However, I have argued elsewhere (Bruening 2001b) against base generation on the basis of reconstruction effects: the object can reconstruct to a position below the subject, meaning that it must have started out below the subject and moved (via A-movement) to a higher position, prior to undergoing wh-movement. I repeat this argument in the next section, using new data, as part of illustrating how quantifier scope works in Passamaquoddy. The scope facts will show that the inverse must involve a step of A-movement, and not base generation in an A¯-position. (The analysis I will advocate below does not actually use reconstruction, but it does make crucial use of the object’s having two A-positions available to it.) Algonquian languages are thus just like English, with a high A-position, usually identified as Spec,TP as in (6), to which either the subject or object moves.
If the subject moves, the clause is direct; if the object does, it is inverse.

After showing the scope facts and arguing for this A-movement analysis, I will compare this step of movement with the movement that takes place in cross-clausal agreement. The two differ in every respect that differentiates A-movement from \(\bar{A} \)-movement, particularly in scope and variable binding. These differences show that it is wrong to generalize the analysis of cross-clausal agreement to all agreement in Algonquian, as Ritter and Rosen propose.

4 Quantifier Scope

4.1 The Picture Truth-Value Judgment Task

In Bruening 2001b, I argued, using quantifier scope and variable binding, that the inverse involves a higher A-position, not an \(\bar{A} \)-position. In the direct voice, the subject moves to this position; in the inverse, the object does. In Bruening 2001b, I called this position Spec,HP; I will refer to it here as Spec,TP, since it seems to be equivalent in many respects to the higher subject position in English and other languages. The analysis proposed for the inverse appears in (7).
I have confirmed the scope facts presented in Bruening 2001b using a picture truth-value judgment task, and I will present the new data here. In this task, the subject is shown a picture and asked to describe it. The subject is also presented with a sentence and asked to judge whether the sentence accurately describes the picture or not—that is, whether the sentence is true or false of the situation shown in the picture. This method works very well for eliciting scope judgments. As an example, the picture in figure 1 was shown to a Passamaquoddy speaker, and the two sentences in (8) were presented orally.\(^4\)

(8) a. *Psit skitapi-yik ’-sakolon-a-wa puhtya.*
 all man-3P 3-hold.onto-Dir-3P.ObvP bottle.ObvP
 ‘All the men are holding bottles.’ (true, distributive)

b. *Psit skitap ’-sakolon-a-l puhtya-l.*
 all man 3-hold.onto-Dir-Obv bottle-Obv
 ‘Every man is holding a bottle.’ (true, distributive)

Figure 1
A sample picture for the truth-value judgment task

\(^4\) The sentences were constructed on the basis of sentences used by the speaker to describe the picture. For instance, the speaker spontaneously described the picture in figure 1 as ‘The men are holding bottles’, which the researcher then altered into the two forms given in (8) (and others).
The speaker agreed that both sentences were valid descriptions of the picture, indicating that subject quantifiers can distribute over objects, whether the subject or object is singular or plural (and they do not have to match in number; see the examples in (10) and (13) below).5 (In these and subsequent examples, subjects are italicized, and nonsubjects are boldfaced.)

The first finding to note is the one just stated: subject quantifiers can distribute over objects. They do not have to, however. One speaker offered the following sentence as a description of a picture where everyone hooked the same fish simultaneously:

(9) \(\text{Psite '}-\text{poth-a-wa-l } \text{peskuw-ol nomehs-ol}. \)

\begin{align*}
\text{all} & \quad 3\text{-hook-Dir-3P-OBV one-OBV fish-OBV} \\
\text{‘Everyone hooked one fish.’} (\text{all hook same fish})
\end{align*}

Thus, subject quantifiers may but need not distribute over the object (just as in English).

Second, scope in Passamaquoddy is not always rigid. For instance, a quantified locative adjunct can take scope above or below a subject, even when the adjunct does not precede the subject.

(10) a. \(\text{Psite possaqhenomakon ekhutetu/kolomu oposi-hkuk}. \)

\begin{align*}
\text{all} & \quad \text{lantern hang.INAN/be.stuck.INAN tree-LOC\text{P}} \\
\text{‘Every lantern is hanging/stuck in trees.’} (\text{true of distributive picture: one lantern in each tree})
\end{align*}

b. \(\text{Possaqhenomakon kolomu psite oposi-hkuk}. \)

\begin{align*}
\text{lantern} & \quad \text{be.stuck.INAN all tree-LOC\text{P}} \\
\text{‘A lantern is stuck in all the trees.’} (\text{true of distributive picture})
\end{align*}

Similarly, a universal quantifier as an object may take scope above or below sentential negation, with contextual factors and perhaps individual preferences playing a role. On one occasion, I had four speakers arguing about whether the following sentence meant that the person ate some of the candy, just not all of it, or that he ate none of it:

(11) \(\text{Ma=te psite (')-mici-w-on-ol sukolis-ol}. \)

\begin{align*}
\text{NEG=EMPH all} & \quad 3\text{-eat-NEG-INAN-INANP candy-INANP} \\
\text{‘He didn’t eat all the candy.’}
\end{align*}

The speakers who interpreted the sentence as meaning that he ate none of the candy must have given the universal quantifier scope over negation (‘‘all the candy is such that he didn’t eat it’’). If negation had taken wide scope (‘‘it is not the case that he ate all the candy’’), with the situation where he ate none of it as just a subcase of his eating some amount other than all of it, the speakers should have allowed some candy-eating. But in fact they rejected any candy-eating, meaning that the universal quantifier must have taken wide scope (for them, on this occasion, which I take to mean that the grammar makes this interpretation available; on other occasions, the same speakers allowed wide scope for negation).

5 I translate \text{psite} + plural NP as ‘all the NPs’, and \text{psite} + singular NP as ‘every NP’, but this is not meant to imply an analysis. Both cases involve universal quantification and distributivity.
Locative adjuncts and negation, then, show that scope is not tied to surface word order in Passamaquoddy, a fact I will come back to below, nor is it always rigid. Turning to the interaction between subject and object quantifiers, we will see that an important asymmetry arises between the direct voice and the inverse voice. Scope is rigid in the direct, but free in the inverse.

4.2 The Direct Voice

As shown above in (8), subject quantifiers can take scope and distribute over objects. However, in the direct voice, objects may not take scope over subjects. Sentence (12a) was judged to be false of the picture in figure 1, and true only of a picture where one man is holding all of the bottles. Similarly for the other examples.

(12) a. Skitap psite ’-sakolon-à puhtayà.
 man all 3-hold.onto-DIR.OBVP bottle.OBVP
 ‘A man is holding all the bottles.’ (only one man total)

b. Pesq putep psite ’t-askikom-à nomehsù.
 one whale all 3-bite.clamp-DIR.OBVP fish.OBVP
 ‘One whale is biting all the fish.’ (only one whale total)

c. Skitap ’t-otol-ahsom-à psite putepiyì nomehsù.
 man 3-PROG-feed-DIR.OBVP all whale.OBVP fish.OBVP
 ‘A man is feeding all the whales fish.’ (only one man total)

Thus, in the direct voice, the subject rigidly takes scope over the object, and the object may not take scope over the subject.

4.3 The Inverse Voice

When the inverse is used, the object may take scope over the subject.

(13) Psite puhtaya-k ’-sakolon-oku-wa-l peskuw-ol skitapi-yil.
 all bottle-3P 3-hold-INV-3P-OBV one-OBV man-OBV
 ‘One man is holding all the bottles.’ (distributive, several men each holding one; or nondistributive, one man holding all)

What this shows is that the reversal of prominence recorded in the morphology of the verb is also reflected in the syntax. The object is now higher than the subject syntactically, and so takes scope over it.

At this point, it appears that the argument that is higher on the participant hierarchy always takes higher scope. In the direct voice, the subject is the proximate argument, and it rigidly takes scope over the object, the obviative argument. In the inverse voice, the object is now the proximate argument, and it takes scope over the subject, the obviative argument. However, unlike the direct voice, the inverse voice is not rigid. If the proximate argument is an indefinite and the obviative argument is a universal quantifier, it is possible for the universal quantifier to take wider scope, even though it is the obviative argument.
Consider the following sentence. It can describe two different pictures: (a) one where a single man is being attacked by all the whales; (b) one where different men are being attacked, one per whale.\(^6\)

(14) \textit{Skitap psite 'qila-\textkata putepiyi.}\textit{~}
\begin{tabular}{llll}
man & all & 3-attack-INVP & whale.OBP
\end{tabular}

‘All the whales are attacking a man.’ (distributive or nondistributive)

The fact that the sentence can describe the distributive picture indicates that the subject quantifier (the obviative argument) can take scope over, and hence distribute over, the object (the proximate argument). Hence, it is not true that proximate arguments always take scope over obviative ones. In the inverse voice, either argument may take wider scope.

Note that the word order of (14) is identical to that of (12a), but the possible interpretations are different. The only difference between them is that (12a) uses the direct voice, while (14) uses the inverse voice. In particular, the difference in possible interpretations could not be due to word order or to the discontinuous NP. The generalization, stated in Bruening 2001b, is that, in the direct voice, subjects rigidly take scope over objects, but in the inverse voice, objects most naturally take scope over subjects but subjects may also take scope over objects.

This fact distinguishes the theory proposed in Bruening 2001b from that proposed by Ritter and Rosen (2005). In Ritter and Rosen’s theory, the object is base-generated in the inverse in a high position, coindexed with a null pronoun in object position. There is no way in such a theory to allow inverse scope, of the subject over the object, without also allowing it in the direct voice. Since the object did not move to its high position, reconstruction is not an option. Either the subject must be able to undergo quantifier raising (QR) at LF, to a position higher than the object in Spec,POV, or the object must be able to undergo quantifier lowering (QL) to a position below the subject. If either possibility is licit, it should be licit in the direct voice, too. Presumably, in Ritter and Rosen’s theory, the direct voice involves base-generating the subject in Spec,POV, and the object in object position. If either QR or QL were allowed, we would expect the object to be able to take scope over the subject in the direct voice as well. Either the object could move to a position above Spec,POV by QR, or the subject could move to a position below the object by QL.\(^7\)

In contrast, in my (2001b) theory, the scope facts follow, provided that the relative scope of argument quantifiers is limited by the relative height of their argument positions (see the next section). There are exactly three argument positions in a transitive clause: the base positions of the subject and object, and Spec,TP. In the direct voice, the subject moves to Spec,TP. Both the subject’s base and derived A-positions are higher than the object’s A-position, and so the object

\(^6\) The pictures actually depicted sharks, but this informant could not remember the word for shark (\textit{sikolat}) and called them whales instead.
\(^7\) Note that it will not do to say that QL is ruled out in the direct voice just because there is no position to lower to below the object. The scope facts remain the same when other material is present that the object does take scope over, like clausal complements or second objects in ditransitives (as in (12c)). The presence of such elements should indicate the presence of other projections that the subject could lower to.
may not take scope over the subject. In the inverse, the object crosses over the subject to Spec,TP. One A-position is higher than the subject’s, but the other is lower. This lower position is what will give the option whereby the subject takes wider scope.

4.4 Argument Quantifiers Take Scope According to A-Positions

As stated above, my (2001b) theory explains the facts, if argument quantifiers may only take scope according to their argument positions. This is something that I will not be able to explain fully, but a few remarks are in order.

First, some other languages also appear to restrict the relative scope of argument quantifiers, so that objects may not take scope over subjects, but adjuncts may. In Albanian, a language I have tested using the same pictures, variations in word order appear to be due to Ā-movement, not A-movement (Massey 1992), and inverse scope is simply disallowed.8

 one pirate PROG holds each-FEM.ACC bottle
 ‘A/One pirate is holding each bottle.’ (only one pirate total)

 each-FEM.ACC bottle one pirate PROG holds
 ‘A/One pirate is holding each bottle.’ (only one pirate total)

c. *Secil-ën bucelë po mban një pirat.*
 each-FEM.ACC bottle PROG holds one pirate
 ‘A/One pirate is holding each bottle.’ (only one pirate total)

However, nonargument PP quantifiers can take scope over subjects quite easily.

(16) a. *Një zog ndodhet në secil-ën pemë.*
 one bird occurs in each-FEM.ACC tree
 ‘A/One bird is in each tree.’ (distributive, one bird per tree)

b. *Një fener varet prej secil-ës pemë.*
 one lantern hangs from each-FEM.ABL tree
 ‘A/One lantern is hanging from each tree.’ (distributive, one lantern per tree)

Similarly, in English, PPs are able to take wide scope much more readily than objects, although objects can take scope over subjects (Pica and Snyder 1994). For instance, *A bird is perched in every tree* quite naturally has the inverse scope reading, but *A bird ate every worm* requires some work to get the inverse scope reading. Furthermore, in ditransitives, the second object may not take scope over the first at all (an observation due to David Lebeaux, according to Larson 1990).

(17) Bono sent a fan every pair of boots he’d ever worn. (only one fan)

8 I have only elicited judgments from one speaker so far, but I expect them to be confirmed by other speakers, given that they match related data in Massey 1992.

Abbreviations used for Albanian examples: *ABL* = ablative case; *ACC* = accusative case; *FEM* = feminine; *PROG* = progressive.
Even in English, then, a language that allows scope to diverge from surface hierarchy and linear order, argument quantifiers can be restricted to taking scope according to their relative argument positions, while adjuncts are not so restricted (see Barss and Lasnik 1986 for extensive arguments that the first argument of a ditransitive asymmetrically c-commands the second).9

Second, it cannot be the case that argument quantifiers may only take scope in their actual A-positions. In the discussion of Passamaquoddy negation above, we saw (in example (11)) that an object could take scope over sentential negation. Unless negation can lower at LF, this means that an object quantifier can raise at LF to a higher position where it can take scope; it just cannot take scope over the subject. (For cases where focused NPs can take scope higher than their argument position, see Bruening 2001b, 2004.) The same holds in English ditransitives: although the second object cannot take scope over the first, it can take scope over other quantificational elements in the sentence (Larson 1990, Bruening 2001a). Hence, the relevant constraint appears to prohibit two argument quantifiers from reversing their prominence by LF Ā-movement; it does not limit them to taking scope in an actual argument position.

I will not attempt to explain this constraint or the deviations from it in other languages; I simply stipulate it here and show how it can derive the Passamaquoddy facts. Suppose the following holds (in Passamaquoddy, and in some cases in other languages, like English ditransitives):

(18) The Argument Scope Constraint
If, in the input to LF, A is in an A-position that c-commands B, B in an A-position, B may not cross A by LF movement.

(For an attempt at a theory of this constraint, see Bruening 2001a.)

To account for the ambiguity of the inverse, then, we need to allow two possible inputs to LF: one where the object has moved to Spec,TP, and one where it has not. Suppose that the relevant syntactic requirements of T and of the object NP may be satisfied without movement, by long-distance agreement (perhaps the Agree relation of Chomsky 2000, 2001). This agreement between T and the object NP allows but does not require the accompanying A-movement depicted in (7) above. Thus, if the object does move, the scope order object > subject will be fixed and LF movement will be unable to alter it. If the object does not move, the scope order subject > object will be fixed, and LF movement will be unable to alter it. The sentence in (14), repeated here, then has two parses.

(19) Skitap psite ’qulta-kù putepiyi.
man all 3-attack-INV.OBVP whale.OBVP
’All the whales are attacking a man.’ (distributive or nondistributive)

In the first parse, ‘a man’ has undergone A-movement to Spec,TP, and the universal quantifier may not take scope over it. In the second parse, it has not undergone that movement, instead

9 Some languages have been claimed to be even closer to my characterization of Passamaquoddy, where A-movement can free up scope. For instance, scope in Japanese is often said to be rigid, unless the object scrambles over the subject, in which case either scope order is possible (Hoji 1985, Aoun and Li 1993). However, the facts of Japanese have been contested; Goro (2007) shows that, in various contexts, Japanese does allow an unscrambled object to take scope over the subject. Even in those contexts, however, Japanese shows the same scope-freezing effect in ditransitives as English.
agreeing in situ with T; its surface position is obtained by Ā-scrambling (or, perhaps, by PF movement). Therefore, by the Argument Scope Constraint, it takes scope beneath the subject quantifier.10

The A-movement theory of the inverse, then, coupled with the Argument Scope Constraint, motivated from languages other than Passamaquoddy, explains the scope facts. The Ā-agreement theory does not, nor does any theory that base-generates the proximate NP above the obviative one in the inverse. Any such theory would predict that the inverse would be as rigid as the direct in its scope possibilities, contrary to fact.11

4.5 Overt Word Order and the Nature of the Movement in the Inverse

The scope of argument quantifiers in Passamaquoddy appears to be very strongly grammatically conditioned; the judgments do not vary from speaker to speaker (that I have found) or from time to time or context to context. In addition, word order very often mirrors scope, but not always, as the locative example (10b) and the direct/inverse minimal pair (12a)/(14) showed. Also, simply fronting an object quantifier does not give it wide scope.

(20) a. \textit{Pesq skitap \textquotesingle t-apotepi-n psite malihkiy-ehsis.}
\begin{tabular}{p{4cm}p{4cm}}
 one man & 3-sit.lean.against-\textsc{SecObj},OBVP
 all barrel-DIM,OBVP
\end{tabular}
\begin{tabular}{c}
 \begin{tabular}{c}
 \textquotesingle One man is sitting leaning against all the barrels.' (not true of picture with one each; comment: \textquotesingle No, each one has their own barrel.	extquoteright)
 \end{tabular}
\end{tabular}

b. \textit{Psite malihkiy-ehsis pesq skitap \textquotesingle t-apotepi-n.}
\begin{tabular}{p{4cm}p{4cm}}
 all barrel-DIM,OBVP & one man 3-sit.lean.against-\textsc{SecObj},OBVP
\end{tabular}
\begin{tabular}{c}
 \begin{tabular}{c}
 \textquotesingle One man is sitting leaning against all the barrels.' (still not distributive, only one man)
 \end{tabular}
\end{tabular}

Contra Ritter and Rosen (2005), movement in the inverse has to be a type of movement distinct from other types, like the fronting of the object here. The movement that takes place in the inverse has several properties that are typically recognized as being properties of A-movement: (a) it correlates with changes in agreement; (b) it gets around weak crossover; (c) only arguments

10 A reviewer suggests an alternative account of scope ambiguity along the lines proposed by May (1985): the movement of the object in the inverse puts it into the same domain as the subject; at LF, quantifiers that are in the same domain are scopally ambiguous, with either quantifier being able to take wide scope. One way to make this work would be to say that the relevant domain is the phase (Chomsky 2000). In the direct voice, the subject argument is in Spec,TP at LF, outside the vP phase where the object is; hence, the subject must take wide scope. In the inverse, however, the object NP is in Spec,TP at LF, while the subject is in Spec,vP. Spec,vP, being the edge of the vP phase, counts as part of the next higher phase, and the two quantifiers are in the same phase at LF and are scopally ambiguous. While this theory does without the optionality of the movement of the object in the inverse, I do not explore it further here, primarily because of the relative nature of the scope fixing. Because the object can take scope over sentential negation even in the direct voice, it must be able to move out of vP and into the domain of negation, which is also presumably the domain of the subject quantifier. In this theory, it is difficult to see a way to permit the object to take scope over negation without allowing it to take scope over the subject.

11 Note that the precise mechanism for obtaining lower scope for the object quantifier in the inverse is immaterial to the argument. What is important is that the movement theory has a lower position available that can be exploited for scope. How exactly that works is an open question; all that matters for the comparison of theories here is that the Ā-agreement theory does not have the lower position available, and so predicts rigid scope in the inverse.
in A-positions may undergo the movement (see more on this below). These properties indicate
that the movement that takes place in the inverse is A-movement, contra Ritter and Rosen. I
believe it is entirely comparable to movement to subject position (Spec,TP) in English; the only
difference is that an object may cross over a subject in undergoing the movement (see section 6
for more discussion of this point).

This conclusion is bolstered by a comparison with the movement at work in cross-clausal
agreement, the model for Ritter and Rosen’s Ā-agreement. The two have distinct scope and other
properties, indicating that we should not equate them.

5 Cross-Clausal Agreement

Cross-clausal agreement, also called copying from complement, raising to object, long-distance
agreement, or copying to object, has been described in various Algonquian languages (see Frantz
2001b and Branigan and MacKenzie 2002, it is analyzed as agreement between a verb and an
NP that has raised to a high Ā-position within the verb’s complement CP. Some of the evidence
for this is that elements that demonstrably occupy Ā-positions, like embedded wh-phrases, can
agree.

(21) Piyel ’-kociciy-a-l wen-il kil kisi-tokom-ot.
 Piyel 3-know-DIR-OBV who-OBV 2 PAST-hit-2/3CONJ
 ‘Piyel knows who you hit.’

(The NP that agrees with the higher verb will be boldfaced in all examples here, as will the
agreement morphology on the higher verb.)

In addition, the lower clause is most definitely a full CP, because it can include CP material
like a wh-phrase, past which an agreeing NP can raise.

(22) Ma=neg te n-wewitaham-a-wiy-ik mahtoqehsuw-ok [tama] al
 NEG=EMPH 1-remember-DIR-NEG-3P rabbit-3P where UNCERTAIN
 n-toli-putoma-n-ok kcihku-k.
 1-there-lose-SECOBJ-3P forest-LOC
 ‘I don’t remember where in the forest I lost the rabbits.’
 (adapted from Bruening 2001b:262, (679b))

Second-position clitics show that the agreeing NP to the left of CP material, like the wh-phrase

tama here, is part of the lower clause and not part of the higher clause. In (24) below, for instance,
the second-position clitic oc belonging to the lower clause appears in the middle of the raised
NP, and not after the complementizer (see Bruening 2001b for discussion and further evidence).
It would be very unusual for the left edge of a CP to include an A-position; positions that high
in the clause are generally agreed to be Ā-positions.

Unfortunately for Ritter and Rosen’s Ā-agreement theory, most of the other evidence for
the Ā status of the agreeing position in cross-clausal agreement clearly distinguishes it from other
types of verbal agreement. For one thing, agreeing with the higher verb does not affect the
agreement relation an NP has with the lower verb. In (23a), repeated from (21), the higher verb agrees with the wh-phrase ‘who’; in (23b), it is in its nonagreeing form, the inanimate object form that just takes a CP complement. In both cases, the verbal morphology in the embedded clause (italicized) is identical.

 Piyel 3-know-Dir-Obv who-Obv 2 PAST-hit-2/3Conj
 ‘Piyel knows who you hit.’
 b. Piyel ’kociciht-un wen kil kisi-tokom-ot.
 Piyel 3-know-Inan who 2 PAST-hit-2/3Conj
 ‘Piyel knows who you hit.’

This is not the case for the inverse agreement, for example. Moving to the higher position in the inverse to agree as the most prominent argument does not leave agreement in the lower position intact.

Second, any argument from the lower clause may agree with the higher verb, not just the highest one.

(24) N-kosiciy-a-k nuhu oc akom eli Susehp monuw-a-t.
 1-know-Dir-3P three.ObvP Fut snowshoe.ObvP Comp Susehp buy-Dir-3/ObvConj
 ‘I know that Susehp will buy three snowshoes.’
 (adapted from Bruening 2001b:271, (707c))

In general, this is a property of Ā-movement, not A-movement. For instance, a wh-phrase object may cross over any number of subjects or other objects on its way to Spec,CP, but only the highest argument may undergo A-movement (with some limited exceptions). This property clearly distinguishes cross-clausal agreement from the agreement in the inverse: in a ditransitive, only the highest object may move to the higher position in the inverse (Spec,TP in my analysis); the second object may not. The verb ‘hide from’ in (31) below is an example. This verb, with a ditransitivizing morpheme, takes three arguments, as ‘X hides from Y Z’. If the verb is put in the inverse voice, only the argument Y can become the most prominent NP; Z may not. (An object can cross over a subject in the inverse, though; see below for some remarks on this exception to the no-crossing constraint on A-movement.)

Third, the movement that feeds cross-clausal agreement can be long-distance.12

(25) Ma=te n-wewitaham-a-wiy-ik niktok wasis-ok1 [CP nen ih-it
 Neg=Emph 1-remember-Dir-Neg-3P those.An child-3P who tell-1ConjInv
 [CP t1 kisi-komutoatomu-hit nit atomupil]].
 PAST-steal-3PConj that.Inan car
 ‘I don’t remember [who told me [that those kids stole the car]].’

12 In Bruening 2001b, I claimed that it could not; but I subsequently found that it could, as in this example.
In contrast, it is absolutely impossible for an NP from another clause to move to Spec,TP and trigger inverse agreement. Ritter and Rosen (2005:656) claim that it is possible, citing data from Bruening 2001b showing that cross-clausal agreement may feed the inverse.

(26) **Psitewen** `-kosiciy-uku-l** Mali-ol eli nucitqonket nomiy-a-t.
 everyone 3-know-INV-OBV Mali-OBV COMP policeman see-Dir-3CONJ
 ‘Mali knows that a policeman saw everyone.’
 (adapted from Bruening 2001b:256, (662))

However, in Bruening 2001b:chap. 5, I gave extensive arguments that, just when the higher verb is in the inverse form, the grammar makes use of a doubling analysis of cross-clausal agreement rather than a movement analysis. For instance, islands are normally not violable in cross-clausal agreement, but they are when the higher verb is in the inverse.

(27) a. *N-piluwitaham-a kukec1 eli not skitap nipa-kotunke [eci t1
 1-suspect-Dir warden COMP that.An man night-hunt.3 when
 oli-ya-t Keli-k].
 there-go-3CONJ Calais-LOC
 ‘I suspect that that man poaches when the warden goes to Calais.’
 (adapted from Bruening 2001b:266, (691b))

 b. **Tihtiyas kosona Sapet** `-kosiciy-uku-l w-ikuwoss-ol eli psite wen macehe
 Tihtiyas or Sapet 3-know-I NV-OBV 3-mother-OBV COMP all who leave.3
 [kisi-ntu-htit].
 PAST-sing-3PCONJ
 ‘Her mother knows that everyone left when Tihtiyas or Sapet started singing.’
 (adapted from Bruening 2001b:276, (717b))

In addition, the raised NP cannot normally be doubled, either by a pronoun or by repeating the NP, even to save an island violation, but it can when the higher verb is in the inverse.

(28) a. ??N-kosiciy-a-k **Piyel naka Susehp** kis-ankuweht-uwon [atomupil-ol nekomaw
 1-know-Dir-3P Piyel and Susehp PAST-sell-2CONJ car-INANP 3P
 mil-osk-opon-il].
 give-2CONJINV-PRET-INANP
 ‘I know that you sold the cars that Piyel and Susehp gave you.’
 (adapted from Bruening 2001b:276, (720))

 b. **Petak** `-kosiciy-ukü** w-itapihî eli Mali kis-ankuweht-aq
 Petak 3-know-INV-OBVP 3-friend.ObvP COMP Mali PAST-sell-3CONJ
 [nahsahqetakon Petak mil-a-t-pon].
 ring Petak give-Dir-3CONJ-PRET
 ‘His friends know that Mali sold the ring that Petak gave her.’
 (adapted from Bruening 2001b:276, (718))

Far from undermining the A-movement theory of the inverse, the facts involving the combination of raising to object and the inverse actually support it, in the strongest possible way. If the
inverse position were an A^\perp-position, as Ritter and Rosen claim, there would be no reason an NP moving through an A^\perp-position could not move into it. But this appears to be impossible. Instead, the grammar uses a nonmovement mechanism. This only makes sense if the inverse position is an A-position: movement to it from an A^\perp-position would be an instance of improper movement, something that appears to be ruled out crosslinguistically.

In fact, trying to combine a higher inverse with an embedded wh-question elicits very strong negative reactions from Passamaquoddy speakers, regardless of the word order. 13

 Piyel-OBV 3-know-INV-OBV who 2 PAST-hit-2/3CONJ
 ‘Piyel knows who you hit.’

 who 3-know-INV-OBV Piyel-OBV PAST-rob-3CONJINV
 ‘Piyel knows who robbed him.’

This makes sense, given the considerations just described. The inverse requires a step of A-movement to Spec,TP, but the embedded wh-phrase cannot do that step of movement, because it is in an A^\perp-position (embedded Spec,CP). A doubling analysis would be impossible with a wh-phrase; that structure would have to be one of the following (using English words for simplicity):

(30) a. *who$_1$ Piyel knows [you hit pro$_1$]
b. *pro$_1$ Piyel knows [who$_1$ you hit t_1]

There is no coherent interpretation for either of these analyses. The one in (30a) never had the wh-phrase in the embedded clause; there is therefore no way to interpret that clause as an embedded question (the wh-phrase could not reconstruct to the embedded Spec,CP, for instance, because it never occupied that position). The analysis in (30b) could be interpreted as an embedded question, but it would violate Condition C, with the null pronoun in the higher clause illegally binding the wh-phrase.

In contrast, if the inverse position is an A-position, there is no reason a wh-phrase could not move into it. In Japanese and Korean, for example, wh-phrases can scramble higher than their scope position and still be interpreted as embedded questions (Saito 1989; see also (i) in footnote 13). The facts regarding the combination of the inverse and cross-clausal agreement, then, strongly argue for the A-movement analysis of the inverse.

13 The word order *obviative verb-Inv proximate*, though rare, is attested and is agreed to be grammatical by all speakers, so word order cannot be what is wrong with (29a). In addition, the same speaker who rejected (29b) did allow the following as an embedded question, indicating that the wh-phrase does not need to be in Spec,CP on the surface:

(i) Piyel wen-il 'kosiciy-a-1 kisi-komutonom-iht.
 Piyel who-OBV 3-know-DIR-OBV PAST-rob-3CONJINV
 ‘Piyel knows who robbed him.’
Finally, while the movement in the inverse permits an object to take scope over a subject, as we saw above, the movement that feeds cross-clausal agreement does not change scope relations, as shown here by variable binding. In (31a), the second object of a ditransitive (‘X hides from Y Z’) cannot bind into the subject. In (31b), it still cannot, even though it has undergone movement across the subject to the position where it agrees with the higher verb.

 3-mother-OBV 1-PAST-hide-DITR-INV-SECOBJ everyone
 ‘His₁ mother hid from me everyone₁.’

b. *N-kosiciy-a psite wen-(il) tama w-ikuwoss-ol n-kisi-kat-a-ku-n.
 1-know-DIR everyone-(OBV) where 3-mother-OBV 1-PAST-hide-DITR-INV-SECOBJ
 ‘I know where his₁ mother hid from me everyone₁.’
(adapted from Bruening 2001b:280, (730a–b))

This only makes sense, again, in the theory argued for here, where the scope of argument quantifiers is limited by their A-positions. In Ritter and Rosen’s Ā-agreement theory, the Ā-position of the inverse would have to be distinguished in its scope properties from the Ā-position of cross-clausal agreement, a distinction that undermines their claim that all agreement is identical to cross-clausal agreement in being Ā-agreement.

Furthermore, the theory advanced here, where cross-clausal agreement involves Ā-movement, unless the higher clause is inverse, correctly predicts that, just when the higher clause is in the inverse voice, the raised NP will be able to take scope over and bind into elements in the lower clause. A raised quantifier corresponding to the embedded object can both take scope over and bind into the subject of the lower clause when the higher verb is in the inverse form.¹⁴

(32) a. Yatte wen ’-kosiciy-uku-l Maliw-ol eli pilouwey nucitqonket
 each who 3-know-INV-OBV Mali-OBV COMP different policeman
 koti-tqon-a-t.
 will-arrest-DIR-3CONJ
 ‘Mali knows that a different policeman is going to arrest each one.’ (each>a)
 (structurally: ‘Each one₁ is known by Mali that a different policeman will arrest
 him₁.’)

b. Psite wen ’-kosiciy-uku-l w-itapih-il eli w-ikuwoss-ol
 all who 3-know-INV-OBV 3-friend-OBV COMP 3-mother-OBV
 ali-khasi-li-t.
 around-look.for-OBV-3CONJ
 ‘His₁ friend knows that his₁ mother is looking around for everyone₁.’
 (structurally: ‘Everyone₁ is known by his₁ friend that his₁ mother is looking around
 for him₁.’)

¹⁴ I did not illustrate scope with the strongly distributive quantifier yatte wen above; however, it acts just like psite in not being able to take scope over a subject when it is the object of a direct clause. See Bruening 2001b.
By hypothesis, both of these examples have a null pronoun bound by the quantifier in the thematic position of the lower clause. The quantifier itself occurs in Spec,TP of the matrix clause, and from there takes scope over and can bind into all other arguments.

In summary, cross-clausal agreement differs from normal subject and object agreement in Algonquian languages in every possible way. The movement involved in the inverse has all the properties of A-movement, in contrast to the movement involved in cross-clausal agreement, which has all the properties of Ā-movement.

6 Conclusion

All of these considerations show that Ritter and Rosen’s Ā-analysis of agreement in Algonquian languages is incorrect. Algonquian languages have A-movement and A-agreement. A transitive clause has two thematic argument positions and a higher A-position that might be identified as Spec,TP, just like transitive clauses in other languages like English. There is nothing unusual about Algonquian agreement or movement. The one feature that might at first glance seem to be unusual is that the object can move across an intervening subject in the inverse. However, I submit that this is exactly what an inverse is, as opposed to a passive, where there is no crossing because the subject has been removed. Many languages have inverse constructions, and so this crossing movement is really not unusual at all. Of course, the right theory of A-movement will have to account for it as one of the limited cases where crossing is grammatical, but there are others as well. Examples just from English include raising with strike as, as in There₁ strike me as t₁ being too many examples in this paper (modified from Marantz 1991), and dialects of English that allow the second object of a ditransitive to passivize. Examples from other languages can be found in McGinnis 1998. All of the data reviewed here indicate that this crossing does take place as an instance of A-movement in Passamaquoddy, and so the theory of A-movement will simply have to accommodate it.

References

