Algorithm Design and Analysis
Lecture 20

NP-Completeness

• More NPC problems.
More NPC problems

• How to prove a problem A is NPC?
 • (1) prove it is in NP.
 • (2) find an NPC problem B, prove $B \leq_p A$

• The first NPC problem.
• Circuit Satisfiability Problem.
More NPC problems

• SAT Problem:
Boolean Satisfiability Problem

• A boolean formula:
• 1. n boolean variables: x_1, \ldots, x_n
• 2. m boolean connectives: \land (AND), \lor (OR), \neg (NOT), \rightarrow (implication), \leftrightarrow (if and only if).
• 3. parentheses

• E.g. $\Phi = ((x_1 \rightarrow x_2) \lor ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$

• Assignment: assigning each variable a value.
• Each assignment is associated with an output.

• Assignment: $x_1 = 0, \ x_2 = 0, \ x_3 = 1, \ x_4 = 1$
• Output: $\Phi = ((x_1 \rightarrow x_2) \lor ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2 = 0$ (exercise)
Boolean Satisfiability Problem

• A boolean formula:
 • 1. \(n \) boolean variables: \(x_1, \ldots, x_n \)
 • 2. \(m \) boolean connectives: \(\land (\text{AND}), \lor (\text{OR}), \neg (\text{NOT}), \rightarrow (\text{implication}), \leftrightarrow (\text{if and only if}) \).
 • 3. parentheses

• E.g. \(\Phi = ((x_1 \rightarrow x_2) \lor ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2 \)

• A boolean formula is **satisfiable** if there is an assignment giving output 1.

• Input size: polynomial in \(n \) and \(m \).

• **SAT Problem**: given a boolean formula, is the formula satisfiable?
Boolean Satisfiability Problem

- **SAT Problem**: given a boolean formula, is the formula satisfiable?

- (Theorem) SAT is NP complete.
 - 1. $SAT \in NP$: we can verify it in polynomial time.
 - 2. **SAT is NP-hard**: Circuit Satisfiability $\leq_p SAT$. (Theorem 34.9 textbook)
Boolean Satisfiability Problem

• **SAT Problem**: given a boolean formula, is the formula satisfiable?

• (Theorem) SAT is NP complete.
 1. \(SAT \in NP \): we can verify it in polynomial time.
 2. **SAT is NP-hard**: Circuit Satisfiability \(\leq_p SAT \). (Theorem 34.9 textbook)

• SAT is too complicated. One convenient language is a special SAT problem, 3-SAT.
3-SAT

- Variable: x_1, \ldots, x_n
- Literal: x_1, \ldots, x_n and $\neg x_1, \ldots, \neg x_n$

- A boolean formula is in conjunctive normal form (CNF), if it is expressed as an $\text{AND}(\wedge)$ of clauses, each of which is the $\text{OR}(\vee)$ of one or more literals.
- E.g. $(\neg x_3 \lor x_2 \lor x_4 \lor \neg x_1) \wedge (x_2 \lor x_4) \wedge (\neg x_1)$

- A boolean formula is in k-conjunctive normal form (k-CNF), if it is in CNF and each clause has exactly k distinct literals.

- A boolean formula is in 3-conjunctive normal form (3-CNF), if it is in CNF and each clause has exactly 3 distinct literals.
- E.g. $(\neg x_3 \lor x_2 \lor x_4) \wedge (x_2 \lor x_4 \lor \neg x_1) \wedge (\neg x_1 \lor x_2 \lor x_4)$
3-SAT

• A boolean formula is in 3-conjunctive normal form (3-CNF), if it is in CNF and each clause has exactly 3 distinct literals.

• E.g. \((\neg x_3 \lor x_2 \lor x_4) \land (x_2 \lor x_4 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_4)\)

• 3-SAT Problem: given a 3-CNF formula, it is satisfiable?

• 3-SAT is NPC.

 • 3-SAT is not harder than SAT as it is a special case of SAT.
 • 3-SAT is also not easier than SAT.
 • (Theorem) SAT \(\leq_P\) 3-SAT.
 • (Sketch) Every boolean formula can be converted to a 3-CNF with the same satisfiability.

 • S-SAT is in NP.
3-SAT

• A boolean formula is in 3-conjunctive normal form (3-CNF), if it is in CNF and each clause has exactly 3 distinct literals.

• E.g. \((\neg x_3 \lor x_2 \lor x_4) \land (x_2 \lor x_4 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_4)\)

• 3-SAT Problem: given a 3-CNF formula, it is satisfiable?

• 3-SAT is NPC.

 • 3-SAT is not harder than SAT as it is a special case of SAT.
 • 3-SAT is also not easier than SAT.
 • (Theorem) SAT \(\leq_p\) 3-SAT.
 • (Sketch) Every boolean formula can be converted to a 3-CNF with the same satisfiability.

• S-SAT is in NP.
Problems

\[\leq P \]

Circuit Satisfiability Problem.

\[\rightarrow \]

SAT

\[\rightarrow \]

3-SAT
Decision vs Optimization

• Optimization Problem.
• A candidate solution set S.
• An objective function f.
• Find the $s \in S$ such that $f(s)$ is maximized or minimized.

• E.g.
• Minimum s-t cut problem.
• A candidate solution set S: all the possible cuts
• An objective function f: the capacity of the cut
• Find a cut such that f is minimized.

• Goal: decide if there is a polynomial algorithm to solve an optimization problem.
Decision vs Optimization

- Optimization Problem.
- A candidate solution set S.
- An objective function f.
- Find the $s \in S$ such that $f(s)$ is maximized or minimized.

E.g.
- Minimum s-t cut problem.
- A candidate solution set S: all the possible cuts
- An objective function f: the capacity of the cut
- Find a cut such that f is minimized.

Goal: decide if there is a polynomial algorithm to solve an optimization problem.
Decision vs Optimization

• Optimization Problem.
• A candidate solution set S.
• An objective function f.
• Find the $s \in S$ such that $f(s)$ is maximized or minimized.

• E.g.
• Minimum s-t cut problem.
• A candidate solution set S: all the possible cuts
• An objective function f: the capacity of the cut
• Find a cut such that f is minimized.

• Goal: decide if there is a polynomial algorithm to solve an optimization problem.
Decision vs Optimization

- Optimization Problem.
- A candidate solution set S.
- An objective function f.
- Find the $s \in S$ such that $f(s)$ is maximized or minimized.

- For a maximization problem:
 - Decision Version:
 - Given a number k, is there a solution s in S, such that $f(s) \geq k$?

- For a minimization problem:
 - Decision Version:
 - Given a number k, is there a solution s in S, such that $f(s) \leq k$?
Decision vs Optimization

• Optimization Problem.
• A candidate solution set S.
• An objective function f.
• Find the $s \in S$ such that $f(s)$ is maximized or minimized.

• For a maximization problem:
 • Decision Version:
 • Given a number k, is there a solution s in S, such that $f(S) \geq k$?

• For a minimization problem:
 • Decision Version:
 • Given a number k, is there a solution s in S, such that $f(s) \leq k$?
Decision vs Optimization

- Optimization Problem.
- A candidate solution set S.
- An objective function f.
- Find the $s \in S$ such that $f(s)$ is maximized.

What is the relationship between the decision problem and the optimization problem?

For a maximization problem:
- Decision Version:
 - Given a number k, is there a solution s in S, such that $f(S) \geq k$?

- If there is an polynomial algorithm to solve the maximization problem, then there is an polynomial algorithm to solve its decision problem for each k.
- \implies If for a certain k the decision problem is “hard”, the optimization problem is hard.
Decision vs Optimization

- Optimization Problem.
- A candidate solution set S.
- An objective function f.
- Find the $s \in S$ such that $f(s)$ is maximized.

- For a maximization problem:
- Decision Version:
 - Given a number k, is there a solution s in S, such that $f(S) \geq k$?

- If there is a polynomial algorithm to solve the maximization problem, then there is an polynomial algorithm to solve its decision problem for each k.
- => If for a certain k the decision problem is “hard”, the optimization problem is hard.

What is the relationship between the decision problem and the optimization problem?
Decision vs Optimization

- Optimization Problem.
- A candidate solution set S.
- An objective function f.
- Find the $s \in S$ such that $f(s)$ is maximized.

- For a maximization problem:
 - Decision Version:
 - Given a number k, is there a solution s in S, such that $f(S) \geq k$?

- If there is a polynomial algorithm to solve the maximization problem, then there is a polynomial algorithm to solve its decision problem for each k.

- If for a certain k the decision problem is “hard”, the optimization problem is hard.
What is the relationship between the decision problem and the optimization problem?

- Optimization Problem.
- A candidate solution set S.
- An objective function f.
- Find the $s \in S$ such that $f(s)$ is maximized.

For a maximization problem:
- Decision Version:
 - Given a number k, is there a solution s in S, such that $f(S) \geq k$?

- If there is a polynomial algorithm to solve the maximization problem, then there is a polynomial algorithm to solve its decision problem for each k.
- \Rightarrow If for a certain k the decision problem is “hard”, the optimization problem is hard.
Independent Set

• Given a graph we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

• The smallest independent set is trivial. How to find the largest one?

• (Independent Set) Given a graph G, find the size of the largest independent set. [Optimization version.]

• (Independent Set) Given a graph G and a number k, determine if there is an independent set of size at least k. [Decision version.]
Independent Set

• Given a graph we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

• The smallest independent set is trivial. How to find the largest one?

• (Independent Set) Given a graph G, find the size of the largest independent set. [Optimization version]

• (Independent Set) Given a graph G and a number k, determine if there is an independent set of size at least k. [Decision version]
Independent Set

- Given a graph we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

- Enumerate all the solutions?

- Randomly add a feasible node to the current set?
Independent Set

• Given a graph we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

• Enumerate all the solutions?

• Randomly add a feasible node to the current set?
Independent Set

- Given a graph we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

- Enumerate all the solutions?

- Randomly add a feasible node to the current set?
Independent Set

• Given a graph we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

• Enumerate all the solutions?

• Randomly add a feasible node to the current set?
Independent Set

- Given a graph we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.
Independent Set

• Given a graph we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

• Enumerate all the solutions?

• Randomly add a feasible node to the current set?

• Smartly select the node?
 • We do not know if we can find the optimal in polynomial.
Independent Set

• (Independent Set) Given a graph G, find the size of the largest independent set. [Optimization version]

• (Independent Set) Given a graph G and a number k, determine if there is an independent set of size at least k. [Decision version]

• Comparing the above two problems in terms of polynomial computability:
 • If the optimization version is polynomial solvable, the decision version is polynomial solvable.
 • If the decision version is polynomial solvable for each k, the optimization version is polynomial time solvable.
Independent Set

• (Independent Set) Given a graph G, find the size of the largest independent set. [Optimization version]

• (Independent Set) Given a graph G and a number k, determine if there is an independent set of size at least k. [Decision version]

• Comparing the above two problems in terms of polynomial computability:
 • If the optimization version is polynomial solvable, the decision version is polynomial time solvable.
 • If the decision version is polynomial solvable for each k, the optimization version is polynomial solvable.
Independent Set

• (Independent Set) Given a graph G and a number k, determine if there is an independent set of size at least k. [Decision version]

• The decision version of the independent set problem is NP-complete.

• It is in NP.

• It is NP-hard. We prove this by showing 3-SAT \leq_P Independent Set.
Independent Set

- 3-SAT \(\leq_p \) Independent Set.
- Given an instance of 3-SAT with \(n \) variables \(\{x_1, ..., x_n\} \) and \(k \) clauses \(C_1, ..., C_k \).
- \((l_1^1 \lor l_2^1 \lor l_3^1) \land (l_1^2 \lor l_2^2 \lor l_3^2) \land (l_1^3 \lor l_2^3 \lor l_3^3) \land ... \land (l_1^k \lor l_2^k \lor l_3^k)\)
- \(l_i^j \in \{x_1, ..., x_n, \neg x_1, ..., \neg x_n\}\). Two literals \(a_1, a_2 \) are **conflict** if \(a_1 = \neg a_2 \).
Independent Set

• $3\text{-SAT} \leq_p$ Independent Set.
• Given an instance of 3-SAT with n variables $\{x_1, \ldots, x_n\}$ and k clauses C_1, \ldots, C_k.
• $(l_1^1 \lor l_2^1 \lor l_3^1) \land (l_1^2 \lor l_2^2 \lor l_3^2) \land (l_1^3 \lor l_2^3 \lor l_3^3) \land \ldots \land (l_k^1 \lor l_k^2 \lor l_k^3)$
• $l_i^j \in \{x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n\}$. Two literals a_1, a_2 are conflict if $a_1 = \neg a_2$.
• We construct an instance of independent set as follows.
 • Construct a graph $G = (V, E)$ with $3k$ nodes grouped into k triangles. Each triangle corresponds to a clause. For the i-th triangle, we label the nodes as l_i^1, l_i^2, l_i^3, corresponding to the literals in the i-th clause.
Independent Set

- 3-SAT \leq_p Independent Set.

- Given an instance of 3-SAT with n variables $\{x_1, \ldots, x_n\}$ and k clauses C_1, \ldots, C_k.

- $l_1^1 \lor l_2^1 \lor l_3^1 \land (l_1^2 \lor l_2^2 \lor l_3^2) \land (l_1^3 \lor l_2^3 \lor l_3^3) \land \cdots \land (l_1^k \lor l_2^k \lor l_3^k)$

- $l_i^j \in \{x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n\}$. Two literals a_1, a_2 are conflict if $a_1 = \neg a_2$.

- We construct an instance of independent set as follows.
 - Construct a graph $G = (V, E)$ with $3k$ nodes grouped into k triangles. Each triangle corresponds to a clause. For the i-th triangle, we label the nodes as l_1^i, l_2^i, l_3^i, corresponding to the literals in the i-th clause.
 - For each pair of nodes, add an edge between them if they are conflict literals.

![Diagram of a graph with labeled nodes and edges indicating conflict literals](image-url)
Independent Set

- $3\text{-SAT} \leq_p \text{Independent Set}.$
- $(x_1 \lor x_2 \lor x_4) \land (\neg x_1 \lor x_3 \lor \neg x_2)$
Independent Set

• 3-SAT \leq_P Independent Set.
• $(x_1 \lor x_2 \lor x_4) \land (\neg x_1 \lor x_3 \lor \neg x_2)$
Independent Set

- 3-SAT \leq_P Independent Set.
- $(x_1 \lor x_2 \lor x_4) \land (\neg x_1 \lor x_3 \lor \neg x_2)$
Independent Set

- 3-SAT \leq_p Independent Set.
- Given an instance of 3-SAT with n variables $\{x_1, \ldots, x_n\}$ and k clauses C_1, \ldots, C_k.
- $(l_1^1 \lor l_1^2 \lor l_1^3) \land (l_2^1 \lor l_2^2 \lor l_2^3) \land (l_3^1 \lor l_3^2 \lor l_3^3) \land \cdots \land (l_k^1 \lor l_k^2 \lor l_k^3)$
- $l_i^j \in \{x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n\}$. Two literals a_1, a_2 are conflict if $a_1 = \neg a_2$.
- We construct an instance of independent set as follows.
 - Construct a graph $G = (V, E)$ with $3k$ nodes grouped into k triangles. Each triangle corresponds to a clause. For the i-th triangle, we label the nodes as l_i^1, l_i^2, l_i^3, corresponding to the literals in the i-th clause.
 - For each pair of nodes, add an edge between them if they are conflict literals.

The 3-SAT instance is satisfiable iff the constructed graph has an independent of size k.

![Graph diagram with labeled nodes and edges]
Independent Set

• Part 1. Consider an assignment A of x_1, \ldots, x_n with output 1.

\[(l^1_1 \lor l^2_1 \lor l^3_1) \land (l^1_2 \lor l^2_2 \lor l^3_2) \land (l^1_3 \lor l^2_3 \lor l^3_3)\]
Independent Set

- Part 1. Consider an assignment A of x_1, \ldots, x_n with output 1.
- In each clause, at least one literal has value 1. For each clause, arbitrarily select one literal (node) with value 1, and we have a set of k nodes.

\[(l^1_1 \lor l^2_1 \lor l^3_1) \land (l^1_2 \lor l^2_2 \lor l^3_2) \land (l^1_3 \lor l^2_3 \lor l^3_3)\]
Independent Set

• Part 1. Consider an assignment A of x_1, \ldots, x_n with output 1.

• In each clause, at least one literal has value 1. For each clause, arbitrarily select one literal (node) with value 1, and we have a set of k nodes. We claim this set must be an independent set. That is, there is no edge between any pair of the nodes in this set.

\[(l_1^1 \lor l_1^2 \lor l_1^3) \land (l_2^1 \lor l_2^2 \lor l_2^3) \land (l_3^1 \lor l_3^2 \lor l_3^3)\]
Independent Set

• Part 1. Consider an assignment \(A \) of \(x_1, \ldots, x_n \) with output 1.

• In each clause, at least one literal has value 1. For each clause, arbitrarily select one literal (node) with value 1, and we have a set of \(k \) nodes. We claim this set must be an independent set. That is, there is no edge between any pair of the nodes in this set.

• First, for the pair of the nodes within the same triangle, ...

\[
(l_1^1 \lor l_1^2 \lor l_1^3) \land (l_2^1 \lor l_2^2 \lor l_2^3) \land (l_3^1 \lor l_3^2 \lor l_3^3)
\]
Independent Set

• Part 1. Consider an assignment A of x_1, \ldots, x_n with output 1.

• In each clause, at least one literal has value 1. For each clause, arbitrarily select one literal (node) with value 1, and we have a set of k nodes. We claim this set must be an independent set. That is, there is no edge between any pair of the nodes in this set.

• First, for the pair of the nodes within the same triangle, ...

• Second, for any two nodes crossing triangles, ...

\[(l^1_1 \lor l^2_1 \lor l^3_1) \land (l^1_2 \lor l^2_2 \lor l^3_2) \land (l^1_3 \lor l^2_3 \lor l^3_3)\]
Independent Set

- Part 2. Suppose G has an independent set S of size k.

\[(l_1^1 \lor l_2^1 \lor l_3^1) \land (l_1^2 \lor l_2^2 \lor l_3^2) \land (l_1^3 \lor l_2^3 \lor l_3^3)\]
Part 2. Suppose G has an independent set S of size k.

Consider the assignment A where a variable x has value 1 iff there is a literal $l^i_j \in S$ with $l^i_j = x$. We prove A is feasible and A is a true assignment.
Independent Set

- 3-SAT \leq_P Independent Set.
- $(x_1 \lor x_2 \lor x_4) \land (\neg x_1 \lor x_3 \lor \neg x_2)$

Independent set
\{x_2, x_3\}

Assignment
\[
\begin{align*}
x_1 &= 0 \\
x_2 &= 1 \\
x_3 &= 1 \\
x_4 &= 0 \\
x_5 &= 0
\end{align*}
\]
Independent Set

• Part 2. Suppose \(G \) has an independent set \(S \) of size \(k \).

• Consider the assignment \(A \) where a variable \(x \) has value \(1 \) iff there is a literal \(l_i^j \in S \) with \(l_i^j = x \). We prove \(A \) is feasible and \(A \) is a true assignment.

• \(A \) is feasible iff for each variable \(x \), \(x \) will be not be set as 1 and 0 simultaneously. That is, \(S \) cannot have two literals with \(x \) and \(\neg x \), respectively.
Independent Set

• Part 2. Suppose G has an independent set S of size k.

• Consider the assignment A where a variable x has value 1 iff there is a literal $l_i^j \in S$ with $l_i^j = x$. We prove A is feasible and A is a true assignment.

• A is feasible iff for each variable x, x will be not be set as 1 and 0 simultaneously. That is, S cannot have two literals with x and $\neg x$, respectively. A must be feasible, because for each pair of nodes x and $\neg x$, there is an edge in the graph between them and therefore they cannot both appear in an independent set.
Independent Set

• Part 2. Suppose G has an independent set S of size k.

• Consider the assignment A where a variable x has value 1 iff there is a literal $l_i^j \in S$ with $l_i^j = x$. We prove A is feasible and A is a true assignment.

• A is feasible iff for each variable x, x will not be set as 1 and 0 simultaneously. That is, S cannot have two literals with x and $\neg x$, respectively. A must be feasible, because for each pair of nodes x and $\neg x$, there is an edge in the graph between them and therefore they cannot both appear in an independent set.

• Since $|S| = k$ and each triangle has at most one node in S, it must be that each triangle has exactly one node in S. Therefore, for each clause, there is a literal with value 1. So A is a true assignment and the formula is satisfiable.

\[(l_1^1 \lor l_2^2 \lor l_3^3) \land (l_1^1 \lor l_2^2 \lor l_3^3) \land (l_1^1 \lor l_2^2 \lor l_3^3)\]
Independent Set

• (Independent Set) Given a graph G and a number k, determine if there is an independent set of size at least k.[Decision version.]

• The decision version of the independent set problem is NP-complete.
• It is in NP.
• It is N-hard. We prove this by showing 3-SAT \leq_P Independent Set.

• (Theorem) Independent Set is NP-complete.
Independent Set

\[\leq_P \]

Circuit Satisfiability Problem.

\[\downarrow \]

SAT

\[\downarrow \]

3-SAT

\[\rightarrow \]

Independent Set
Vertex Cover

• Given a graph, a set of nodes $S \subseteq V$ is a vertex cover if every edge has least one endpoint in S.

• Vertices cover edges.
Vertex Cover

• Given a graph, a set of nodes $S \subseteq V$ is a vertex cover if every edge has least one endpoint in S.

• Vertices cover edges.

• Example:
Vertex Cover

• Given a graph, a set of nodes $S \subseteq V$ is a vertex cover if every edge has at least one endpoint in S.

• Vertices cover edges.

• The largest vertex is trivial. How to find the smallest one?

• Example:
Vertex Cover

- Given a graph, a set of nodes $S \subseteq V$ is a vertex cover if every edge has least one endpoint in S.
- Vertices cover edges.

- The largest vertex is trivial. How to find the smallest one?

- (Vertex Cover) Given a graph G and a number k, does G contain a vertex cover of size at most k?

- Example:
Vertex Cover

• (Vertex Cover) A set of nodes $S \subseteq V$ is a vertex cover if every edge has least one endpoint in S.

• (Independent Set) A set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.
Vertex Cover

- (Vertex Cover) A set of nodes $S \subseteq V$ is a vertex cover if every edge has least one endpoint in S.

- (Independent Set) A set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

- Fact. If S is an independent set if and only if its complement $V \setminus S$ is a vertex cover.
Vertex Cover

• (Vertex Cover) A set of nodes $S \subseteq V$ is a vertex cover if every edge has at least one endpoint in S.

• (Independent Set) A set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

• Fact. If S is an independent set if and only if its complement $V \setminus S$ is a vertex cover.

• Example:
Vertex Cover

- (Vertex Cover) A set of nodes $S \subseteq V$ is a vertex cover if every edge has at least one endpoint in S.

- (Independent Set) A set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

- Fact. If S is an independent set if and only if its complement $V \setminus S$ is a vertex cover.

- Example:
Vertex Cover

• (Vertex Cover) A set of nodes $S \subseteq V$ is a vertex cover if every edge has at least one endpoint in S.

• (Independent Set) A set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

• Fact. If S is an independent set if and only if its complement $V \setminus S$ is a vertex cover.

• Suppose S is an independent set and $V \setminus S$ is not vertex cover. Then there is an edge (u, v) such that both u and v are not in $V \setminus S$, which means both of u and v are in S, contradicting that S is an independent set.

• Suppose S is a vertex cover and $V \setminus S$ is not an independent set. Then there is an edge (u, v) such that both u and v are in $V \setminus S$, which means both u and v are not in S, contradicting that S is a vertex cover.
Vertex Cover

• (Vertex Cover) A set of nodes $S \subseteq V$ is a vertex cover if every edge has least one endpoint in S.

• (Independent Set) A set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge

• Fact. If S is an independent set if and only if its complement $V \setminus S$ is a vertex cover.

• Suppose S is an independent set and $V \setminus S$ is not vertex cover. Then there is an edge (u, v) such that both u and v are not in $V \setminus S$, which means both of u and v and in S, contradicting that S is an independent set.

• Suppose S is a vertex cover and $V \setminus S$ is not an independent set. Then there is an edge (u, v) such that both u and v are in $V \setminus S$, which means both u and v are not in S, contradicting that S is a vertex cover.
Vertex Cover

• Fact. If S is an independent set if and only if its complement $V \setminus S$ is a vertex cover.

• (Vertex Cover) Given a graph G and a number k, does G contain a vertex cover of size at most k.

• (Independent Set) Given a graph G and a number k, determine if there is an independent set of size at least k.

• **Vertex Cover \leq_p Independent Set.** Given an instance (G, k) of the vertex cover problem, consider the instance $(G, n - k)$ of the Independent Set problem.

• **Independent Set \leq_p Vertex Cover.** Given an instance (G, k) of the Independent Set problem, consider the instance $(G, n - k)$ of the Vertex Cover.
Problems

\[\leq_P \]

Circuit Satisfiability Problem.

SAT

3-SAT

Independent Set

Vertex Cover
Set Cover
Set Cover

The pictures belong to their creators.
Set Cover

- There are some bags each of which has some cards.

The pictures belong to their creators.
• There are some bags each of which has some cards.
• Different bags may have the same card. And there are totally n different cards.
There are some bags each of which has some cards.
Different bags may have the same card. And there are totally \(n \) different cards.

You want to buy some bags, as few as possible, so that you will have all the different cards.

The pictures belong to their creators.
Set Cover

- There are some bags each of which has some cards.
- Different bags may have the same card. And there are totally n different cards.

- You want to buy some bags, as few as possible, so that you will have all the different cards.

- (Decision version) Are there k bags whose union has size n?
Set Cover

• (Set Cover) Given a set U of n elements (cards), a collection S_1, \ldots, S_m of subsets (bags) of U, and a number k, is there a collection of at most k of these subsets whose union is equal to U?
Set Cover

• (Set Cover) Given a set U of n elements (cards), a collection S_1, \ldots, S_m of subsets (bags) of U, and a number k, is there a collection of at most k of these subsets whose union is equal to U?

• This problem is in NP.

• This problem is NP-hard. We prove this by showing Vertex Cover \leq_P Set Cover.
Set Cover

• (Set Cover) Given a set U of n elements (cards), a collection S_1, \ldots, S_m of subsets (bags) of U, and a number k, is there a collection of at most k of these subsets whose union is equal to U?

• This problem is in NP.

• This problem is NP-hard. We prove this by showing Vertex Cover \leq_P Set Cover.

• Given an instance $(G = (V, E), k)$ of Vertex Cover, construct an instance of Set Cover, as follows.

• Let $U = \{e_1, \ldots, e_m\}$ be the set consisting of the edges in E. For each node v in V, construct a subset $S_v \subseteq U$ consisting of the edges adjacent to v.
Set Cover

- Let $U = \{e_1, ..., e_m\}$ be the set consisting of the edges in E. For each node v in V, construct a subset $S_v \subseteq U$ consisting of the edges adjacent to v.

$$U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$$
Set Cover

- Let $U = \{e_1, ..., e_m\}$ be the set consisting of the edges in E. For each node v in V, construct a subset $S_v \subseteq U$ consisting of the edges adjacent to v.

Let $U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$

$v_1 \{e_1, e_2, e_3\}$
$v_2 \{e_1, e_4\}$
$v_3 \{e_4, e_5\}$
$v_4 \{e_6\}$
$v_5 \{e_6, e_7\}$
$v_6 \{e_3, e_5, e_7\}$
Set Cover

- Let $U = \{e_1, \ldots, e_m\}$ be the set consisting of the edges in E. For each nodes v in V, construct a subset $S_v \subseteq U$ consisting of the edges adjacent to v.

\[U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\} \]

- G has a vertex cover of size k iff there exists a collection of k subsets whose union is U.
Set Cover

- Let $U = \{e_1, ..., e_m\}$ be the set consisting of the edges in E. For each node v in V, construct a subset $S_v \subseteq U$ consisting of the edges adjacent to v.

- G has a vertex cover of size k iff there exists a collection of k subsets whose union is U.

Vertex Cover $\{v_1, v_3, v_5\}$

$\begin{align*}
v_1 & \{e_1, e_2, e_3\} \\
v_2 & \{e_1, e_4\} \\
v_3 & \{e_4, e_5\} \\
v_4 & \{e_6\} \\
v_5 & \{e_6, e_7\} \\
v_6 & \{e_3, e_5, e_7\}
\end{align*}$
Set Cover

• Let $U = \{e_1, ..., e_m\}$ be the set consisting of the edges in E. For each nodes v in V, construct a subset $S_v \subseteq U$ consisting of the edges adjacent to v.

$$v_1 \{e_1, e_2, e_3\}$$
$$v_2 \{e_1, e_4\}$$
$$v_3 \{e_4, e_5\}$$
$$v_4 \{e_6\}$$
$$v_5 \{e_6, e_7\}$$
$$v_6 \{e_3, e_5, e_7\}$$

Vertex Cover $\{v_1, v_3, v_5\}$

Set Cover $\{e_1, e_2, e_3\} \{e_4, e_5\} \{e_6, e_7\}$

• G has a vertex cover of size k iff there exists a collection of k subsets whose union is U.
Problems

\[\leq P \]

Circuit Satisfiability Problem.

SAT

3-SAT

Independent Set

Vertex Cover

Set Cover
Hamiltonian Cycle

- (Theorem) Hamiltonian Cycle is NP-complete.

- Hamiltonian Cycle is in NP.
- Hamiltonian Cycle is in NP-hard.
Hamiltonian Cycle

• (Theorem) Hamiltonian Cycle is NP-complete.

• Hamiltonian Cycle is in NP.
• Hamiltonian Cycle is in NP-hard.

• 3-SAT \leq_P Hamiltonian Cycle.

• 8.17, pg 475, *Algorithm Design*, by Kleinberg and Tardos. (pdf available online)

• Vertex Cover \leq_P Hamiltonian Cycle.
• Theorem 34.13. pg 1091, *Introduction to Algorithms* (pdf available online)
Problems

\[\leq_p \]

- Circuit Satisfiability Problem.
 - SAT
 - 3-SAT
 - Independent Set
 - Hamiltonian Cycle
 - Vertex Cover
 - Set Cover
Problems

\[\leq_P \]

Circuit Satisfiability Problem.

- SAT
- 3-SAT

\[\leq_P \]

- Independent Set
- Hamiltonian Cycle
- Vertex Cover
- Hamiltonian Path
- Set Cover
Pseudo-polynomial

- If the input is a **numeric number** k, the input size is $O(\log k)$.
- $O((\log k)^c)$ for some constant c is **polynomial**.
- $O(k^c)$ for some constant c is **pseudo-polynomial**.
Numeric Problems

• (Subset Sum) Given a multiset S of n positive integers and an integer k, decide if S has a subset in which the sum of the elements is equal to k.

• (Multiset) May have duplicate elements.
Numeric Problems

• **(Subset Sum)** Given a multiset S of n positive integers and an integer k, decide if S has a subset in which the sum of the elements is equal to k.

• (Multiset) May have duplicate elements.

• (Recall) There exists a dynamic programming algorithm solving this problem in $\Omega(kn)$.

• Is this algorithm polynomial? No, it is pseudo-polynomial.
Numeric Problems

- **(Subset Sum)** Given a multiset S of n positive integers and an integer k, decide if S has a subset in which the sum of the elements is equal to k.

- (Multiset) May have duplicate elements.

- (Recall) There exists a dynamic programming algorithm solving this problem in $\Omega(kn)$.

- Is this algorithm polynomial? No, it is pseudo-polynomial.

- Suppose the input is $S = \{a_1, \ldots, a_n\}$ and k.
 - The input size is $\Omega(\sum \log a_i + \log k)$.
 - The algorithm runs in $\Omega(kn)$.
Numeric Problems

• (Subset Sum) Given a multiset S of n positive integers and an integer k, decide if S has a subset in which the sum of the elements is equal to k.

• (Multiset) May have duplicate elements.

• This problem is in NP. (check this by yourself)
• This problem is NP-hard. We can prove this by showing 3-SAT \leq_p Subset Sum. (Theorem 34.15)
Numeric Problems

• (Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.
(Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

There exists a dynamic programming algorithm solving this problem in $\Omega(Kn)$ where K is the value of the sum of elements in S. (similar to the midterm 1)

Is this algorithm polynomial? No, it is pseudo-polynomial.
Numeric Problems

• (Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• There exists a dynamic programming algorithm solving this problem in $\Omega(Kn)$ where K is the value of the sum of elements in S.

• Is this algorithm polynomial? No, it is pseudo-polynomial.

• Suppose the input is $S = \{a_1, ..., a_n\}$.

• The input size is $\Omega(\sum \log a_i)$. The algorithm runs in $\Omega(n \sum a_i)$.
Numeric Problems

• (Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum \leq_P Partition.
Numeric Problems

• (Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum \leq_P Partition.

• For an instance of the subset sum problem, a set S of integers and a number k, construct an instance of the partition problem with the input set $S^* = S \cup \{a - 2k\}$ where a is the sum of elements in S.
Numeric Problems

• **(Partition)** Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum \leq_P Partition.

• For an instance of the subset sum problem, a set S of integers and a number k, construct an instance of the partition problem with the input set $S^* = S \cup \{a - 2k\}$ where a is the sum of elements in S.

• $S = \{1, 2, 3, 4, 6, 7\}$ and $k = 8$. ($a - 2k = 23 - 2 \times 8 = 7$)
Numeric Problems

- (Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

- This problem is in NP. (check this by yourself)
- This problem is NP-hard. We can prove this by showing Subset Sum \leq_P Partition.

- For an instance of the subset sum problem, a set S of integers and a number k, construct an instance of the partition problem with the input set $S^* = S \cup \{a - 2k\}$ where a is the sum of elements in S.
- $S = \{1, 2, 3, 4, 6, 7\}$ and $k = 8$. ($a - 2k = 23 - 2 \times 8 = 7$)
- $S^* = \{1, 2, 3, 4, 6, 7, 7\}$. Sum$(S^*)=30$.
Numeric Problems

• *(Partition)* Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum $\leq P$ Partition.

• For an instance of the subset sum problem, a set S of integers and a number k, construct an instance of the partition problem with the input set $S^* = S \cup \{a - 2k\}$ where a is the sum of elements in S.

Numeric Problems

• **(Partition)** Given a multiset \(S \) of \(n \) integers, decide if \(S \) can be partitioned into two subsets \(S_1 \) and \(S_2 \) such that the sum of the numbers in \(S_1 \) is equal to the sum of the numbers in \(S_2 \).

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum \(\leq \) \(P \) Partition.

• For an instance of the subset sum problem, a set \(S \) of integers and a number \(k \), construct an instance of the partition problem with the input set \(S^* = S \cup \{ a - 2k \} \) where \(a \) is the sum of elements in \(S \).

• The total sum of \(S^* \) is \(2a - 2k \).

• If \(S \) has a subset \(S_1 \) with sum equal to \(k \), consider \(S_1 \cup \{ a - 2k \} \) and \(S^* \setminus \{ S_1 \cup \{ a - 2k \} \} \)
Numeric Problems

• (Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum \leq_P Partition.

• For an instance of the subset sum problem, a set S of integers and a number k, construct an instance of the partition problem with the input set $S^* = S \cup \{a - 2k\}$ where a is the sum of elements in S.

• $S = \{1, 2, 3, 4, 6, 7\}$ and $k = 8$. \{2, 6\}
Numeric Problems

• **(Partition)** Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum \leq_P Partition.

• For an instance of the subset sum problem, a set S of integers and a number k, construct an instance of the partition problem with the input set $S^* = S \cup \{a - 2k\}$ where a is the sum of elements in S.

 • $S = \{1, 2, 3, 4, 6, 7\}$ and $k = 8$.
 $\{2, 6\}$
 • $S^* = \{1, 2, 3, 4, 6, 7, 7\}$. Sum($S^*$)=30.
 $\{2, 6, 7\} \{1, 3, 4, 7\}$
Numeric Problems

• (Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum \leq_P Partition.

• For an instance of the subset sum problem, a set S of integers and a number k, construct an instance of the partition problem with the input set $S^* = S \cup \{a - 2k\}$ where a is the sum of elements in S.

• The total sum of S^* is $2a - 2k$.

• If S^* can be partitioned into two subsets S_1 and S_2 with the same sum, consider the one containing $\{a - 2k\}$.
Numeric Problems

• (Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum \leq_P Partition.

• For an instance of the subset sum problem, a set S of integers and a number k, construct an instance of the partition problem with the input set $S^* = S \cup \{a - 2k\}$ where a is the sum of elements in S.

• $S = \{1, 2, 3, 4, 6, 7\}$ and $k = 8$.

• $S^* = \{1, 2, 3, 4, 6, 7, 7\}$. $\text{Sum}(S^*)=30$. $\{2, 6, 7\} \{1, 3, 4, 7\}$
Numeric Problems

• (Partition) Given a multiset S of n integers, decide if S can be partitioned into two subsets S_1 and S_2 such that the sum of the numbers in S_1 is equal to the sum of the numbers in S_2.

• This problem is in NP. (check this by yourself)

• This problem is NP-hard. We can prove this by showing Subset Sum \leq_P Partition.

• For an instance of the subset sum problem, a set S of integers and a number k, construct an instance of the partition problem with the input set $S^* = S \cup \{a - 2k\}$ where a is the sum of elements in S.

• $S = \{1, 2, 3, 4, 6, 7\}$ and $k = 8$. \{2, 6\}

• $S^* = \{1, 2, 3, 4, 6, 7, 7\}$. Sum($S^*$)=30. \{2, 6, 7\} \{1, 3, 4, 7\}
Numeric Problems

<table>
<thead>
<tr>
<th>Price</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
<th>p_5</th>
<th>p_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>v_1</td>
<td>v_2</td>
<td>v_3</td>
<td>v_4</td>
<td>v_5</td>
<td>v_6</td>
</tr>
</tbody>
</table>

The pictures belong to their creators.
Numeric Problems

Price

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p_1</td>
<td>p_2</td>
<td>p_3</td>
<td>p_4</td>
<td>p_5</td>
</tr>
</tbody>
</table>

Value

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v_1</td>
<td>v_2</td>
<td>v_3</td>
<td>v_4</td>
<td>v_5</td>
</tr>
</tbody>
</table>

- You have totally B dollars.
- You want to buy some cards such that the total price is no larger than B and the total value is as much as possible.
Numeric Problems

• (Knapsack) Given a collection of n pairs of numbers, $(v_1, p_1), \ldots, (v_n, p_n)$ and a value B, solve the following problem:

\[
\text{maximize} \quad \sum v_i \cdot x_i \\
\text{subject to} \quad \sum p_i \cdot x_i \leq B \quad \text{and} \quad x_i \in \{0, 1\}
\]
Numeric Problems

• (Knapsack) Given a collection of n pairs of numbers, $(v_1, p_1), \ldots, (v_n, p_n)$ and a value B, solve the following problem:

 maximize \[\sum v_i \cdot x_i \]

 subject to \[\sum p_i \cdot x_i \leq B \text{ and } x_i \in \{0, 1\} \]

• (Decision version) Considering a threshold T, is there a solution with total price no larger than B and total value no less than T?

 \[\sum v_i \cdot x_i \geq T \]
 \[\sum p_i \cdot x_i \leq B \]
 \[x_i \in \{0, 1\} \]
Numeric Problems

• (Decision version) Considering a threshold T, is there a solution with total price no larger than B and total value no less than T?

• This problem is in NP.

• This problem is NP-hard. We prove this by showing Subset Sum \leq_P Knapsack.
Numeric Problems

• (Decision version) Considering a threshold T, is there a solution with total price no larger than B and total value no less than T?

• This problem is in NP.

• This problem is NP-hard. We prove this by showing Subset Sum \leq_P Knapsack

• Consider an instance of Subset Sum, \{${a_1, ... a_n}$\} and k.
• Construct an instant of Knapsack with $v_i=p_i=a_i$ and $B = T = k$.

\[
\sum v_i \cdot x_i \geq T
\]
\[
\sum p_i \cdot x_i \leq B
\]

$x_i \in \{0, 1\}$
Numeric Problems

• (Decision version) Considering a threshold T, is there a solution with total price no larger than B and total value no less than T?

• This problem is in NP.
• This problem is NP-hard. We prove this by showing Subset Sum \leq_P Knapsack

• Consider an instance of Subset Sum, $\{a_1, \ldots, a_n\}$ and k.
• Construct an instant of Knapsack with $v_i=p_i=a_i$ and $B=T=k$.

\[
\begin{align*}
\sum v_i \cdot x_i &\geq T \\
\sum p_i \cdot x_i &\leq B \\
x_i &\in \{0,1\}
\end{align*}
\begin{align*}
\sum a_i \cdot x_i &\geq k \\
\sum a_i \cdot x_i &\leq k \\
x_i &\in \{0,1\}
\end{align*}
\]

It has a solution iff there exists a subset with sum equal to k.

Circuit Satisfiability Problem.

\[\leq_P \]

SAT

3-SAT

Independent Set

Hamiltonian Cycle

Subset Sum

Vertex Cover

Hamiltonian Path

Partition

Set Cover

Knapsack
Problems

\[\leq_p \]

- Circuit Satisfiability Problem.
 - SAT
 - 3-SAT
 - Independent Set
 - Vertex Cover
 - Set Cover
 - Hamiltonian Cycle
 - Hamiltonian Path
 - Subset Sum
 - Partition
 - Knapsack

you need to know