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High-Accuracy Preintegration for
Visual-Inertial Navigation

Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang?

Department of Mechanical Engineering, University of Delaware, Newark, DE
{keck,pgeneva,ghuang}@udel.edu

Abstract. Visual-inertial navigation that is able to provide accurate 3D localiza-
tion in GPS-denied environments has seen popularity in recent years due to the
proliferation of cost-effective cameras and inertial measurement units (IMUs).
While an extended Kalman filter (EKF) is often used for sensor fusion, factor
graph-based optimization has recently revealed its superior performance, which,
however, is still compromised by the lack of rigorous IMU preintegration (i.e.,
integrating IMU measurements in a local frame of reference). To address this
issue, in this paper, we analytically derive the preintegration based on the closed-
form solutions of the continuous integration equations of IMU measurements.
These expressions allow us to analytically compute the mean, covariance, and
bias Jacobians for a set of IMU preintegration factors. These accurate factors are
subsequently fused with the visual information via visual-inertial factor graph op-
timization to provide high-precision trajectory estimates. The proposed method
is validated on both Monte Carlo simulations and real-world experiments.

1 Introduction

Visual-inertial navigation systems (VINS) that fuse visual and inertial information to
provide accurate localization, have become nearly ubiquitous in part because of their
low cost and light weight (e.g., see [1, 2, 3]). IMUs provide local angular velocity and
linear acceleration measurements, while cameras are a cheap yet informative means for
sensing the surrounding environment and thus an ideal aiding source for inertial nav-
igation. In particular, these benefits have made VINS popular in resource-constrained
systems such as micro aerial vehicles (MAVs) [4]. Traditionally, navigation solutions
have been achieved via extended Kalman Filters (EKFs), where incoming propriocep-
tive (IMU) and exteroceptive (camera) measurements are processed to propagate and
update state estimates, respectively. These filtering methods do not update past state
estimates that have been marginalized out, thus causing them to be susceptible to drift
due to the compounding of errors.

Graph-based optimization methods, by contrast, process all measurements taken
over a trajectory simultaneously to estimate a smooth history of sensor states. These
methods achieve higher accuracy due to the ability to relinearize nonlinear measurement
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functions and correct previous state estimates [5]. Recently, graph-based formulations
have been introduced that allow the incorporation of IMU measurements into “prein-
tegrated” factors by performing integration of the system dynamics in a local frame of
reference [6, 7, 8]. However, these methods often simplify the required preintegration
by resorting to discrete solutions under the approximation of piece-wise constant ac-
celerations. To improve this IMU preintegration, in this paper, we instead model the
IMU measurements as piece-wise constant and rigorously derive closed-form solutions
of the integration equations. These solutions precisely model the underlying continu-
ous dynamics of the preintegrated measurements. Based on these expressions, we offer
analytical computations of the mean, covariance, and bias Jacobians, which have his-
torically been solved using the discretized integrations.

After reviewing past literature in Section 2, we briefly review graph-based batch
optimization. Following this, Section 4 presents our rigorous derivations of the analyt-
ical IMU preintegration and their respective Jacobians needed for graph-based VINS.
In Section 5, we then explain the sliding window based visual tracking. We bench-
mark our analytical preintegration against the state-of-the-art discrete preintegration in
Monte-Carlo simulations in Section 6, where we also offer real-world evaluations of the
proposed VINS on a publicly available dataset. Finally, Section 7 concludes the paper
as well as possible directions for future research.

2 Related Work

Filtering formulations for the VINS have been dominated by sliding window filters.
Mourikis et al. [9] introduced the Multi-State Constraint Kalman Filter (MSCKF). This
method was based on the idea of stochastic cloning [10], where the current state is
augmented with copies of the past n sensor poses. This allowed for short term smooth-
ing and past error correction, as well as processing exteroceptive sensor measurements
without needing to store features in the state vector. This was achieved by projecting the
measurement residuals onto the nullspace of the measurement Jacobians corresponding
to features. Later filters [1, 3] improved the consistency of the MSCKF by enforcing the
correct observability properties on the nonlinear system. In a similar vein, the Optimal-
State Constraint (OSC)-EKF proposed in our prior work [11] also stores a sliding win-
dow of historical IMU poses. Rather than the projection method used in MSCKF, the
OSC-EKF generates a multi-state constraint using a local batch optimization across the
camera measurements in the window, and removes the dependency on the environment
by marginalizing out features. This idea is also used in our visual tracking front-end
in this work (see Section 5). These filtering formulations historically utilize the highly-
accurate continuous view of the dynamics when performing propagation. This view
of the nonlinear system motivates our derivation of closed-form expressions for prein-
tegration. The error associated in discretization becomes especially detrimental when
using low-cost sensors which cannot sample fast enough to mitigate linearization er-
rors. These EKFs, while being computationally inexpensive, suffer from the inability to
correct past states, leading to large estimation drift.

Graph-based formulations improve accuracy over their filtering counterparts by pro-
cessing all measurements at once to estimate an entire trajectory [5, 12]. While these



methods are well suited for the case of relative pose measurements, they have histor-
ically had difficulty processing IMU measurements. The theory of preintegration was
first introduced by Lupton et al [6]. By integrating multiple IMU measurements in a
local frame of reference, initial conditions (velocity and gravity) can be recovered. The
dependency of these integrations on bias was removed via a first-order Taylor series ex-
pansion, linearized about the current bias estimate. These techniques allowed for IMU
measurements to be processed with a graph in a tractable fashion. Note that the relative
rotation uses the Euler angle parametrization, which is known to suffer from singular-
ities. This was mitigated by Forster et al [7] who used the Lie algebra representation
of rotation to analytically derive the involved Jacobians by exploiting properties of the
manifold. However, both of these techniques discretize the preintegration equations. By
contrast our solutions are based on the continuous dynamics which properly model the
underlying system. Preintegration with quaternions has been extensively used by Ling
and et al. [8], While these were also set up in a continuous manner, they were still sam-
pled when computing means and covariances. In addition, bias updates are not used
to correct preintegrated measurements. Other work that utilized preintegrated measure-
ments without bias update can also be found in [13, 14]. Without using bias Jacobians,
these methods are unable to correct their preintegrated measurements when the bias
linearization point changes, thereby introducing avoidable errors into the system.

3 Graph-based Batch Optimization

Batch optimization techniques provide more accurate estimation over their filtering
counterparts by processing all measurements taken during a trajectory simultaneously
to build a consistent and smooth estimate over the entire path. Measurements are com-
monly modeled as being corrupted by Gaussian noise in the form:1

zi = hi (x) + ni , ni ∼ N
(
0,Λ−1

i

)
, (1)

where zi is the measurement vector, x is the true value of the state that is being esti-
mated, hi is a function that maps our state into the measurement, and ni is zero-mean
Gaussian noise with information matrix Λi. Maximum Likelihood Estimation (MLE)
for our state can be formulated as the following Nonlinear Least-Squares (NLS) opti-
mization problem [5, 12]:

x̂ = arg min
x

∑
i

||zi − hi (x)||2Λi = arg min
x

∑
i

||ri (x)||2Λi , (2)

where ||w||2Λ = w>Λw. We define ri as the residual associated with measurement i.
This problem is often solved iteratively via Gauss-Newton approximations of the cost
about the current estimate.

δx = arg min
δx

∑
i

||ri (x̂ � δx)||2Λi ' arg min
δx

∑
i

||ri (x̂) + Jiδx||2Λi , (3)

1 Throughout this paper x̂ is used to denote the estimate of a random variable x, while x̃ =
x − x̂ is the error in this estimate. In×n and 0n×n are the n × n identity and zero matrices,
respectively. e1, e2 and e3 ∈ R3 are the unit vectors along x−, y− and z−axes. The left
superscript denotes the frame of reference which the vector is expressed with respect to.



where Ji := ∂ri(x̂�δx)
∂δx

∣∣∣
δx=0

is the Jacobian of the residual with respect to the error
state, evaluated at the error being zero. We also define a corrective operator, �, that
applies a correction term to the current estimate to yield a new estimate. This is a gen-
eralization of the additive noise associated with vector spaces, and allows the use of
states restricted to a manifold, such as that of the unit quaternions. By stacking our
measurements, the total corrective term can be obtained via the normal equation:

δx = −
(
J>ΛJ

)−1
J>Λr . (4)

Our estimate at the next iteration is updated as x̂k+1 = x̂k � δxk. This process is
repeated until convergence. The resulting distribution is then approximated with the
following Gaussian:

x = x̂ � δx , δx ∼ N
(
0, (J>ΛJ)

−1
)
. (5)

That is, our true state is modeled as being achievable from our current state estimate
with a random error correction which is pulled from a Gaussian distribution with zero
mean and information matrix of J>ΛJ.

4 Analytical IMU Preintegration

An IMU typically measures the local angular velocity ω and linear acceleration a of its
body, which are assumed to be corrupted by the Gaussian white noise (nw and na) and
the random-walk biases (bw and ba) [15]:

ωm = ω + bw + nw , am = a + g + ba + na , ḃw = nwg , ḃa = nwa , (6)

where g is the gravity vector in the local frame whose global counterpart is constant
(e.g., Gg = [0 0 9.8]T ). The navigation state at time-step k is given by:

xk =
[
Lk
G q̄T bTwk

GvTk bTak
GpTk

]T
, (7)

where Lk
G q̄ :=

[
qT q4

]T
is the JPL convention, [15], that describes the rotation from

frame {G} to frame {Lk}, and Gvk and Gpk are the velocity and position of the k-
th local frame in the global frame, respectively. The corresponding error state and �
operation used in batch optimization can be written as (note that hereafter the transpose
has been omitted for brevity):

x̃k =
[
LkδθG b̃wk

Gṽk b̃ak
Gp̃k

]
, (8)

xk = x̂k � x̃k =


Lk
L̂k
δq̄ ⊗ L̂k

G
ˆ̄q

b̂wk + b̃wk
Gv̂k +G ṽk
b̂ak + b̃ak
Gp̂k +G p̃k

 , (9)



Fig. 1: IMU measurements are collected at discrete times tτ with period∆t. This sampling occurs
between image times tk and tk+1. We refer to the step k with a time of tk, with tu describing a
generic time in the continuous domain.

where the operator ⊗ denotes quaternion multiplication, and Lk
L̂k
δq̄ is the error quater-

nion whose vector portion is half the error angle, LkδθG = 2vec
(
Lk
L̂k
δq̄
)

:= 2Lk
L̂k
δq.

Between two imaging steps, k to k + 1, IMU measurements are collected and in-
tegrated at times tk < tτ < tk+1 without accessing the state estimates (in particular,
the orientation). This is done by performing the following factorization of the current
rotation matrix and integration of the measurements [16]:

Gpk+1= Gpk + Gvk∆T −
1

2
Gg∆T 2 + G

k R

∫ tk+1

tk

∫ s

tk

k
uR (uam − ba − na) duds︸ ︷︷ ︸

kαk+1

=: Gpk + Gvk∆T −
1

2
Gg∆T 2 + G

k Rkαk+1 , (10)

Gvk+1= Gvk − Gg∆T + G
k R

∫ tk+1

tk

k
uR (uam − ba − na) du︸ ︷︷ ︸

kβk+1

=: Gvk − Gg∆T + G
k Rkβk+1 , (11)

k+1
G R= k+1

k Rk
GR , (12)

where ∆T = tk+1 − tk, and s and u are dummy variables used for integration (see
Figure 1). Following the notation of Ling et al. [8], it becomes clear that the above
integrals have been collected into the preintegrated measurements, kαk+1 and kβk+1,
which are expressed in the k-th local frame. Rearrangement of these equations yields:

k
GR

(
Gpk+1 − Gpk − Gvk∆T +

1

2
Gg∆T 2

)
= kαk+1 (I,na,nw,ba,bw) , (13)

k
GR

(
Gvk+1 − Gvk + Gg∆T

)
= kβk+1 (I,na,nw,ba,bw) , (14)

k+1
G Rk

GR
>

= k+1
k R (I,nw,bw) , (15)

where I is the set of all discrete IMU measurements collected between times tk and
tk+1 i.e., {τam, τωm}. For the remainder of this paper the biases will refer to the those



of state k, and are approximated as constant over the preintegration interval. It is im-
portant to note that the above equations (13)–(15) are dependent on the true biases
which will causes exact preintegration to be intractable. In particular, they naively re-
quire the re-computation of the preintegration terms every time the bias linearization
point changes. To address this issue, we employ the following first-order Taylor series
expansion with respect to the biases:

k
GR

(
Gpk+1 − Gpk − Gvk∆T +

1

2
Gg∆T 2

)
' (16)

kαk+1

(
I,na,nw, b̄a, b̄w

)
+
∂α

∂ba

∣∣∣
b̄a
∆ba +

∂α

∂bw

∣∣∣
b̄w
∆bw ,

k
GR

(
Gvk+1 − Gvk + Gg∆T

)
' (17)

kβk+1

(
I,na,nw, b̄a, b̄w

)
+
∂β

∂ba

∣∣∣
b̄a
∆ba +

∂β

∂bw

∣∣∣
b̄w
∆bw ,

k+1
G Rk

GR
T' R (∆bw) k+1

k R
(
I,nw, b̄w

)
, (18)

where the preintegration functions have been linearized about the current bias estimates,
b̄w and b̄a, and ∆bw := bw− b̄w and ∆ba := ba− b̄a are the difference between the
true biases and their linearization points. Note that in the case of the relative rotations, a
change in bias is modeled as inducing a further rotation on our preintegrated relative ro-
tation. This linearization process allows for the computation of the preintegration once,
while still allowing approximate updates when the bias linearization point changes. The
corresponding residuals of these preintegrated measurements for use in graph optimiza-
tion are given by:

δkαk+1= k
GR

(
Gpk+1 − Gpk − Gvk∆T +

1

2
Gg∆T 2

)
− ∂α

∂ba
∆ba −

∂α

∂bw
∆bw − kᾰk+1 ,

δkβk+1= k
GR

(
Gvk+1 − Gvk + Gg∆T

)
− ∂β

∂ba
∆ba −

∂β

∂bw
∆bw − kβ̆k+1 ,

k+1δθk= 2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ q̄ (∆bw)

−1
)
, (19)

where kᾰk+1, kβ̆k+1 and k+1
k

˘̄q are the preintegrated measurements with the quaternion
being associated with the preintegrated rotation.

4.1 Compute Preintegration Mean and Covariance via Linear Systems

Before we use the IMU preintegrated measurement residuals (19) in batch optimization,
we need to find their mean and covariance. To this end, we first note that the rotation
(quaternion) time evolution is given by:

u
k

˙̄q =
1

2
Ω(uωm − b̄w − nw)uk q̄ , Ω(ω) =

[
−bω×c ω
−ω> 0

]
. (20)

This can be solved using the zeroth order quaternion integrator (see [15]). Based on
(10) and (11), we have the following continuous measurement dynamics:

kα̇u = kβu , (21)



kβ̇u = k
uR
(
uam − b̄a − na

)
. (22)

From these, we formulate the following linear system that describes the time evolu-
tion of the preintegrated measurements by taking the (approximate) expectation of the
dynamic equations (21) and (22):[

k ˆ̇αu
k ˆ̇
βu

]
=

[
0 I3×3

0 0

] [
kα̂u
kβ̂u

]
+

[
0
k
uR̂

]
(uam − b̄a) . (23)

To analytically compute the mean of the preintegration measurement, we preform
direct integration between two sample steps τ and τ + 1, which correspond to IMU
measurement times tτ to tτ+1. With a little abuse of notation, we define â = τam− b̄a
and ∆t = tτ+1 − tτ .

[
kα̂τ+1
kβ̂τ+1

]
=

[
kα̂τ + kβ̂τ∆t

kβ̂τ

]
+



k
τ+1R̂( (∆t2)

2 I3×3 + |ω̂|∆tcos(|ω̂|∆t)−sin(|ω̂|∆t)
|ω̂|3 bω̂×c

+ (|ω̂|∆t)2−2cos(|ω̂|∆t)−2(|ω̂|∆t)sin(|ω̂|∆t)+2
2|ω̂|4 bω̂×c2)(â)

k
τ+1R̂(∆tI3×3 − 1−cos(|ω̂|(∆t))

|ω̂|2 bω̂×c

+ (|ω̂|∆t)−sin(|ω|∆t)
|ω̂|3 bω̂×c2)(â)


. (24)

The entire preintegrated measurement can be computed incrementally by applying the
above expression and the zeroth order quaternion integrator as new IMU measurements
arrive. The complete derivations can be found in our tech report [17].

To find the covariance of the preintegrated measurements, we first write out the
dynamics of the corresponding error-states as follows:

kδα̇u = kδβu , (25)
kδβ̇u = k

uR̂(I3×3 + buδθk×c)
(
uam − b̄a − na

)
−ku R̂

(
uam − b̄a

)
= k
uR̂ (−na) +k

u R̂buδθk×c
(
uam − b̄a

)
, (26)

˙uδθk = −
⌊(
uωm − b̄w

)
×
⌋
uδθk − nw . (27)

This immediately yields the following linearized system of the error states:

kδα̇ukδβ̇u
uδθ̇k

 =


0 I3×3 0

0 0 −kuR̂
⌊(
uam − b̄a

)
×
⌋

0 0 −
⌊(
uωm − b̄w

)
×
⌋


kδαu
kδβu
uδθk

+


0 0

−kuR̂ 0

0 −I3×3


[

na

nw

]
,

⇒ ṙ = Fr + Gn . (28)

Therefore, the noise covariance, P, can be found as follows:

Pk = 09×9 (29)

Pτ+1 = Φ(tτ+1, tτ )PτΦ(tτ+1, tτ )> + Qd (30)



Qd=

∫ tτ+1

tτ

Φ(tτ+1, u)G(u)QcG
>(u)Φ>(tτ+1, u)du , Qc =

[
σ2
aI3×3 03×3

03×3 σ2
wI3×3

]
. (31)

We want to stress that rather than using the discrete covariance approximation as in
[8], we analytically compute the state-transition matrix, Φ, and discrete-time noise co-
variance, Qd, as derived in our tech report [17]. Although these expressions are more
complicated than those found in discrete methods, we find that they do not prevent
real-time processing of IMU data due their closed forms.

4.2 Compute Preintegration Jacobians w.r.t. Biases

As shown earlier, changes in bias are modeled as adding corrections to our preintegra-
tion measurements through the use of bias Jacobians [see (16) and (17)]. In particular, as
seen from (24), each update term is linear in the estimated acceleration, â =τ am− b̄a,
thus we find the bias Jacobians of kαk+1 and kβk+1 with respect to ba as follows:[
∂α
∂ba

∂β
∂ba

]
=:

[
Hα(τ + 1)
Hβ(τ + 1)

]
=

[
Hα(τ) + Hβ(τ)∆t

Hβ(τ)

]
− (32)

kτ+1R
(
∆t2

2 I3×3 + |w|∆tcos(|w|∆t)−sin(|w|∆t)
|w|3 bω̂×c+ (|w|∆t)2−2cos(|w|∆t)−2(|w|∆t)sin(|w|∆t)+2

2|w|4 bω̂×c2
)

k
τ+1R

(
∆tI3×3 − 1−cos(|ω|(∆t))

|w|2 bω̂×c+ (|w|∆t)−sin(|ω|∆t)
|w|3 bω̂×c2

)  .
Similarly, the Jacobians with respect to the gyro bias ∂α

∂bw
=: Jα, ∂β

∂bw
=: Jβ can

be found. The detailed derivations are omitted here for brevity but are included in our
companion technical report [17].

Now consider the relative-rotation measurement, k+1
k R. The updated rotation can

be approximated as [7]:2

k+1
k R⊕ = exp

(
bJq(k + 1)(bw − b̄w)×c

)
k+1
k R	 , (33)

where exp(·) is the matrix exponential. It should be pointed out that in the above ex-
pression, that the rotational bias Jacobian, Jq , can be computed incrementally using the
right Jacobian of SO(3) Jrτ+1 = Jr(ωτ (tτ+1 − tτ )) (see [7, 17, 18]):

Jq(τ + 1)= τ+1
τ R̂

τ∑
u=k

τ
uR̂Jru∆t+ Jrτ+1

∆t = τ+1
τ R̂Jq(τ) + Jrτ+1

∆t . (34)

Then the angle measurement residual can be written as:

k+1δθk= 2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ quat(exp(−bJq(k + 1)(bw − b̄w)×c)

)
, (35)

' 2vec

(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗

[
1
2 (Jq(bw − b̄w)

1

])
, (36)

where quat(·) denotes the transformation of a rotation matrix to the corresponding
quaternion. In the above expression, we have also used the common assumption that
(bw − b̄w) is small. Note that we only use this approximation for the computation of
Jacobians, while the more accurate (37) is used for the evaluation of actual residuals.

2 We use the symbol ⊕ to denote an estimate after update and 	 before update.



4.3 Compute Preintegration Measurement Jacobians

Our total preintegrated measurement residuals can now be written as:

r =


k
GR

(
Gpk+1 − Gpk − Gvk∆T +

1

2
Gg∆T 2

)
− Jα(bw − b̄w)−Hα(ba − b̄a)− kᾰk+1

k
GR

(
Gvk+1 − Gvk + Gg∆T

)
− Jβ(bw − b̄w)−Hβ(ba − b̄a)− kβ̆k+1

2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ quat(Exp(−bJq(bw − b̄w)×c)

)


(37)

In order to use these residuals in graph-based optimization (3), the corresponding Ja-
cobians with respect to the optimization variables are necessary. To this end, we first
rewrite the relative-rotation measurement residual as:

k+1δθk = 2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q
−1 ⊗ q̄b

)
, (38)

where q̄b is the quaternion induced by a change in gyro bias. The measurement Jacobian
with respect to one element of the state vector can be found by perturbing the residual
function by the corresponding element. For example, the relative-rotation measurement
residual is perturbed by a change in gyro bias around the current estimate (i.e., bw −
b̄w = b̂w + b̃w − b̄w):

k+1δθk = 2vec

(
k+1
G

ˆ̄q ⊗ k+1
G

ˆ̄q
−1 ⊗ k+1

k
˘̄q
−1 ⊗

[
Jq(b̂w+b̃w−b̄w)

2
1

])

= 2vec

([
q̂r,4I3×3 − bq̂r×c q̂r

−q̂>r q̂r,4

][
Jq(b̂w+b̃w−b̄w)

2
1

])
= (q̂r,4I3×3 − bq̂r×c)Jq(b̂w + b̃w − b̄w) + other terms ,

⇒ ∂k+1δθk

∂b̃w
= (q̂r,4I3×3 − bq̂r×c)Jq . (39)

Similarly, the Jacobian with respect to k+1δθG can be found as follows:

k+1δθk = 2vec

([
1
2
k+1δθG

1

]
⊗ k+1
G

ˆ̄q ⊗ k
G

ˆ̄q
−1 ⊗ k+1

k q̄
−1 ⊗ ˆ̄qb

)
= 2vec

([
q̂rb,4I3×3 + bq̂rb×c q̂rb

−q̂>rb q̂rb,4

] [
1
2
k+1δθG

1

])
= (q̂rb,4I3×3 + bq̂rb×c)k+1δθG + other terms ,

⇒ ∂k+1δθk
∂k+1δθG

= q̂rb,4I3×3 + bq̂rb×c . (40)

The Jacobian with respect to kδθG is given by:

k+1δθk = 2vec

(
k+1
G

ˆ̄q ⊗ k
G

ˆ̄q
−1 ⊗

[
−
kδθG

2
1

]
⊗ k+1
k q̄

−1 ⊗ ˆ̄qb

)



= 2vec

([
q̂n,4I3×3 − bq̂n×c q̂n

−q̂>n q̂n,4

] [
q̄mb,4I3×3 − bq̄mb×c −qmb

q>mb q̄mb,4

] [
−
kδθG

2
1

])
= −((q̂n,4I3×3×3 − bq̂n×c)(qmb,4I3×3 − bqmb×c) + q̂nq>mb)

kδθG + other terms ,

⇒ ∂k+1δθk
∂kδθG

= −((q̂n,4I3×3 − bq̂n×c)(q̄mb,4I3×3 − bqmb×c) + q̂nq̄>mb) . (41)

Note than in the preceding Jacobians, we have defined several intermediate quaternions
(ˆ̄qr, ˆ̄qrb, ˆ̄qn, and ˆ̄qmb) for ease of notation which can easily be interpreted from context.
Following the same methodology, we can find the Jacobians of the kαk+1 measurement
with respect to the position, velocity and bias.

kαk+1= k
GR

(
Gpk+1 − Gpk − Gvk∆T +

1

2
Gg∆T 2

)
− Jα(bw − b̄w)−Hα(ba − b̄a)

'
(
I3×3 − bkδθG×c

)
k
GR̂
(
Gp̂k+1 + Gp̃k+1 − Gp̂k − Gp̃k − Gv̂k∆T − Gṽk∆T

+
1

2
Gg∆T 2

)
− Jα

(
b̂w + b̃w − b̄w

)
−Hα

(
b̂a + b̃a − b̄a

)
. (42)

Then the following Jacobians immediately become available:

∂kαk+1

∂kδθG
=

⌊
k
GR̂

(
Gp̂k+1 − Gp̂k − Gv̂k∆T +

1

2
Gg∆T 2

)
×
⌋
,

∂kαk+1

∂Gpk
= −kGR̂ ,

∂kαk+1

∂Gpk+1
= k
GR̂ ,

∂kαk+1

∂Gvk
= −kGR̂∆T ,

∂kαk+1

∂b̃w
= −Jα ,

∂kαk+1

∂b̃a
= −Hα . (43)

Similarly, we can write our kβk+1 measurement with respect to the position, velocity
and bias as:

kβk+1 = k
GR

(
Gvk+1 − Gvk + Gg∆T

)
− Jβ(bw − b̄w)

' (I3×3 − bkδθG×c)kGR̂
(
Gv̂k+1 + Gṽk+1 − Gv̂k − Gṽk + Gg∆T

)
− Jβ(b̂w + b̃w − b̄w)−Hβ(b̂a + b̃a − b̄a) , (44)

which leads to the following Jacobians:

∂kβk+1

∂kδθG
=
⌊
k
GR̂(Gv̂k+1 − Gv̂k + Gg∆T )×

⌋
,

∂kβk+1

∂Gvk
= −kGR̂ ,

∂kβk+1

∂Gvk+1
= k
GR̂ ,

∂kβk+1

∂b̃w
= −Jβ ,

∂kβk+1

∂b̃a
= −Hβ . (45)

5 Sliding-Window Visual Tracking

Reliance on pure inertial measurements causes large drift over time due to the high
noise factors, thus we rely on additional visual measurements from a camera. As an



IMU-camera sensor suite moves throughout the environment, images are taken from
the mounted stereo camera and features are extracted and tracked over a window of his-
torical camera poses. Naively, we could add these features into our state vector, thereby
greatly increasing the computational burden. Instead, we seek to extract all the infor-
mation contained in these measurements about the sensor suite’s states. To this end, we
add these features into a local graph containing a sliding window of states and the cor-
responding tracked features, and perform a local marginalization across these features.

In particular, the measurement model associated with feature factors involves a
transformation into a camera frame, followed by a projection onto the corresponding
image plane. This function for a feature j detected on an image i is given by:

zij =

Cipj(1)
Cipj(3)
Cipj(2)
Cipj(3)

+ nij , (46)

Cipj = C
I RIi

GR
(
Gpj − GpIi

)
+ CpI , (47)

where nij ∼ N
(
0,Λ−1

ij

)
is the zero-mean white Gaussian noise, and {CI R,CpI} is the

extrinsic calibration between the IMU and the camera, which is assumed to be known
and constant over time.

Given the set of feature measurements, we seek the MLE for all the IMU poses in
the window as well as the corresponding features (see Section 3). This optimization
yields a normal distribution in the form (see [11, 19, 20]):[

Gx
Gpf

]
=

[
Gx̆
Gp̆f

]
�

[
Gδx
Gδpf

]
, with

[
Gδx
Gδpf

]
∼ N

([
0
0

]
,Λ−1

)
, (48)

where Gx and Gpf are the stacked sensor poses and feature positions respectively,
while (∗̆) refers to the estimates achieved by the MLE optimization. Defining Jij as the
Jacobian of the ij-th measurement, the information matrix is computed as:

Λ =
∑
(i,j)

J>ijΛijJij =

[
Λss Λsf
Λfs Λff

]
. (49)

Note that the information matrix is partitioned according to the dimensions of the states
and features (s and f respectively). Marginalizing the features yields the following
normal distribution of our error state:

Gδx ∼ N
(
0, (Λss −ΛsfΛ−1

ffΛfs)
−1
)
. (50)

It is important to note that this distribution encapsulates all the information in the mea-
surements about the window nodes (up to linearization errors) [11]. Due to the lack
of measurements anchoring the graph to the global frame, this optimization problem
will typically be under-constrained. We therefore shift the frame of reference of the
optimization problem into that of the oldest node in the window, and thus have the
distribution on the relative states denoted by the left superscript “L” [see (48)]:[

Lx
Lpf

]
=

[
Lx̆
Lp̆f

]
�

[
Lδx
Lδpf

]
, with

[
Lδx
Lδpf

]
∼ N

([
0
0

]
, LΛ−1

)
. (51)



Insertion back in the graph gives the following residuals for an example window of
states {xk}nk=0, which will be used along with the IMU preintegration measurements
in the graph optimization:

rf =



2vec
(

1
Gq̄ ⊗ 0

Gq̄
−1 ⊗ 1

0
˘̄q
−1
)

0
GR

(
Gp1 − Gp0

)
− 0p̆1

...

2vec
(
n
Gq̄ ⊗ 0

Gq̄
−1 ⊗ n

0
˘̄q
−1
)

0
GR

(
Gpn − Gp0

)
− 0p̆n


. (52)

We therefore have extracted the information contained in the feature measurements
about the states in the window while not storing features in the global graph.

6 Experimental Results

6.1 Monte-Carlo Simulations

The proposed method was implemented in C++ and tested on a MATLAB generated
simulation in order to compare the proposed analytical preintegration against the dis-
crete one [7]. A dynamic trajectory of approximately 107 meters traversed in 100 sec-
onds, as well as a set of random 3D features were generated. Ten sets of noisy IMU
and synthetic stereo image outputs were collected for Monte Carlo evaluation. Realistic
noise levels and camera calibration parameters from the dataset below (see Section 6.2)
were used, while feature projections were corrupted by one pixel noise. IMU measure-
ments were generated at a rate of 100 Hz, while synthetic images were created at 10 Hz.
New state nodes were created every time a synthetic image pair was collected with fea-
tures being “tracked” across a sliding window of six images. The local graph problem
was solved to compute the vision factors (see Section 5) when the window reached its
full size. In addition to the vision and IMU preintegration measurements, bias drift fac-
tors [21] were added into the global graph to constrain the difference in biases between
nodes. Both the local and full graph optimizations were performed using the GTSAM
library [22] and the discrete preintegration [7] was implemented using the open source
code available within GTSAM. Figure 2 shows the generated path, while the root mean
square errors (RMSE) are shown in Figure 3. The proposed method achieved an end-
ing position RMSE of 0.64m (0.6% of the distance traveled) with an average RMSE of
0.36 m and 0.35 deg across the entire path. By contrast, the same system using discrete
preintegration achieved an ending RMSE of 0.74 m (0.7% of the total path) with an
average of 0.41 m and 0.38 deg across the entire path. This clearly demonstrates the
improvements offered by our analytical preintegration.

6.2 Real-World Experiments

The proposed algorithm was validated on one of the “EuRoC MAV Datasets” that are
publicly available [23]. The datasets use two Aptina MT9V034 global shutter cameras



Fig. 2: Simulation results: Estimated trajectory versus the ground truth for an example Monte
Carlo run. The initial start is show with a green square, with ground truth ending with a blue
circle, and the estimation a teal star. Note that the discrete trajectory is not shown.

Fig. 3: Simulation results: Position and orientation RMSE for 10 Monte-Carlo simulations.

at 20 FPS with an image resolution of 752 × 480 pixels and the MEMS ADIS16448
IMU at a rate of 200 Hz. A MAV where the sensor suite is mounted, flies through the
environment in a dynamic motion. The left to right images and IMU timestamps come
synchronized, allowing for the inherent sensor time delay to be ignored. All extrinsic
calibrations are provided including the camera to camera and IMU to camera transfor-
mations.

All images are histogram equalized to allow for better feature extraction and rec-
tified using the OpenCV library [24]. New IMU measurements were preintegrated by
“stacking” the readings over time [see (24)]. The current state was stored in a node and



linked with this preintegration edge when a new stereo image pair is received. After
ten images, a new feature factor was created through matching SIFT features across the
first stereo pair and matching to older images using the KLT tracking method. To reject
outliers, epipolar constraints are then enforced in each of the stereo pairs. In this exper-
iment, g2o [12] was used as the graph solver, and the sliding window of ten images was
chosen. The rest of the implementation was performed as explained in Section 6.1.

The Machine Hall 01 recording is 140 seconds long and provides dynamic aerial
motion in an indoor area. The estimated trajectory verses the ground truth is shown in
Figure 4, and the estimation errors are depicted in Figure 5. In this test, the proposed
approach attains the position error of 0.5m, approximately 0.7% of the total distance
traveled. While this is a similar level to the simulations, the angle estimation was worse
in the real world-experiments. This is likely due to weakness in the visual front-end:
improved robustness of image processing before local estimation is expected to greatly
improve performance. Nevertheless, along with the Monte-Carlo simulation results,
these real-world experiments clearly validate the proposed analytical preintegration for
graph-based VINS.

7 Conclusions and Future Work

We have introduced a high-accuracy preintegration theory based on the closed-form
solutions of the IMU integration equations, which allow us to accurately compute the
mean, covariance, and bias Jacobians for each of the preintegration factors. This the-
ory was integrated into graph-based VINS system and validated on both synthetic and
real data. As currently our system implementation does not include loop closures and
thus does not fully gain the benefits of the batch optimization, in the future, we will
include these constraints, which would allow us to further improve accuracy by taking
advantage of the graph formulation. In addition, we will seek to reduce the computa-
tional complexity of our system by intelligently sparsifying the graph so as to enable
long-term and large-scale robot navigation.
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