Introduction to Machine Learning
Lecture 6
Supervised Learning

• Least Squares Method
• Linear Regression
• Logistic Regression

• Some materials are courtesy of Vibhave Gogate and Tom Mitchell.
• All pictures belong to their creators.
Supervised Learning

- Given some training examples \(< x, f(x) > \) and an unknown function \(f \).
- Find a good approximation of \(f \).

- Step 1. Select the features of \(x \) to be used.
- Step 2. Select a hypothesis space \(H \): a set of candidate functions to approximate \(f \).
- **Step 3. Select a measure to evaluate the functions in \(H \).**
- Step 4. Use a machine learning algorithm to find the best function in \(H \) according to your measure.
Supervised Learning

• Step 3. Select a **measure** to evaluate the functions in H.

• What are the measures we have used?

• Concept learning: if there hypothesis is consistent with data.
• Decision tree: information gain
• Bayesian learning: select the most probable hypothesis or classification

Recap

Not consistent?
Do not want probabilities?
Error-driver approaches!
Least Squares Method (LSM)

- Given some training examples \(< x, f(x) >\) and an unknown function \(f\).
- Find a good approximation of \(f\).

- Suppose we have the training data \(D\).
- Suppose we are considering a hypothesis space \(H\).
- For each \(h \in H\), let us define the error over \(D\) as

\[
ERROR(h) = \sum_{x \in D} |f(x) - h(x)|^2
\]

- If \(h\) is the true function, ideally \(ERROR(h) = 0\)

- **LSM method**: select the \(h\) in \(H\) such that the error is minimized.
Linear Regression

- **Setting:** x and $f(x)$ are two real numbers
- **Linear Regression:** assume they have the relationship $f(x) = ax + b$ for two constants a, b.
- We have applied some prior knowledge.
Linear Regression

• **Setting**: x and $f(x)$ are two real numbers

• **Linear Regression**: assume they have the relationship $f(x) = ax + b$ for two constants a, b.

• We have applied some prior knowledge.

• Apply LSM to decide a and b.

• Deciding a and b is a procedure to search the hypothesis space.
Linear Regression

• Suppose the training data is \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

• For each pair of \(a\) and \(b\), the error is

\[
ERROR(a, b) = \sum |y_i - a \cdot x_i - b|^2
\]

• By calculus or algebra, the \(a\) and \(b\) that can minimize the above error is

\[
\hat{a} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \quad \text{and} \quad \hat{b} = \bar{y} - \hat{a} \cdot \bar{x}
\]

where \(\bar{x} = \frac{\sum x_i}{n}\) and \(\bar{y} = \frac{\sum y_i}{n}\)
Linear Regression

• Some mathematics:

\[ERROR(h) = \sum |y_i - a \cdot x_i - b|^2 \]

• Apply Lagrange multiplier.

• Partial derivatives.

\[\frac{\partial \ ERROR(h)}{\partial b} = -2 \sum (y_i - a \cdot x_i - b) \]
\[\frac{\partial \ ERROR(h)}{\partial a} = -2 \sum x_i \cdot (y_i - a \cdot x_i - b) \]

• Solve \(\frac{\partial \ ERROR(h)}{\partial b} = 0 \) and \(\frac{\partial \ ERROR(h)}{\partial a} = 0 \) (try it yourself)
Linear Regression

- **Linear Regression**: assume they have the relationship $f(x) = ax + b$ for two constants a, b.

- Look at the solution $y = \hat{a} \cdot x + \hat{b}$

- If the training data is already on a line, the produced solution is exactly that line and error=0.

- The mean point (\bar{x}, \bar{y}) must on the line $y = \hat{a} \cdot x + \hat{b}$

- LSM is good.

\[
\hat{a} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \quad \text{and} \quad \hat{b} = \bar{y} - \hat{a} \cdot \bar{x}
\]
Linear Regression Multivariable

- **Setting**: \((x_{i,1}, x_{i,2}, \ldots, x_{i,k})\) is a real vector and \(y_i\) is a real number.
- **Linear Regression**: assume they have the relationship

\[
f(x_i) = \omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0\]

for some constants \(\omega_i\).

- How to find the parameters (coefficients)?
- \(\text{ERROR}(\omega) = \sum |y_i - (\omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0)|^2 = \sum |y_i - \omega^T x_i|^2\)

\[
\omega = (\omega_1, \ldots, \omega_k, \omega_0)\\
x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,k}, 1)
\]

The \(\omega\) that can minimize the error is \(\omega = (X^T X)^{-1}X^T Y\)
Linear Regression Regularization

- Regularization

- Reduce overfitting: simple model, small parameters (absolute value)

\[\sin ax, \ a = 2 \quad \text{sin} \ ax, \ a = 10 \]

Range \(x = [0,2] \), \(y = [-2,2] \)
Linear Regression Regularization

• Regularization

• Reduce overfitting: simple model, small parameters
Linear Regression Regularization

• Regularization

• Reduce overfitting: simple model, small parameters

New cost function: \(ERROR_R(\omega) = ERROR(\omega) + \text{regularization} \)

\[
ERROR_R(\omega) = \sum |y_i - \omega^T x_i|^2 + \frac{\lambda}{2} \sum |\omega_j|^q
\]

Minimizing \(ERROR_R(\omega) \) implicitly minimizes \(\frac{\lambda}{2} \sum |\omega_j|^q \)

\(q = 1 \): L1 regularization (Lasso)
\(q = 2 \): L2 regularization
Linear Regression Regularization

• Input (x, y), x is a real vector and y is a real number.

• Assume $y = \omega_1 x_1 + \cdots + \omega_k x_k + \omega_0$

• Define $ERROR(\omega)$ over the training data
• Define regularization term.
• Minimize $ERROR_R(\omega) = ERROR(\omega) + \text{regularization}$.
• Done
Logistic Regression

- **Setting**: \((x_{i,1}, x_{i,2}, \ldots, x_{i,k})\) is a real vector and \(y_i\) is a **binary value**.
- \(H(x) = 1\) if \(\omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0 > 0\)
- \(H(x) = 0\) if \(\omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0 \leq 0\)
- Not smooth.
Logistic Regression

• **Setting**: \((x_{i,1}, x_{i,2}, \ldots, x_{i,k})\) is a real vector and \(y_i\) is a **binary value**.

 • \(H(x) = 1\) if \(\omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0 > 0\)
 • \(H(x) = 0\) if \(\omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0 \leq 0\)
 • Not smooth.

• Assume a form of \(\Pr[y = 1|x]\). (\(\Pr[y = 0|x] = 1 - \Pr[y = 1|x]\))
 • Classify it as 1 if \(\Pr[y = 1|x] \geq \Pr[y = 0|x]\).

• Special case:
 • \(\Pr[y = 1|x] = 1\) if \(\omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0 > 0\)
 • \(\Pr[y = 1|x] = 0\) if \(\omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0 \leq 0\)
Logistic Regression

- **Setting:** \((x_{i,1}, x_{i,2}, \ldots, x_{i,k})\) is a real vector and \(y_i\) is a **binary value**.

- Special case:
 - \(\Pr[y = 1|x] = 1\) if \(\omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0 > 0\)
 - \(\Pr[y = 1|x] = 0\) if \(\omega_1 x_{i,1} + \cdots + \omega_k x_{i,k} + \omega_0 \leq 0\)

\[
\Pr[y = 1|x] \quad \text{is not differentiable.}
\]

Lagrange multiplier and Gradient Descent requires computing partial derivatives.

We prefer smooth functions.
Logistic Regression

• Setting: \(x_i = (x_{i,1}, x_{i,2}, ..., x_{i,k}) \) is a real vector and \(y_i \) is a **binary value**.

• Suppose \(\Pr[y_i | x_i] \) follows the following distribution

\[
\Pr[y_i = 0 | x_i] = \frac{1}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

implies

\[
\Pr[y_i = 1 | x_i] = \frac{\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

\(\omega_j \) are parameters

\[\exp(x) = e^x\]

Classification Rule:

Classify a new instance \(x \) as 1 iff \(\Pr[y_i = 1 | x_i] \geq \Pr[y_i = 0 | x_i] \)
Logistic Regression

• **Setting:** $x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,k})$ is a real vector and y_i is a binary value.

\[
\text{Pr}[y_i = 0|x_i] = \frac{1}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

\[
\text{Pr}[y_i = 1|x_i] = \frac{\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

Classification Rule:
Classify a new instance x as 1 iff $\text{Pr}[y_i = 1|x_i] \geq \text{Pr}[y_i = 0|x_i]$

\[
\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j}) \geq 1 \quad \Rightarrow \quad \omega_o + \sum_j \omega_j \cdot x_{i,j} \geq 0
\]

A linear classifier!
Logistic Regression

• Setting: \(x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,k}) \) is a real vector and \(y_i \) is a **binary value**.

\[
\Pr[y_i = 0|x_i] = \frac{1}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

\[
\Pr[y_i = 1|x_i] = \frac{\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

How to learn the parameter \(\omega \)? Bayesian learning.

MAP = argmax \(\Pr[\omega|D] = \text{argmax} \Pr[D|\omega] \Pr[\omega] \)

No prior, **MAP** = **MLE** = argmax \(\Pr[D|\omega] \).
Logistic Regression

- Setting: \(x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,k}) \) is a real vector and \(y_i \) is a binary value.

\[
\Pr[y_i = 0|x_i] = \frac{1}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

\[
\Pr[y_i = 1|x_i] = \frac{\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

\[
\text{argmax} \Pr[D|\omega] = \text{argmax} \ln \prod \Pr[y_i|x_i, \omega] = \text{argmax} \sum \ln \Pr[y_i|x_i, \omega]
\]

Note: \(\ln \Pr[y_i|x_i, \omega] = y_i \ln \Pr[y_i = 1|x_i, \omega] + (1 - y_i) \ln \Pr[y_i = 0|x_i, \omega] \)

If \(y_i = 1 \)

If \(y_i = 0 \)
Logistic Regression

- **Setting**: \(x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,k}) \) is a real vector and \(y_i \) is a **binary value**.

\[
Pr[y_i = 0|x_i] = \frac{1}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

\[
Pr[y_i = 1|x_i] = \frac{\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
\]

Note: \(\ln Pr[y_i|x_i, \omega] = y_i \ln Pr[y_i = 1|x_i, \omega] + (1 - y_i) \ln Pr[y_i = 0|x_i, \omega] \)

\[
\text{argmax } \sum \ln Pr[y_i|x_i, \omega]
\]

\[
= \text{argmax } \sum \left[y_i \ln \frac{\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})} + (1 - y_i) \ln \frac{1}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})} \right]
\]
Logistic Regression

- **Setting:** $x_i = (x_{i,1}, x_{i,2}, ..., x_{i,k})$ is a real vector and y_i is a **binary value**.

$$
= \text{argmax } \sum [y_i \ln \frac{\exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j})} + (1 - y_i) \ln \frac{1}{1 + \exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j})}]
$$

$$
= \text{argmax } \sum [y_i (\omega_0 + \sum_j \omega_j \cdot x_{i,j}) - \ln(1 + \exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j}))] = l(\omega)
$$

$$
l(\omega) = \sum [y_i (\omega_0 + \sum_j \omega_j \cdot x_{i,j}) - \ln(1 + \exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j}))]
$$
Logistic Regression

- **Setting:** \(x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,k}) \) is a real vector and \(y_i \) is a **binary value**.

\[
\begin{align*}
\text{argmax } & \sum [y_i \ln \frac{\exp(\omega_0 + \sum_j \omega_j x_{i,j})}{1 + \exp(\omega_0 + \sum_j \omega_j x_{i,j})} + (1 - y_i) \ln \frac{1}{1 + \exp(\omega_0 + \sum_j \omega_j x_{i,j})}] \\
= & \text{argmax } \sum [y_i (\omega_0 + \sum_j \omega_j \cdot x_{i,j}) - \ln(1 + \exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j}))] = l(\omega)
\end{align*}
\]

\[
l(\omega) = \sum [y_i (\omega_0 + \sum_j \omega_j \cdot x_{i,j}) - \ln(1 + \exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j}))]
\]

Lagrange multiplier or Gradient Ascent?
Bad news: no closed-form to maximize \(l(\omega) \)
Good news: the function is concave.
Logistic Regression

• **Setting**: \(x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,k}) \) is a real vector and \(y_i \) is a **binary value**.

\[
l(\omega) = \sum[y_i(\omega_0 + \sum_j \omega_j \cdot x_{i,j}) - \ln(1 + \exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j}))]
\]

\[
\frac{\partial l(\omega)}{\partial \omega_j} = \sum y_i x_{i,j} - \frac{x_{i,j} \exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_0 + \sum_j \omega_j \cdot x_{i,j})} = \sum x_{i,j} (y_i - \Pr[y_i = 1|x_i])
\]

for \(j > 0 \)

• \(\omega_j = \omega_j + \eta \frac{\partial l(\omega)}{\partial \omega_j} \)

• \(\eta \): learning rate

Do it yourself for \(j = 0 \).
Logistic Regression

• How does the updating rule force the parameter to fit the data?

\[\frac{\partial l(\omega)}{\partial \omega_j} = \sum y_i x_{i,j} - \frac{x_{i,j} \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})} = \sum x_{i,j} (y_i - \Pr[y_i = 1|x_i]) \]

for \(j > 0 \)

• \(\omega_j = \omega_j + \eta \frac{\partial l(\omega)}{\partial \omega_j} \)

• \(\eta \): learning rate

Difference between observed value and predicted probability.

Classify it as 1 if \(\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j}) \geq 1 \)
Logistic Regression

- **Regularization**
 \[
 \frac{1}{1 + \exp(-ax)}
 \]

- Small parameters → smooth curves

- Maximum likelihood solution: prefers higher weights
 - higher likelihood of (properly classified) examples close to decision boundary
 - larger influence of corresponding features on decision

- Regularization: penalize high weights
Logistic Regression

- Regularization

- Method 1: add a term to the objective function, like we did for linear regression

\[l_R(\omega) = l(\omega) - \frac{\lambda}{2} \sum |\omega_j|^2 \]

- A hard constraint when we calculate the parameter
- We are maximizing \(l_R(\omega) \) so we add a negative term \(- \frac{\lambda}{2} \sum |\omega_j|^2\)
Logistic Regression

- Regularization

- Method 2: assume a prior distribution on the parameter. (so far we assume no prior)

\[\text{MAP} = \arg\max \Pr[\omega|D] = \arg\max \Pr[D|\omega] \Pr[\omega]. \]

- A common method is to assume \(\omega_i \) follow normal distribution, zero mean, identity variance. (push the parameter to 0)

\[
\Pr[\omega_i] = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{\omega_i^2}{2\sigma^2}} \quad \Pr[\omega] = \prod \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{\omega_i^2}{2\sigma^2}}
\]

- \[\arg\max \ln \Pr[D|\omega] \Pr[\omega] = \arg\max \ln \Pr[D|\omega] + \ln \Pr[\omega] = l(\omega) - \lambda \frac{\sum \omega_i^2}{2}. \]

\[\text{Similar effect as method 1!!} \]
Logistic Regression

- **Regularization**
 \[l_R(\omega) = l(\omega) - \frac{\lambda}{2} \sum |\omega_j|^2 \]

- **Update rule**

 \[\frac{\partial l(\omega)}{\partial \omega_j} = \sum x_{i,j} (y_i - \text{Pr}[y_i = 1|x_i]) \] (see previous slides)

 \[\frac{\partial l_R(\omega)}{\partial \omega_j} = \frac{\partial l(\omega)}{\partial \omega_j} - \lambda \omega_j \]

 - When \(\omega_j > 0 \), it pushes \(\omega_j \) to decrease
 - When \(\omega_j < 0 \), it pushes \(\omega_j \) to increase

 \[\omega_j = \omega_j + \eta \frac{\partial l(\omega)}{\partial \omega_j} - \eta \lambda \omega_j \]
Logistic Regression vs Gaussian Naïve Bayes

- Setting $x_i = (x_{i,1}, \ldots, x_{i,k})$ real-vector and y_i Boolean value.

- $\text{argmax}_y \Pr[y|x]$: the most probable classification of x
Logistic Regression vs Gaussian Naïve Bayes

• Setting $x_i = (x_{i,1}, \ldots, x_{i,k})$ real-vector and y_i Boolean value.

• $\text{argmax}_y \ Pr[y|x]$: the most probable classification of x

• **Logistic Regression: assume**
 \[
 \Pr[y_i = 1|x_i] = \frac{1}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
 \]
 \[
 \Pr[y_i = 0|x_i] = \frac{\exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}{1 + \exp(\omega_o + \sum_j \omega_j \cdot x_{i,j})}
 \]

• Estimate ω by data.
Logistic Regression vs Gaussian Naïve Bayes

• Setting $x = (x_1, ..., x_k)$ real-vector and y Boolean value.

• **Under any model:**

$$\Pr[y = 0|x] = \frac{\Pr[x|y = 0] \Pr[y=0]}{\Pr[x]} \quad \Pr[y = 1|x] = \frac{\Pr[x|y = 1] \Pr[y=1]}{\Pr[x]}$$

• Since $\Pr[y = 1|x] + \Pr[y = 0|x] = 1$, we have

$$\Pr[y = 1|x] = \frac{\Pr[x|y = 1] \Pr[y = 1]}{\Pr[x|y = 0] \Pr[y = 0] + \Pr[x|y = 1] \Pr[y = 1]} = \frac{1}{1 + \exp \ln \frac{\Pr[x|y = 0] \Pr[y = 0]}{\Pr[x|y = 1] \Pr[y = 1]}} = \frac{1}{1 + \exp (\ln \frac{\Pr[y = 0]}{\Pr[y = 1]} + \ln \frac{\Pr[x|y = 0]}{\Pr[x|y = 1]})}$$

So far, it is true for any model.
Logistic Regression vs Gaussian Naïve Bayes

• Setting \(x = (x_1, \ldots, x_k) \) real-vector and \(y \) Boolean value.

\[
Pr[y = 1|x] = \frac{1}{1 + \exp \left(\ln \frac{Pr[y=0]}{Pr[y=1]} + \ln \frac{Pr[x|y = 0]}{Pr[x|y = 1]} \right)}
\]

Under Naïve Bayes: \(Pr[x|y] = \prod Pr[x_i|y] \), so we have

\[
= \frac{1}{1 + \exp \left(\ln \frac{Pr[y=0]}{Pr[y=1]} + \sum \ln \frac{Pr[x_i|y = 0]}{Pr[x_i|y = 1]} \right)}
\]

Under Gaussian Naïve Bayes with variance independent of class:

\[
Pr[x_i|y = 1] = \frac{1}{\sigma_i \sqrt{2\pi}} e^{\frac{-(x_i - \mu_{i,1})^2}{2\sigma_i^2}}
\]

\[
Pr[x_i|y = 0] = \frac{1}{\sigma_i \sqrt{2\pi}} e^{\frac{-(x_i - \mu_{i,0})^2}{2\sigma_i^2}}
\]

\[
\sum \ln \frac{Pr[x_i|y = 0]}{Pr[x_i|y = 1]} = \sum \left(\frac{\mu_{i,0} - \mu_{i,1}}{\sigma_i^2} x_i + \frac{\mu_{i,0}^2 - \mu_{i,1}^2}{2\sigma_i^2} \right)
\]
Logistic Regression vs Gaussian Naïve Bayes

- Setting \(x = (x_1, \ldots, x_k) \) real-vector and \(y \) Boolean value.

\[
\Pr[y = 1|x] = \frac{1}{1 + \exp \left(\ln \frac{\Pr[y = 0]}{1 - \Pr[y = 0]} + \sum \left(\frac{\mu_{i,0} - \mu_{i,1}}{\sigma_i^2} x_i + \frac{\mu_{i,0}^2 - \mu_{i,1}^2}{2\sigma_i^2} \right) \right)}
\]

Take \(\omega_0 = \ln \frac{\Pr[y=0]}{1-\Pr[y=0]} + \sum \frac{\mu_{i,0}^2 - \mu_{i,1}^2}{2\sigma_i^2} \) and \(\omega_i = \frac{\mu_{i,0} - \mu_{i,1}}{\sigma_i^2} \)

\[
\Pr[y = 1|x] = \frac{1}{1 + \exp(\omega_0 + \sum \omega_i x_i)}
\]

The same form as logistic regression!
Logistic Regression vs Gaussian Naïve Bayes

\[\text{argmax}_y \Pr[y|x] : \text{the most probable classification of } x \]

<table>
<thead>
<tr>
<th>Naïve Bayes (NB)</th>
<th>Logistic Regression (LR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Use (\Pr[y</td>
<td>x] = \frac{\Pr[x</td>
</tr>
<tr>
<td>- Assume (\Pr[x</td>
<td>y] = \prod \Pr[x_i</td>
</tr>
<tr>
<td>- Choose a representation of (\Pr[x_i</td>
<td>y]) and (\Pr[y])</td>
</tr>
<tr>
<td>- Learn (\Pr[x_i</td>
<td>y]) and (\Pr[y]) from data.</td>
</tr>
</tbody>
</table>
Logistic Regression vs Gaussian Naïve Bayes

\[
\arg\max_y \Pr[y|x]: \text{the most probable classification of } x
\]

<table>
<thead>
<tr>
<th>Naïve Bayes (NB)</th>
<th>Logistic Regression (LR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Generative classifier</td>
<td>• Discriminative classifier</td>
</tr>
<tr>
<td>• Can generate new data. We know (\Pr[x_i</td>
<td>y]) and (\Pr[y])</td>
</tr>
</tbody>
</table>
Logistic Regression vs Gaussian Naïve Bayes

\[
\text{argmax}_y \Pr[y|x]: \text{the most probable classification of } x
\]

<table>
<thead>
<tr>
<th>Naïve Bayes (NB)</th>
<th>Logistic Regression (LR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Generally not linear classifier</td>
<td>• Linear classifier</td>
</tr>
<tr>
<td>• When it is linear?</td>
<td></td>
</tr>
</tbody>
</table>

Gaussian NB with class independent variance is representationally equivalent to LR.
- When training data is infinite and the model is correct, they produce the identical classifier.
- When model is not correct, LR is less biased.
Summary

- **Least Squares Method**
 - The difference between the observed value and the predicted value
 - A measure of the hypothesis
 - Smooth functions
 - Optimization methods

- **Linear Regression**
 - Assume $y = ax + b$
 - y_i are real numbers.

- **Logistic Regression**
 - Assume $\Pr[y|x]$ follows a particular distribution.
 - Linear classifier: y_i are binary.

- **Regularization: penalize large parameters**
 - Hard constraint on objective function & Prior distribution

-**Naïve Bayes vs Logistic Regression**