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1 Preliminaries

1.1 Frames

VIO trajectory

Figure 1: Frames used in this report

Our integrated sensor system is composed of five different frames: East-North-Up (ENU) frame
{E}, VIO frame {V}, IMU sensor frame {I}, camera sensor frame {C}, and GPS sensor frame
{G}. Please see Fig. 1 for a diagram of all frames. {E} is the frame of the reference of the GPS
measurements that its position is commonly chosen by setting the first GPS measurement as the
datum, and {V'} is the local frame set up by the visual inertial odometry (VIO) system. Both the
orientations of the frames are aligned with gravity.

1.2 MSCKF based VIO

The standard VIO state x; at timestep k consists of the current IMU state x;, and n historical
IMU pose clones x¢, [1]. All states are represented in the arbitrarily chosen gravity aligned frame
of reference, {V'}:

1% VT VT 1T
Xk = [ Xlk Xck] (1)
14 IyzT Vv T VT T 17
-
\% Iy = Ty =
X, = [Vk i vaTk_1 oo DT VpITk_n] (3)

where ‘I}“cj is the JPL unit quaternion [2] corresponding to the rotation from {V} to {I} (i.e.,
rotation matrix {/’CR), Vpy, and Vv, are the position and velocity of {I} in {V'}, and by, and b,
are the gyroscope and accelerometer biases, respectively. We define x = x HH X, where x is the true
state, X is its estimate, X is the error state, and the operation H which maps a manifold element
and its correction vector to an updated element on the same manifold [3].

1.2.1 IMU State Propagation

The linear acceleration a,, and angular velocity w,, measurements of the IMU are used for VX[k
propagation:

a, =a+ 1y Rg+b,+n, (4)
Wy, =w+ by, +n, (5)
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where a and w are true acceleration and angular velocity, g ~ [0 0 9.81] " is the global gravity, and
n, and n, are zero mean Gaussian noises. These measurements are used to propagate the IMU
state from timestep k to k + 1 based on the following generic nonlinear kinematic model [2]:

Ve Ve
Xl = f( Xlk\k7amk7wmk) (6)

where fqalb denotes the estimate at timestep a processing the measurements up to timestep b.
Specifically, given the continuous-time measurements w,,(t) and a,,(t) in the time interval
t € [tp,trt1], and their estimates, i.e. after taking the expectation, W(t) = wy,(t) — by(t) and
a(t) = anp(t) -1 R(t)g — ba(t), we can drive the propagation of IMU state from differential
kinematic equations. The solution to the quaternion evolution has the following general form:

g =O(tt)q (7)

Differentiating and reordering the terms yields the governing equation for ©(t, tx) as

O(t,tx) = 1/q 1+7 " 8)
= O(t, 1) = g gt (9)
1 I A
= SQw() y71ka (10)
1
— Q(v)e(t. 1) (1)
where Q(w) = [__L:?J C(j, |wx | is the skew symmetric matrix, and O (t,t;) = I4. If we take
w(t) = w to be constant over the the period At = t;11 — tx, then ©® can be expressed as [1]:
1
Ot1an,t) = exp (50w ) (12)
1
= cos <’ZJ’AL‘> Iy + = sin (’;’At) - Q(w) (13)
At
~ 1+ 5 Qw) (14)

where in the case of a small |w| the last equation can be used to approximate. We can formulate
the quaternion propagation from ¢, to ;1 using the estimated rotational velocity w(t) = @ as:

. 1 .
G = exp (2Q(Q)At>kaq (15)

Having defined the integration of the orientation, we can integrate the position and velocity over
the measurement interval:

Ve Ve ety
P, = PI, +/ vi(r)dr (16)
127
v v L oA fedt 3
="pr, + VAt - igAt —i—/t /t 1. Ra,(1)drds (17)
k k
Vi Ve Lo nat [ g
= "pr, + VAt — igAt + VR /t /t - Ran, (T)drds (18)
k k
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R . 1 5
= VPIk + VVIkAt - §gAt2 + {}“RTa (19)

Ve Ve bty

Vi = VI, —l—/t a(r)dr (20)
k

t
=V, — gAt VR d 21
Vi, — At + 1, Rap, (7)dr (21)

ty

v LaT tk+1t R
="V, —gAt+ R / I’iRam(T)dT (22)
I,

="V, —gAt+ RS (23)
bwk+1 = bwk (24)
Bak-H = Bak (25)

All of the above integrals could be solved or numerically solved for if one wishes to use the
continuous-time measurement evolution model.

To perform covariance propagation forward in time, we linearize Eq. (6) at the current estimate.
For the orientation error propagation, we use the following approximations:

VR~ (I3 - [{6x))i R (26)

I I
I:HR = exp(]:HO) (27)
= eXpGﬁ“é + ?;Hé) (28)

I A I A A
~ exp(+10) exp(3, (-1 6)/+) (29)
I a I NV A

~ g RT3 = [J(;;70), 7 0x]) (30)

where J, is right Jacobian matrix of SO(3), and exp(-) is the SO(3) matrix exponential [5]. The
the orientation error propagation become:

PR =RER (31)

= (I3 — [0 )PP R ~ PRI — [J(1710)7 70 ) (Is — [(10x]) PR (32)
= —[FHOx R & PRI 0x R — FUR[FOx ] FR (33)
RGO 0 [H0x R (34)

= —[FHOx TR~ PRI 0x R — FUR[(FOxFR (35)
S0~ RI(0) 0 + 1 R0 (36)

.. . . Thi1 ) . . .
Thus the state transition of orientation error becomes I:“R. Since the orientation error is not

related to Vpr,Vv; the error transitions for these parameters are zero.

For the error propagation of regular vectors, such as ¥Vp Ii» Vv 1., and b, we define error state
as X = X + X where x is the true state, X is its estimate, X is the error state. Then the position
error propagation:

1
Vpre, = "pr, + Vv At — igAtQ + IR o (37)
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. _ . - . - 1 - ~
= Vp1k+1 + VpIk+1 = fok + fok + VVIkAt + VVIkAt o §gAt2 + &RT(IB + L{/ICGXJ)O‘

= Vf)lk+1 = Vf)Ik + V‘N/[kAt + {/{CRT L{/kéxja
= Vs, + Vv At — PR [ax]{k0

— Vb, + Vv At — |FRTax | FRTIF0

. - R . . 1 - ~
= VPIk + VV[kAt — \_ijl€+1 — Vp[k — VV]kAt + §gAt2XJ{}CRT{/’cH

(38)
(39)
(40)
(41)
(42)

42

where At = t;.1 — t. Therefore the transition of position error from Vp 1, is I3, from orientation

Vb1, — Vb, — YV At + %gAtQXJ{}“RT, from velocity AtIs.
The velocity error propagation is as follows:
VV[,H_I = Vvlk —gAt —|—{/’“ R'3
= Vp 4V, = Ve 4V —gAt+ R (1 + [ F0x )8
=V, =" v, +ERT(20xB
=V, —URT|Bx]r0
="vi, — [PRTBx R0

V- V4 V& It HTIkp
= V[k—|_ Vi — V[k—l—gAtXJVkR Vka

Therefore the error transition from velocity becomes Is and the transition of velocity from orien-

tation LV\AI[,CJrl - V\A/[k + gAtXJ{}CRT.
For the biases:

To summarize, the error state transition matrix of IMU become:

BHRLRT 03 03
Vb1, — Vb, — VAt + LgARx [FRT I3 Atl;
D(tpyr,tr) = YV, =Y+ gAtxj{,’fRT 05 I
03 03 O3
i 03 03 03

We use the transition matrix to propagate the covariance matrix of IMU state as:

Pk = @ (et o) Prp®(tesr te) | + Qi

where P and Q are discrete state and noise covariance, respectively [1].

1.2.2 Visual Measurement Update

We maintain a number of stochastic clones in v

03
03
03
I3

(53)

x¢,,, and perform visual feature tracking to obtain

series of visual bearing measurements to 3D environmental features. A measurement z., at timestep
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i is expressed as a function of a cloned pose and feature position Vp f

ze, = (“py) +m; (55)
II <[x Yy Z]T> = [Z %]T (56)
Cipf = CR{}R (fo - foi) +%p; (57)

where ?R and “p; represent the camera to IMU extrinsics. To get an estimate of V'p , triangulation
is performed using the current state estimates. Then we compute the Jacobian matrix by linearizing

V o~

Eq. (55) at current estimate and feature position Vpy = [Vi"f Ur V,éf] " The Jacobian matrix

respect to {}q’, iji, and fo for the update are:

0z.,  0Z, 0“py 0z, 0z, 0“py (58)
01:6  0%py 0116 oVpr, 0%pyoVpr,
1 Cigy
O, _ 07, OBy 02, _ |75 0 oz (59)
py %Py 0Vps O%ipy 0 L o9
1Zf zzf
O“Dr iy LtV v 0Py CHLTH
L CRIER(Vp; — Vbu,)x 2~ _ORLR 60
8{}9 I LV ( f L) J 8Vp1i Iy ( )
aoif’f CH LA
LY = YRIR (61)

Stacking the Jacobians and residuals for all visual measurements yields the following general
form:

7. =H, "% + H;Vp; + ny (62)

where z. is formed by stacking the individual measurement residuals for a given feature, H, and
H are the state and feature Jacobians, respectively. Either the feature can now be updated using
the standard EKF update or treated as a MSCKF feature [6]. The key idea of the MSCKF is to

find the matrix N/ (HJT) whose columns span the left null space of Hy. Multiplying the above linear

system on the left by N (H}—)T, we obtain a new measurement function that depends only on the
state:

z, =H,"%;, +nj (63)

We can directly use this measurement in an EKF update without storing features in the state.
This leads to substantial computational savings as the problem size remains bounded over the
entire trajectory.

2 GPS Measurement Update

In addition to the visual measurement update, whenever a new GPS measurement in the ENU
frame {E} is available, we will update the state with it. When the state is in {V'}, the GPS
measurement Eka at timestep k can be modeled as:

Zg, ‘= Eka = EPV + Ib/jRVka +ng, =: h(VXk) + 1y, <64)
Vpe, =" pi, + {/’“RTIPG (65)
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where 'pg is the GPS to IMU extrinsic calibration and ng, is a white Gaussian noise. Due to the
delayed asynchronous nature of the GPS sensor, the state has likely advanced beyond the collection
time and thus we express the measurement as a function of the available stochastic clones. Using

linear interpolation [6], the IMU pose in Eq. (65) can be expressed as:
¥R = Exp (A Log (PRIRT) ) IR (66)
Vpr, =1 =X ps, + A\ py, (67)
A= (tp +Ttg —ta)/(ty — ta) (68)

where ‘tg is the time offset between the GPS and IMU clocks, the bounding poses have times-
tamps t, < (tp + tg) < tp, and Exp(-), Log(-) are the SO(3) matrix exponential and logarithmic
functions [5].

As evident from Eqs. (64)-(68), the GPS measurement model depends on both the IMU states
and the GPS-IMU extrinsic and time offset, thus enabling online spatiotemporal GPS-IMU cali-
bration. To update with this measurement in the MSCKF, we include the extrinsic and timeoffset
parameters in the state as:

T

and compute the Jacobian matrix respect to {}’cj, Vpla, {}’q, ijb, 5(}, Epy, 'pe and tg as:

oz 0z 0,0 oz 0z 9Vpy, (70)
0 9000 p1, 0Py, 0PI,

oz 0z 10 oz 0z 3py, ()
oo okeole 9Vpr, 9Vpr, 9VDy,

0z N g 0z
% = (LPR(Vpr, + YR Pc)x])- oy I3 (72)
07  paliarT 0z 0z 9150 O 0z 9Vpr, OA
'pe RvR e ol X dig b, 0 olig (73)
0z 5 9740 bavr RbA—l A< A
e —VRYRT "o x| aéé = 1(Ae0)(JI:(Ae0) " = A (20)7) (74)

0z EB 8‘/13[ 3
—— =FR = (1 - M) 75
8fok 14 8Vpla ( ) 3 ( )
oy:6 ST 030 AT, (b Ay -1 Vb1,
V= = AN\ e E = I 76
o 1(Aa0)1(,0) b, 3 (76)
0150 b Ab A 3" p A A

ox ~ Ti6)a Sl Vi, — Vi, (77)
oA 1 bp LplepT

A 6 = Log({RI*R
P — a og(yRyR ) (78)

where (+), is the third column of the matrix. This is because while here £R is written as a full
rotation matrix, we represent it as one that only rotates about the global gravity aligned z-axis.
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3 Observability: VIO Reference Frame

3.1 Observability matrix

As system observability plays an important role for state estimation [7, ], in this section we
perform an observability analysis for the proposed GPS-aided VIO system to gain insights about
state/parameter identifiability. For concise presentation, we consider a simplified case where the
state does not contain biases or stochastic clones and assumes a single feature with perfectly
synchronized and calibrated sensors, while the results can be extended to general cases:

.
Vv Iy = _
xe=[fa" Vel Vv Vo] Fa' Fpi] (79)

Also the measurement functions of (55) and (64) in this case become:

ze, = T(%Fpy) + my, (80)
“pr=1tR(Ypr—Vpr1,) (81)
Zg, = EPV + gRVp]k +1ng, (82)

The linearized error state evolution and residuals of both the GPS and visual measurement are
generically given by:
Vg, =V ®(ty, to) %o + Wy (83)

Zp = VHkV)NCk + nyg (84)

We first compute the state transition matrix which can be easily taken from Eq. (31)-(53):

{/kf{{?fﬂ 03 03  O3x7
Ve Va Ve 1 A2 IR T
V(o) = |V Pr1, VApIO VAVIOAH_ 2gﬁtA?JVR I3 Atlz 0347 (85)
—|_ Vi, — Vi, —i—gAtvaR 03 | 03«7
07x3 O7x3 O7x3 Iy

where At =t — tp.
Linearization of Eq. (80) respect to the state (79) yields the following measurement Jacobians:

0z, [0, O, 0z Oz  Odey  Diey (86)
oVxy, - a{/ké oVpy, Vv 0Vby 09E6 9Ypv
0ze, _ O2c, 0Dy 0ze, _ 0z, 09Dy (87)
8156 9Dy 916 oVpr,  0%pyoVpr,
2 e (88)
v, oVpy 0%py 0Vps
0%z, 0z,
ope ! 0Py~ )
1 Ckiy
0z, Oy 0 ICE 80’“131” L (Vo VA
: = =H = = [yR("py — "Pr)x]  (90)
C 1 Cryg I T v f k
OCpy 0 oz —Ck2§ 0y 0
%Py I O%Ppr 1
GVf)Ik 4 3V13f \4 ( )
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and linearization of Eq. (82) respect to the state (79) yields the following measurement Jacobians:

0Zg, [0y, Oz, 07, Ozg,  Ozg,  Ozg, 99
V%, o6 0"pn, 0%y O'b; oE6 0%bv (92)
D7, 0z =
ol Vb,
7, 07,
8VV[k anf ( )
aigk ERpV 0z
E— (|ERVpy, x S P 95
I (v 2 x1)z 9 py (95)

Stacking Eq. (86) and Eq. (92) we get the general Jacobian of the state as:

VH, — Hp L{/k R(VDr — Vbr)x] _HHA\[}CR O2x3 HH{}“f{ 0251 02x3 (96)
03 IR 03 03 (IERYprx]). I3
Now we can construct the observability matrix VM (see [9]).
i T, Ty T3 Ty 0y O
VNl — | VLY 1% _ (I e I's Iy 02x1 O2x3
M = Hy, (I)(tk‘a tU) ,  Hg @(tkv tO) - s T's 7 0 Ts Ty :| (97)
A 1 A

Ty =HnR|Ypr - Vb1, — Vv, At + S8ALEx JORT (98)
I, = —Hp R, I'; = —AtHpR (99)

R I X . 1 .
I, = Hy'R, L5 = —VR["pr, — b1, — Vi At + SgAPx [PRT (100)
I's=ER, r; = AtER (101)
s = ([{RYpr, %)), I (102)

3.2 Rotation of {V} respect to {E} along the gravity axis

For the observability analysis, we change of the initial conditions (at ¢y) by a perturbation. The

first perturbation is a small rotation of {V'} respect to {E} along the gravity axis. This can be
mathematically represented as:

CR=URUR'T (103)

=ER(I+ |agx]) (104)

where « is small scalar. Now we analyze how this change is equivalent to the state’s perturbation.
For the orientation:

(IT-[6x))PR =R (105)
= PR(I+ [ogx]) (106)
=10 = —o’Rg (107)
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Apply the perturbation Eq. (104) to initial position of IMU in VIO

Vipr, =V pv+ 1 RVpy,

= 03x1 + (I— ogx])"py,
= (I-agx))"pu,
Then the perturbation of the position of IMU in (79) become:

’

Vo, + P =" pr

(I [agx])"pry
= Vf)lo = _Langvpfo
alVpr,x]g

Apply the perturbation Eq. (104) to initial velocity of IMU in VIO

\%4 %4 ViRV
Vi, = Vv—I—VR Vi,

=03x1 +(I— \_O‘gXJ)VVIO
= (I— lagx])"vy,

Then the perturbation of the velocity of IMU in (79) become:

Vi, + V¥, =V v,
= (I- lagx])"vy,
= Vv, = —lagx]Vvy,
= ozLVVIO x|g

Apply the perturbation Eq. (104) to initial position of feature in VIO

Vipr=Vpr+V RVp;

= 0351 + (I - lagx])"py
= (I agx))"py
Then the perturbation of the position of feature in (79) become:
Yps+ Vs =" py
= (I~ [agx])"py
= "ps = —|agx|Vpy
= ol prx]g
Lastly, the perturbation of the rotation from {V'} to {E} become:
(I-[Véx]))R=VR
= VR(I+ lagx])

RPNG-2019-GPS



where (-)3 is the third element of the vector. Therefore, the perturbation of initial condition can
be represented as state perturbation as:

© oliRg T
agpmxjg
Vg Q| VX |g
olVprx g (133)
(—agRg):s
03x1

Clearly, VH,Y ®(t, o)V X, yields zero matrix. Therefore, the V%, is in null space of VHY ®(ty, to),
which means the rotation of {V'} respect to { £} along the gravity axis is unobservable.

3.3 Translation of {V'} respect to {E£}
Now we try perturbing the “py by T = ae; + fes + ves where e; for i = 1,2, 3 are standard basis:
Epyr=Fpy +T (134)

Apply the perturbation Eq. (134) to the initial position of the IMU:

V/

p, =" 'pv +1 RVps, (135)
=""pp+ Rpy + Vi, (136)
=R Ppy + {RPpy + Vpy, (137)
=R T+ "Vpy, (138)

Then the perturbation of the position of IMU in (79) become:
"o+ b, ="' ps, (139)
= —yR'T+"Vpy, (140)
=V p,=-(R'T (141)

Apply the perturbation Eq. (134) to the position of the feature:

V'py=""pv+V R"p; (142)
=""pe+ 5 Rpy + Vp; (143)
= —{R Ppy + R Fpy + Vp; (144)
=-IR'T+Vp; (145)

Then the perturbation of the position of IMU in (79) become:
Ypr+V b =""py (146)
— _ERTT +Vp, (147)
=Vp;=-FR'T (148)

Therefore, the perturbation of {V'} respect to { E'} can be represented as state perturbation as:
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03x1
—ERTT
0
Vz 3x1
Xk = ERT (149)
03x1
T

Clearly, VHkvtﬁ(tk, to)vik yields zero matrix. Therefore, the V'X}, is in null space of VHkV@(tk, to),
which means the translation of {V'} respect to {E} is unobservable.

3.4 Null space of observability matrix of system in VIO

03 —{/Of{g ]

I,  |YPrxlg

Vv 03 LVQJ x|g
null(YM) = 0 (150)

I, |"psrxlg
0153 (-ERg)s
:‘511 03x1

J416x4

The simplified, gathered nullspace from Eq. (133) and Eq. (149) is shown above. The span of the
columns of this matrix encodes the unobservable subspace. By inspection, the first block column
corresponds to the translation of {V'} relative to { E'} and the second block column to the rotation
of {V} with respect to {E'} along the axis of gravity. It thus becomes clear that the GPS-VIO
system in the VIO frame has these four unobservable directions which are essentially inherited from
the standard VIO [, 10].

RPNG-2019-GPS 11



4 Observability: ENU Reference Frame
When the system is in {E'}, the parameters in the state is represented in {E} as:

T
E Iy, - _
Xp = Equ Ep}; Ev}l;C Ep}l— ‘E/q'l— Ep-‘g (151)

We can easily compute the observability matrix “M from Eq. (97)-(102) by changing the param-
eters in {V'} to {E} as:

i I Ty T3 Ty Osg O
E _ | FE E E E _ 1 2 3 4 2x1 2x3
M = Hk @(tkv tO) ) Hk (I)(tkv tO) - |:I‘5 FG F7 03 FS I‘g :| (152)
A~ . R . 1 .

T, = Hy 2R |Pps — Bpy, — Bvp At + 5gAzt2><J{b9RT (153)
I, = —Hp R, I3 = —AtHp AR (154)
A N R . 1 A
Ty = Hi 'R, Ts = —|Pp;, — Ppr, — Pvp, At + 5gm?x JoRT  (155)
T¢ = I, 7 = Atls (156)
P8 = (lEIA)IkXJ)Zv I‘9 = I3 (157)

Clearly, the multiplication of “H*®(t;,to) with null(¥ M) does not yield a zero matrix which
means the 4 unobservable directions of Eq. (79) are now observable. Since VIO is known to have 4
unobservable directions [, 10], we can conclude that the state in the ENU, see Eq. (151), is fully
observable.

While the above results seem to be counter-intuitive given the availability of global GPS mea-
surements, the root cause of this unobservability is the gauge freedom of the 4 d.o.f GPS-VIO frame
transformation. Thus even though we utilize global measurements, the system maintains a non-
trivial null space. Unobservable directions are known to cause inconsistency issues for linearized
estimators as these null spaces falsely disappear due to numerical errors. Therefore the estimator
gains information in spurious directions, hurting overall consistency and accuracy, unless special
techniques are utilized [3, 11].
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5 State transformation from {V} to {£}

Based on the analysis of the previous chapter, we transform the state transform Eq. (79) to Eq.
(151) including the propagation of the covariance to achieve full observability. First, we transform
the state as:

Exk’ = g(vxkn \E/1R1 EpV) (158)
which in specific:
I I
LR - BRERT (159)
Ppr, =R py, + Ppv (160)
Evi, =tRV v, (161)

The Eq. (159)-(161) can be used to warp the all stochastic clone poses and features in general.
Biases and calibration parameters have identity transform between the two frames.

Now we linearize function (158) at current estimate to achieve the Jacobian matrix ¥ and
propagate the covariance matrix with it as:

Pxp=0V%,, PP =0P°W' (162)
where
[ 13 03 03 03 (‘I}“AR\E;RT)z 03 |
03 ‘E/R 03 03 (L‘E/va)]k XJ)Z I3
ER ERVy
p—|% 0 yR O (L\glﬁ‘;‘jfk x]): 03 (163)
03 03 03 VR (LVR prJ)Z 13
01x3 0O1x3 01x3 O1x3 1 O1x3
| 03 03 03 O3 03x1 I3 |
After the transformation, we perform Schur complement [12] to marginalize ‘b;cj and Fpy from the
state because they are no longer needed. The final state is:
X) = [{é“q_ Epr, Evy, EPf] (164)
or in general:
-
Pa = [Pxg Px(, Tpg o] (165)
T
Px;, =" vl Pv], bl bl] (166)
T
Tp—1 - Tjep —
Fxe, = [Ek qh Epl . gt EpITH] (167)

Note the state is fully observable.
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