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Abstract

A Guide to the Use of the ITS Irregular Terrain Model
in the Area Prediction Mode

George A. Hufford, Anita G. Longley, and William A. Kissick1

The ITS model of radio propagation for frequencies between 20 MHz
and 20 GHz (the Longley-Rice model) is a general purpose model that can
be applied to a large variety of engineering problems. The model, which is
based on electromagnetic theory and on statistical analyses of both terrain
features and radio measurements, predicts the median attenuation of a radio
signal as a function of distance and the variability of the signal in time and
in space.

The model is described in the form used to make “area predictions” for
such applications as preliminary estimates for system design, military tactical
situations and surveillance, and land-mobile systems. This guide describes
the basis of the model, its implementation, and some advantages and limita-
tions of its use. Sample problems are included to demonstrate applications
of the model.

Key words: area prediction; radio propagation model; SHF; statistics; terrain
effects; UHF; VHF

1The authors are with the Institute for Telecommunication Sciences, National Telecom-
munications and Information Administration, U.S. Department of Commerce, Boulder,
Colorado 80303.
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1 Introduction

Radio propagation in a terrestrial environment is an enigmatic phenomenon
whose properties are difficult to predict. This is particularly true at VHF,
UHF, and SHF where the clutter of hills, trees, and houses and the ever-
changing atmosphere provide scattering obstacles with sizes of the same order
of magnitude as the wavelength. The engineer who is called upon to design
radio equipment and radio systems does not have available any precise way
of knowing what the characteristics of the propagation channel will be nor,
therefore, how it will affect operations. Instead, the engineer must be content
with one or more models of radio propagation—i.e., with techniques or rules
of thumb that attempt to describe how the physical world affects the flow of
electromagnetic energy.

Some of these models treat very specialized subjects as, for example,
microwave mobile data transfer in high-rise urban areas; others try to be
as generally applicable as Maxwell’s equations and to represent, if not all,
at least most, aspects of physical reality. In this report we shall describe
one of the latter called “the ITS irregular terrain model” (or sometimes the
Longley-Rice model; see Longley and Rice, 1968), it is designed for use at
frequencies between 20 MHz and 20 GHz, for a wide variety of distances and
antenna heights, and for those problems where terrain plays an important
role. It is concerned with the generally available received power and not with
the fine details of channel characterization.

On the other hand the model is avowedly statistical. In the physical
world received signal levels do vary in what appears to be a random fashion.
They vary in time because of changing atmospheric conditions, and they
vary in space because of a change in terrain. It is this variability that the
model tries to describe, thus providing the engineer estimates of not only the
general level of expected received powers but also the magnitude of expected
deviations from that general level.

Being a general purpose model, there are many special circumstances
it does not consider. In what follows we shall try to describe the general
nature of the model, to what uses it may be put, at what points special
considerations might enter, and, if we can, what steps might be taken to
allow for them. The number of possible special circumstances is so great,
however, that we have undoubtedly over looked many important ones. Here,
we must depend on the ingenuity of the individual engineer to recognize the
circumstance and to determine how to proceed. In general, we expect the
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user of this Guide to be somewhat familiar with radio propagation and the
effects its sometimes capricious behavior will have on radio systems.

The ITS irregular terrain model is specifically intended for computer use.
In this regard it is perhaps well to introduce here terminology that makes
the distinctions computer usage often requires. A model is a technique or
algorithm which describes the calculations required to produce the results.
An implementation of a model is a representation as a subprogram or pro-
cedure in some specific computer language. An applications program is a
complete computer program that uses the model implementation in some
way. It usually accepts input data, processes them, passes them on to the
model implementation, processes the results, and produces output in some
form. In some application programs, radio propagation and the model play
only minor roles; in others they are central, the program being but an in-
put/output control. For example, the program QKAREA described and listed
in Appendix B is a simple applications program; it calls upon the subpro-
grams LRPROP and AVAR which are listed in Appendix A and which, in turn,
are an implementation of version 1.2.1 of the ITS irregular terrain model.
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2 Area Prediction Models

Most radio propagation models, especially the general purpose ones, can be
characterized as being either a “point-to-point” model or an “area predic-
tion” model. The difference is that a point-to-point model demands detailed
information about the particular propagation path involved while an area
prediction model requires little information and, indeed, may not even re-
quire that there be a particular path.

To explain this latter statement, let us consider for what problems a
propagation model should help.

1. Equipment design. There seem to be about five areas of concern: Given
specifications of how new radio equipment is to be used and how reliable
communications must be, it should be possible to predict the values of
path loss (and perhaps other characteristics of the channel) for which
the equipment must compensate. Conversely, given the properties of
proposed new equipment, one should be able to predict how that equip-
ment will behave in various situations. In particular, one should be able
to predict a service range–i.e., a distance at which communications are
still sufficiently reliable, under the given conditions.

2. General system design. This is an extension of the first area. Here, it is
the interaction of radio equipment that is to be studied. Often, interfer-
ence, both between elements of the same system and between elements
of one system with another on the same or adjacent frequencies, is an
important part of the study. Questions such as the proper co-channel
spacing of broadcast stations or the proper spacing of repeaters might
be treated.

3. Specific operational area. In this case one or more radio systems are to
be located in one particular area of the world and, perhaps, operated
at one particular season of the year or time of day. Within this area,
however, all terminals are to be located at random, where “random”
may mean not uniformly distributed but according to some predefined
selection scheme. These terminals may, for example, be mobile so that
they will, indeed, occupy many locations; or they may be “tactical” in
that they are to be set up at fixed locations to be decided upon at a later
date, perhaps only just before they are put into operation. Questions
to be asked might be similar to those in the previous two areas. One
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technique sometimes used is that of a simulation procedure in which
a Monte Carlo approach is taken in the placement of the terminals or
the control of communications traffic.

4. Specific coverage area. In this case, one of the terminals is at a spe-
cific known location while the other (often many others) is located at
random somewhere in the same vicinity. The obvious example here is
a broadcast station or the base station for a particular mobile system;
but other examples might include radars, monitoring sites, or telemetry
acquisition base stations. The usual problem is to define a service area
within which the reliability of communications is adequate or, some-
times, to find the strength of interference fields within the service area
of a second station. If calculations are made before the station is ac-
tually set up, one can think of them as part of the decision process to
judge whether the station design is satisfactory.

5. Specific communications link. In this final case, both terminals are at
specific known locations, and the problem is to estimate the received
signal level. Or more likely, the problem is to characterize the received
signal level as it varies in time. Again, calculations made here are often
used in the design of the link.

In the last of these areas—the specific communications link—one knows,
or presumably can obtain, all the details of the path of propagation. One ex-
pects to obtain very specific answers to propagation questions, and therefore
one uses a point-to-point model.

In the first two areas, however—the design of equipment and of systems—
there is no thought about particular propagation paths. One wants general
results, perhaps parametric results, for various types of terrain and types of
climate. It is natural to use an area prediction model.

In the case of a specific operational area or a specific coverage area, one
is confronted with a different problem. Here one has a large multitude of
possible propagation paths each of which can presumably be described in
detail. One might, therefore, want to consider point-to-point calculations
for each of them. one hesitant. But the sheer magnitude of the required
input data makes If a simulation procedure is used to collect statistics of
communications reliability, then the point-to-point calculations become lost
in the confusion to the point where they seem hardly worth the trouble. An
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alternative which requires far less input data is to use an area prediction
model, particularly if the model provides by itself the required statistics.

Even in the case of a specific communications link, the required detailed
information for the propagation path may be unobtainable so that one is
forced to use the less demanding area prediction model. Of course, in doing
so one expects to lose in precision and in the dependability of the results.

In addition to the ITS area prediction model, other widely used models
of this kind include those developed by Epstein and Peterson (1956), Egli
(1957), Bullington (1957), the Federal Communications Commission (FCC;
Damelin et al., 1966), Okumura et al. (1968), and the International Radio
Consultative Committee (CCIR, 1978a). By their nature, all these models
use empiricism, by which we mean they depend heavily on measured data
of received signal levels. But also, they all depend to a greater or lesser
degree on the theory of electromagnetism. In some cases, theory is used only
qualitatively to help make sense out of what is always a very wide spread in
the measured values. In others of these models theory plays a more important
role, and the empirical data serve to provide benchmarks at which the model
is expected to agree.
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3 ITM for Mid-range Frequencies

Originally published by Longley and Rice (1968), the ITS irregular terrain
model is a general purpose model intended to be of use in a very broad range
of problems, but not, it should be noted, in all problems. It is flexible in
application and can actually be operated as either an area prediction model or
as a point-to-point model. operation. We speak here of two separate “modes”
of In the point-to-point mode, part of the input one must supply consists of
certain “path parameters” to be determined from the presumably known
terrain profile that separates the two terminals. In the area prediction mode
these same parameters are simply estimated from a knowledge of the general
kind of terrain involved. The two modes use almost identical algorithms,
but their different sets of input data and their different ranges of application
make it inconvenient to discuss them both at once. This report treats only
the area prediction mode.

In the present section we shall provide a brief general description of the
model including its design philosophy, a list of its input parameters, and a
discussion of some of the physical phenomena involved in radio propagation
and whether they are or are not treated by the model.

Before continuing, however, we should first consider the units in which
received signal levels are to be measured. Here we come upon a confusion, for
each discipline of the radio industry seems to have chosen its own separate
unit. Examples include electromagnetic power flux, electric field intensity,
power available at the terminals of the receiving antenna, and voltage at the
receiver input terminals. If one wants to divorce the propagation channel
from the equipment, one also speaks of transmission loss, path loss, or ba-
sic transmission loss. Most of these quantities are described by Rice et al.
(1967; Section 2), but the important property to note is that under normal
conditions—when straightforward propagation takes place without near field
effects or standing waves and when mismatches are kept to a minimum—all
these quantities are easily transformed one to another. Indeed, in this report
we use the term “signal level” so as to be deliberately vague about what
precise unit is intended, because we feel the question is unimportant.

For each of the quantities that might represent a signal level, it is possible
to compute a free space value—a value that would be obtained if the terminals
were out in free space unobstructed by terrain and unaffected by atmospheric
refraction. This free space value is a convenient reference point for radio
propagation models in general and for the ITS model in particular. Our own
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preference for a measure of signal level is therefore the attenuation relative
to free space which we always express in decibels. In what follows we shall
use the simple term “attenuation,” hoping that the context will supply the
reference point. The quantity is sometimes also referred to as an “excess path
loss.” To convert to any other measure of signal level, one simply computes
the free space value in decibels relative to some standard level and then
subtracts the attenuation (adds, if one is computing a loss).

3.1 Input Parameters

In Table 1 we list all the input parameters required by the ITS area prediction
model. Also indicated there are the allowable values or the limits for which
the model was designed. involved. Here we shall try to define the terms As
it happens, however, some of the terms are by nature somewhat ambiguous,
and we shall defer more complete descriptions to Sections 5 and 6.

The system parameters are those that relate directly to the radio system
involved and are independent of the environment. Counting the two antenna
heights, there are five values:

Frequency. The carrier frequency of the transmitted signal. Actually, the
irregular terrain model is relatively insensitive to the frequency, and
one value will often serve for a fairly wide band.

Distance. The great circle distance between the two terminals.

Antenna Heights. For each terminal, the height of the center of radiation
above ground. This may sound straightforward, and often it is; but
neither the center of radiation nor the ground level is always easy to
determine. For further discussion see Section 5.

Polarization. The polarization, either vertical or horizontal, of both anten-
nas. It is assumed that the two antennas do have the same polarization
aspect.

The environmental parameters are those that describe the environment or,
more precisely, the statistics of the environment in which the system is to
operate. They are, however, independent of the system. There are five values:

Terrain Irregularity Parameter ∆h. The terrain that separates the two
terminals is treated as a random function of the distance away from
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Table 1: Input Parameters for the ITS Model Together With the Original
Design Limits

System Parameters
Frequency 20 MHz to 20 GHz
Distance 1 km to 2000 km
Antenna heights 0.5 m to 3000 m
Polarization vertical or horizontal

Environmental Parameters
Terrain irregularity parameter, ∆h
Electrical ground constants
Surface refractivity 250 to 400 N-units
Climate one of seven; see Table 4

Deployment Parameters
Siting criteria random, careful, or very careful

Statistical Parameters
Reliability and confidence level 0.1% to 99.9%

Table 2: Suggested Values for the Terrain Irregularity Parameter

∆h (meters)
Flat (or smooth water) 0
Plains 30
Hills 90
Mountains 200
Rugged mountains 500
For an average terrain, use ∆h=90 m.
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one of the terminals. To characterize this random function, the ITS
model uses but a single value ∆h to represent simply the size of the
irregularities. Roughly speaking, ∆h is the interdecile range of terrain
elevations—that is, the total range of elevations after the highest 10%
and lowest 10% have been removed. Further discussion of this impor-
tant parameter will be found in Section 5. Some suggested values are
in Table 2.

Electrical Ground Constants. The relative permittivity (dielectric con-
stant) and the conductivity of the ground. Suggested values are in
Table 3.

Surface Refractivity Ns. The atmospheric constants, and in particular
the atmospheric refractivity, must also be treated as a random func-
tion of position and, now, also of time. For most purposes this random
function can be characterized by the single value Ns representing the
normal value of refractivity near ground (or surface) levels. Usually
measured in N-units (parts per million), suggested values are given in
Table 4. Further discussion will be found in Section 5.

Climate. The so-called radio climate, described qualitatively by a set of
discrete labels. The presently recognized climates are listed in Table
4. Together with Ns, the climate serves to characterize the atmosphere
and its variability in time. Further discussion is given in Section 5.

The way in which a radio system is positioned within an environment will
often lead to important interactions between the two. Deployment parame-
ters try to characterize these interactions. The irregular terrain model has
made provision for one such interaction that is to be applied to each of the
two terminals.

Siting Criteria. A qualitative description of the care which one takes to
site each terminal on higher ground. Further discussion is given in
Section 5.

Finally, the statistical parameters are those that describe the kind and
variety of statistics that the user wishes to obtain. Very often such statistics
are given in the form of quantiles of the attenuation. For a discussion of
this subject, and of the meanings we like to give to the terms reliability and
confidence, see Section 6.
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Table 3: Suggested Values for the Electrical Ground Constants

Relative Conductivity
Permittivity Siemens per Meter

Average ground 15 0.005
Poor ground 4 0.001
Good ground 25 0.020
Fresh water 81 0.010
Sea water 81 5.0
For most purposes, use the constants for an average ground.

Table 4: Radio Climates and Suggested Values for Ns

Ns (N-units)
Equatorial (Congo) 360
Continental Subtropical (Sudan) 320
Maritime Subtropical (West Coast of Africa) 370
Desert (Sahara) 280
Continental Temperate 301
Maritime Temperate, over land
(United Kingdom and continental west coasts) 320

Maritime Temperate, over sea 350
For average atmospheric conditions, use a Continental Temperate
climate and Ns=301 N-units.
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Aside from the statistical parameters which will vary in number according
to the necessities of the problem, there are some twelve parameter values that
one must define. Although this seems a rather long list, the user should note
that in many cases several of these parameters have little significance and
may be replaced by simple nominal values. For example, the only use to
which the polarization and the two electrical ground constants are put is to
determine in combination the reflectivity of smooth portions of the ground
when the incident rays are grazing or nearly so. At high frequencies this
reflectivity is nearly a constant. When both terminals are more than about
1 wavelength above the ground or more than 4 wavelengths above the sea,
these three parameters have little significance, and one may as well assume,
say, “average” ground constants. At frequencies below about 50 MHz the
effect of the conductivity is dominant; otherwise the relative permittivity is
the more important.

Similarly, on short paths less than about 50 km, the atmosphere has little
effect, and one may as well assume average conditions with a Continental
Temperate climate and Ns = 301 N-units. And finally, for the siting criteria
one will usually assume that both terminals are sited at random. Thus, in
a large proportion of practical problems, one is left with only five parameter
values to consider: frequency, distance, the two antenna heights, and the
terrain irregularity parameter.

3.2 General Description

Given values for the input parameters, the irregular terrain model first com-
putes several geometric parameters related to the propagation path. Since
this is an area prediction model, the radio horizons, for example, are un-
known. The model uses empirical relations involving the terrain irregularity
parameter to estimate their position.

Next, the model computes a reference attenuation, which is a certain
median attenuation relative to free space. The median is to be taken over
a variety of times and paths, but only while the atmosphere is in its quiet
state—well-mixed and conforming to a standard atmospheric model. In con-
tinental interiors such an atmosphere is likely to be found on winter after-
noons during fair weather. On oversea or coastal paths, however, such an
atmosphere may occur only rarely.

As treated by the model, this reference attenuation is most naturally
thought of as a continuous function of distance such as that portrayed in
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Figure 1: A typical plot of reference attenuation versus distance.

Figure 1. As shown there, it is defined piecewise in three regions, called
the line-of-sight, diffraction, and forward scatter regions. The “line-of-sight”
region is somewhat misnamed; it is defined to be the region where the general
bulge of the earth does not interrupt the direct radio waves, but it still
may be that hills and other obstructions do so. In other words, this region
extends to the “smooth-earth” horizon distance, which is probably farther
than the actual horizon distance. In this region the reference attenuation is
computed as a combined logarithmic and linear function of distance; then
in the diffraction region there is a rather rapid linear increase; and this is
followed in the scatter region by a much slower linear increase. Parameters
other than distance enter into the calculations by determining where the
three regions fall and what values the several coefficients have. But once the
system and its deployment (in a homogeneous environment) have been fixed,
the notion of attenuation as a function of distance should be a convenient
one for many problems.

The reference attenuation is a good representative value to indicate to a
designer how a proposed system will behave. For some problems, knowing it
alone will be sufficient. For most problems, however, one must also obtain

16



the statistics of the attenuation. To do this, the model first subtracts a small
adjustment for each climate to convert the reference attenuation to an all-year
median attenuation. Then from this median attenuation further allowances
are subtracted to account for time, location, and situation variability in the
manner described in Section 6.

For its calculations, the model utilizes theoretical treatments of reflection
from a rough ground, refraction through a standard atmosphere, diffraction
around the earth and over sharp obstacles, and tropospheric scatter. It com-
bines these using empirical relations derived as fits to measured data. This
combination of elementary theory with experimental data makes it a semiem-
pirical model which on the one hand should agree with physical reality at
certain benchmark values of the parameters and on the other hand should
comply with physical laws sufficiently well to allow us to interpolate between
and extrapolate from these benchmark values with a good degree of confi-
dence. Thus the model is a general purpose one that should be applicable
under a wide variety of “normal” conditions—particularly those conditions
that correspond to the land mobile and broadcast services.

The data used in developing the empirical relations clearly have influenced
the model itself. It should then be noted that these data were obtained
from measurements made with fairly clear foregrounds at both terminals. In
general, ground cover was sparse, but some of the measurements were made
in areas with moderate forestation. The model, therefore, includes effects of
foliage, but only to the fixed degree that they were present in the data used.

There are several phenomena that the model ignores, chiefly because they
occur only in special circumstances. In cases of urban conditions, dense
forests, deliberate concealment of the terminals, or concerns about the time
of day or season of the year, it is possible to make suitable extra allowances
or additions to the basic model. This, of course, requires an engineer who
knows the situation involved and the probable magnitude of the consequent
effects.

The possibility of ionospheric propagation is what makes us limit the
model to frequencies above 20 MHz. Still, there will be occasional cases of
ionospheric reflection at frequencies near this lower limit, and scatter from
sporadic E will occur at frequencies below about 100 MHz. Such effects,
however, will be apparent only on very long paths and only for very small
fractions of time.

Atmospheric absorption—particularly the water vapor line at 22 GHz—is
what limits the model at the higher frequencies. The effects are measurable
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above about 2 GHz, but except on very long paths, they can usually be
safely ignored below 10 GHz. Since water vapor absorption, which usually
dominates below 25 GHz, is directly proportional to the water vapor content
in the air, the magnitude of absorption varies in both time and location. If
one wants to make extra allowances for this phenomenon, one should keep
this variability in mind.

Rainfall attenuation is another phenomenon ignored by the irregular ter-
rain model. This becomes important at frequencies above 6 GHz. However,
it is measurable only during heavy rainstorms and therefore influences signal
levels only for small fractions of time—usually for less than 1% of the time.

Superrefractive and ducting layers may occur along a path; indeed, in
some coastal or oversea paths they may appear for large fractions of the
time. The irregular terrain model tries to account for these occurrences, but
only in a very general, nonspecific, way. It makes no attempt, for example,
to account for the definite differences observed when the terminals lie above,
within, or below a layer.

If ionospheric propagation, sporadic E, atmospheric absorption, rainfall,
or ducting are important phenomena for a specific problem, the user should
turn to other, more specialized, models for guidance. The irregular terrain
model is not appropriate for these problems and should not be used.

Another obvious situation where the model should not be used is in pre-
dicting the performance of line-of-sight microwave links. With adequate
ground clearance, the median received signal level for such links is usually
very nearly the free space value modified, perhaps, by atmospheric absorp-
tion. There is little, if any, dependence on radio frequency, terrain irregular-
ity, path length, or antenna heights so long as adequate Fresnel zone clearance
is maintained. The irregular terrain model, however, will not assume, except
on short paths, that there is adequate clearance and may predict a consider-
able attenuation. In the upper UHF and lower SHF bands, the model should
be restricted to such problems as tactical communications and interference.

The model, as presently formulated, is also not suitable for predicting
air-to-ground performance for aircraft flying at heights greater than 3 km.
Even for heights greater than 1 km, the special conditions that arise makes
the model of somewhat questionable usefulness.

In comparing predicted attenuation with measured values, certain addi-
tional questions may be encountered. Section 7.3. Some of these are illus-
trated by the example in In general, we should note that if the terrain varies
widely in character within the desired area, then greater variability must be
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expected. Also, if the terminals are sited in extreme, rather than typical,
locations, the calculated attenuation will not represent the median of mea-
surements. An example of such an atypical situation would be propagation
along a narrow, steep-sided valley, where the radio signal may be repeatedly
reflected from the walls of the valley.
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4 Development of the Model

During the years prior to 1960, a good deal of information was obtained re-
garding radio propagation through the turbulent atmosphere over irregular
terrain. For paths with fixed terminals a number of prediction models had
been developed to describe the power available at the receiver over known
profiles by means of line of-sight, diffraction, and forward scatter propagation.
A good deal of data had also been accumulated from high-powered broadcast
transmitting antennas to rather well-sited receivers. However, land-mobile
types of communication systems were becoming increasingly important. In
such applications some of the terminals are highly mobile, with randomly
changing locations. Little information was available for such systems, espe-
cially where low antenna heights and ready mobility are prime requirements.

A theoretical and experimental program was undertaken by the National
Bureau of Standards to study propagation characteristics under conditions
resembling the operation of army units in the field. Tactical situations may
often require that antennas be low and placed as inconspicuously as possible,
and that receivers be highly mobile. A report by Barsis and Rice (1963)
describes the planned measurement program and proposed terrain analysis.
The measurements were to be carried out in various types of terrain, including
the open plains of eastern Colorado, the foothills and rugged mountains of
Colorado, and the rolling, wooded hills of northeastern Ohio. The report
describes terrain profile types in terms of a spectral analysis which depends on
a discrete, finite-interval, harmonic analysis of terrain height variations over
the great circle path between terminals. Characteristics of terrain profiles
of any given length were described relative to a leastsquares fit of a straight
line to heights above sea level.

As the study progressed, the harmonic analysis of terrain was replaced by
a single parameter ∆h, which is used to characterize the statistical aspects of
terrain irregularity. Terrain statistics were developed for the areas described
above by reading a large number of terrain profiles. Each profile was repre-
sented by discrete elevations at uniform distances of half a kilometer. Within
each region selected for intensive study, 36 profiles 60 km in length were read
in each of six directions, providing a total of 216 profiles that form a rather
closely spaced grid over a 100 km square area. Each profile was considered
in lengths of 5, 10, 20. . . 60 km to study the effects of path length on the
various terrain parameters.

The interdecile range ∆h(d) of terrain heights above and below a straight
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line, fitted by least squares to elevations above sea level, was calculated at
each of these distances. Usually the median values of ∆h(d) for a specified
group of profiles increase with path length to an asymptotic value, ∆h, which
is used to characterize the terrain. This definition of ∆h differs from that
used by the CCIR and by the FCC as noted in Section 5.

An estimate of ∆h(d) at any desired distance may be obtained from the
following empirical relationship:

∆h(d) = ∆h[1− 0.8 exp(−d/Do)] (1)

where the scale distance Do equals 50 km. For homogeneous terrain, values
of ∆h(d) measured at each distance agree well with those obtained from (1).
As the terrain in a desired area becomes less homogeneous, the scatter of
measured values of ∆h(d) increases.

For an area prediction where individual path profiles are not available,
median values of terrain parameters to be expected are calculated as empir-
ical functions of the terrain irregularity parameter ∆h, the effective earth’s
radius, the antenna heights, and the siting criteria employed.

Even at first, the model was designed to calculate the reference attenu-
ation below free space as a continuous function of distance. This could be
easily converted to basic transmission loss by adding the free-space loss at
each distance. These reference values of basic transmission loss, with a small
adjustment for climate, represent the median, long-term values of transmis-
sion loss predicted for the area.

To provide a continuous curve as a function of distance, this median at-
tenuation is calculated in three distance ranges as shown in Figure 1, Section
3: a) for distances less than the smooth-earth horizon distance dLs; b) for
distances just beyond the horizon from dLs to dx; and c) for distances greater
than dx. The model does not provide predictions for distances less than 1
km. For distances from 1 km to dLs the predicted attenuation is based on
two-ray reflection theory and extrapolated diffraction theory. For distances
from dLs to dx, the predicted attenuation is a weighted average of knife-edge
and smooth-earth diffraction calculations. The weighting factor in this re-
gion is a function of frequency, terrain irregularity, and antenna heights. For
distances greater than dx, the point where diffraction and scatter losses are
equal, the reference attenuation is calculated by means of a forward scatter
formulation.

In developing the original model, comparisons with data were made and
empirical relationships were established. These include expressions for calcu-
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lating horizon distances and horizon elevation angles, based on information
obtained during the terrain study. The weighting factor, used to obtain the
weighted average between rounded earth and knife-edge diffraction calcula-
tions, is based on radio data taken from two series of measurements. The first
of these provided a large amount of data at 20, 50, and 100 MHz, obtained
with low antennas in Colorado and Ohio. The results of these measure-
ments are reported by Barsis and Miles (1965) and by Johnson et al. (1967).
The other large body of measurements at VHF and UHF was provided to
the Television Allocations Study Organization (TASO). These measurements
were made in 1958 and 1959 in the vicinity of several cities in the United
States, and the results are summarized by Head and Prestholdt (1960). Sig-
nals from television stations at frequencies of about 60 and 600 MHz were
measured at uniform distances along radials with 3 and 9 m receiving antenna
heights. These measurements were made with both mobile and stationary
receivers in terrain that ranged from smooth plains to mountains.

After the model was developed and published (Longley and Rice, 1968),
comparisons were made with a large amount of data at frequencies from 20
MHz to 10 GHz. These comparisons are reported by Longley and Reasoner
(1970). Further comparisons, reported by Longley and Hufford (1975), were
made with data at 172 MHz and 410 MHz taken with very low antennas.

Concerning the question of statistics, recall that the original purpose
was to provide an area prediction model for land-mobile applications. Such
systems involve low antennas and low transmitter powers with consequently
short ranges. For such short paths, over land, the path-to-path variability is
considerably greater than the time variability, and therefore the latter was
treated rather casually. A Continental Temperate climate was assumed and
represented by a cumulative distribution with two slopes—two “standard
deviations”—to allow for the observed greater variability of the strong fields
than of the weak ones.

As the use of the model was extended to broadcast coverage, with high
power radiated from transmitting antennas on tall towers, the effects of dif-
ferences in climate became more important in terms of possible interference
between systems. For such applications, we included sets of mathematical ex-
pressions that reproduce the variability curves for various climates defined by
the CCIR (1978b) and listed in Table 4. Two other climates, Mediterranean
and Polar, are described in the CCIR Report, but curves are not presented
for them. For land-mobile services in the United States, the Continental
Temperate climate is nearly always chosen.
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The original “Longley-Rice” model was published in 1968. Shortly af-
terward a new version was developed which improved the formulation for
the forward scatter prediction, and later the computer implementation was
changed to improve its efficiency and increase the speed of operation. Since
then, minor but important modifications have been made in the line-of-sight
calculations.

To keep track of the various versions, most of which are presently being
used at some facility, we have recently begun numbering them in serial fash-
ion. Following the original (which might be called version 0), here is a list
of the more important versions, together with approximate dates when they
were first distributed:

1.0 January 1969
1.1 August 1971
1.2 March 1977
1.2.1 April 1979
2.0 May 1970
2.1 February 1972
2.2 September 1972

Version 1.2.1 corrects an error in version 1.2; it is the currently recommended
version and is the one whose implementation is listed in Appendix A. The
second series, beginning with version 2.0, used considerably modified diffrac-
tion calculations and tried to incorporate a groundwave at low frequencies.
It is not now recommended and is no longer maintained by its developers.
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5 Detailed Description of Input Parameters

The various parameters required as input to the ITS area prediction model
were described briefly in Section 3 of this guide. Further description and an
explanation of their use is provided here.

The primary emphasis of the model is a consideration of the effects of
irregular terrain and the atmosphere on radio propagation at frequencies
from 20 MHz to 20 GHz. One of the chief parameters used to describe the
atmosphere is the surface refractivity Ns, while the terrain is characterized by
the parameter ∆h. A discussion of both atmospheric and terrain parameters
is presented here.

5.1 Atmospheric Parameters

Atmospheric conditions such as climate and weather affect the refractive in-
dex of air and play important roles in determining the strength and fading
properties of tropospheric signals. The refractive index gradient of the atmo-
sphere near the earth’s surface is the most important atmospheric parameter
used to predict a long-term median value of transmission loss. This surface
gradient largely determines the amount a radio ray is bent, or refracted, as it
passes through the atmosphere. In this model we define an “effective” earth’s
radius as a function of the surface refractivity gradient or of the mean surface
refractivity Ns. This allows us to consider the radio rays as being straight so
long as they lie within the first kilometer above the earth’s surface. At very
much higher elevations, the effective earth’s radius assumption over-corrects
for the amount the ray is refracted and may lead to serious errors. In this
propagation model we use minimum monthly mean values of Ns to char-
acterize reference atmospheric conditions. Since such values are less apt to
be influenced by temporary anomalous conditions such as superrefraction or
subrefraction, they provide a rather stable reference which is exactly suited
to computations of the reference attenuation.

The minimum monthly mean value of Ns, which in the northern hemi-
sphere often corresponds to values measured in February, may be obtained
from local measurements or estimated from maps of a related parameter No.
The refractivity No is the value of surface refractivity that has, for conve-
nience, been reduced to sea level. Figure 2 from Bean et al. (1960) is a
world-wide map of minimum monthly mean values of No. The corresponding

24



value of surface refractivity is then:

Ns = No exp(−hs/Hs) N-units (2)

where hs is the elevation of the earth’s surface and the scale height Hs equals
9.46 km.

The effective earth’s radius is directly defined as an empirical function of
Ns, increasing as Ns increases. It is common to set Ns equal to 301 N-units;
this corresponds to an effective earth’s radius of 8497 km, which is just 4/3
times the earth’s actual radius. Values of the effective earth’s radius are
used in computing the horizon distances, the horizon elevation angles, and
the angular distance θ for transhorizon paths.

For short distance ranges the model is not particularly sensitive to changes
in the value of surface refractivity. For this reason, in land-mobile systems
we may often assume that Ns has the nominal value of 301 N-units. For
distances greater than 100 km, changes in Ns have a definite effect on the
amount of transmission loss.

Other atmospheric effects, such as changes in the refractive index and
changes in the amount of turbulence or stratification, lead to a variability in
time that may be allowed for by empirical adjustments described in Section
6.

5.2 Terrain Parameters

In VHF and UHF propagation over irregular terrain near the earth’s surface,
a number of parameters are important. Early studies by Norton et al. (1955),
Egli (1957), LaGrone (1960), and others indicated that for transhorizon paths
the most important of these parameters appears to be the angular distance
θ. For within-the-horizon paths the clearance of a radio ray above the terrain
between the terminals is one of the most important factors.

In considering terrain effects, we usually assume that we need allow only
for the terrain along the great circle path between terminals. The angular
distance θ is then defined as the acute angle in the great circle plane between
the radio horizon rays from the transmitting and the receiving antennas.
The angular distance θ is positive for transhorizon paths, zero at grazing
incidence, and negative for line-of-sight paths.

When detailed profile information is available for a specific path, then the
horizon distances, the horizon elevation angles, and the angular distance θ
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Figure 2: Minimum monthly mean values of surface refractivity referred to
mean sea level (from Bean, Horn, and Ozanich, 1960).
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may be computed directly. In an area prediction, however, specific path pro-
files are not available, and these same terrain parameters must be estimated
from what we know of the statistical character of the terrain involved. As
described in Section 4, examination of a large number of terrain profiles of
different lengths in a given area showed that median values of ∆h(d) increase
with path length to an asymptotic value ∆h. This parameter ∆h, defined
by (1), is used to characterize terrain.

We should note here that this definition of ∆h differs from the one used
by the CCIR (1978a) and by the FCC (Damelin et al., 1966). Their definition
is simply the interdecile range of elevations above sea level in the range 10 to
50 km from the transmitter. This definition results in smaller values of ∆h
than our asymptotic value. We estimate that in most cases the CCIR value
will equal approximately 0.64 times our value. For instance, while we would
say that a world-wide average value for ∆h is about 90 m, the FCC uses the
value of 50 m.

In homogeneous terrain the values of ∆h(d) measured over a large number
of paths agree well with those calculated using the relationship in (1). Where
the terrain is not homogeneous, a wider scatter of values occurs, and the
estimated value of ∆h(d) may not represent a true median at each distance.
In such circumstances we may allow for a greater location variability in the
prediction, or at times we may consider different sectors of an area and
predict for each sector. An example of this would be an area that includes
plains, foothills, and mountains. The losses predicted for each sector could be
determined for the value of the terrain parameter computed for that sector.

The terrain parameter ∆h may be obtained in one of several ways. The
method selected will depend on the purpose for which it is used and on
the terrain itself. In the original work to determine ∆h for an area, a large
number of profiles were read at uniform intervals. These profiles criss-crossed
the area in such a way as to provide a rather fine grid. The interdecile range
∆h(d) was obtained for each profile and plotted as a function of distance.
The median value at each distance was then used to obtain a smooth curve
of ∆h(d), whose asymptotic value is the desired parameter ∆h. This method
is quite laborious and may not be necessary for the desired application. One
can now use general maps of the terrain irregularity parameter as shown in
Figure 3, or one may still go directly to topographic maps of the desired
area and from them estimate the proper value. To do this, one may select
a random set of paths, compute the value ∆h from each path, and use the
median of these calculated values to describe the terrain irregularity. With
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Figure 3: Contours of the terrain irregularity parameter ∆h in meters. The
derivation assumed random paths and homogeneous terrain in 50 km blocks.
Allowances should be made for other conditions.

practice and a few elevations read from the map, one can even estimate ∆h
by eye.

A major problem is that the area of interest is rarely homogeneously ir-
regular. In such a case one must exercise judgment in selecting paths that
will be representative of those that will actually be used in a proposed de-
ployment. For example, if the desired paths will always be along or across
valleys, one should not choose terrain profiles that cross the highest moun-
tains. When virtually all paths involve terminals on facing hillsides along
the same valley, a highly preferential situation exists.

Some qualitative descriptions of terrain and suggested values of ∆h are
listed in Table 2. Whether or not one needs a better estimate, based on com-
puted values, depends on the sensitivity of the predicted values of transmis-
sion loss to changes in ∆h. This sensitivity is quite complicated, depending
on the value of ∆h itself, on the antenna heights, distance range, siting cri-
teria, and the radio frequency. This is probably most readily illustrated by
an example. Figure 4 shows plots of attenuation relative to free space as
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a function of ∆h at various distances. These curves are for a land-mobile
system over irregular terrain at a frequency of 150 MHz. The upper figure
represents base-to-mobile communication with antenna heights of 30 m and
2 m. The lower figure is drawn for mobile-to-mobile units with both an-
tennas 2 m above ground. For small values of ∆h the sensitivity to change
is quite appreciable, especially at distances in the line-of-sight and diffrac-
tion regions. Here the decrease in attenuation (a phenomenon that might be
likened to “obstacle gain”) may be as much as 10 dB as ∆h increases from
0 to 25 m. For larger values of ∆h from about 50 to 150 m, there is little
change in attenuation while for still larger values of ∆h and for distances
in the scatter region the increases in attenuation are quite regular and less
sensitive to change than for small values of ∆h.

The area prediction model depends heavily on the parameter ∆h, which
characterizes terrain, and on the surface refractivity, Ns. Median values of
all the other terrain parameters are computed from these two values when
antenna heights are specified. Estimates of signal variability in time and
space are also dependent on these two basic parameters. The relationships
between the secondary parameters and the terrain irregularity parameter ∆h
were developed mainly in rural areas where antenna sites were always chosen
with open foreground and were located on or near roads. In these areas the
ground cover was usually sparse, but some moderate forestation was present.

5.3 Other Input Parameters

The way a system is deployed—particularly the way the terminal sites are
chosen—can have a marked effect on observed signal levels. Unfortunately,
there have been very few studies of these effects that could provide us with
useful guidance. Nevertheless, the area prediction model does require the
siting criteria, which are qualitative descriptions of the care with which each
of the two terminal sites is chosen so as to improve communications. The
effect of these criteria on the model is based on reasonable assumptions,
but the validity of the results has been tested in only a limited number of
examples. One should therefore exercise caution, both in the selection of
values for the siting criteria and in the interpretation of results.

Changes in the value of the siting criterion for one of the terminals affect
the assumed effective antenna height of that terminal. This effective height is
defined to be the height of the antenna above the “effective reflecting plane”
which, in turn, is a characterization of the intermediate foreground. It is
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(a) f = 150 MHz, hg1 = 30 m, hg2 = 2 m

(b) f = 150 MHz, hg1 = 2 m, hg2 = 2 m

Figure 4: The reference attenuation versus ∆h for selected distances.
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actually this height, not the structural height, that the model uses in nearly
all of its calculations. When the effective height increases, the model predicts
less transmission loss and a greater communication range.

When the terminals of a system are usually sited on high ground and
some effort is made to locate them where signals appear to be particularly
strong, we say the siting is very good. When most of the terminals are located
at elevated sites but with no attempt to select hilltops or points where signals
are strong, we would classify these as good sites. Finally, when the choice
of antenna sites is dictated by factors other than radio reception, there is
an equal chance that the terminal locations will be good or poor, and we
would assume the selection of antenna sites to be random. But note that
even when antennas are sited randomly we assume they are not deliberately
concealed. For concealed antennas an additional loss should be allowed, the
amount probably depending on the nature of the concealment and on the
radio frequency and terrain irregularity.

With random siting the effective antenna heights are assumed to be sim-
ply equal to the structural heights. With good siting the effective height is
obtained by adding to the structural height an amount that never exceeds
5 m. With very good siting the additional amount never exceeds 10 m. In
both cases the actual amount added depends on the terrain irregularity pa-
rameter, the notion being that in more irregular terrain there will be greater
opportunity to find elevated ground. In flat areas the effective heights will
always equal the structural heights no matter what the siting criteria are.
The advantages achieved by good and very good siting are greatest for low
antennas with structural heights less than about 10 m. If the antenna is on a
high tower, the assumed change in effective height has little significance—but
it is definitely significant for antennas located just above the ground.

The effective heights estimated from the siting criteria assume that anten-
nas will be placed on a good site or on the best site within a very limited area.
They do not assume that antennas will be placed on the highest mountain
top within a total deployment area. But in many special problems, one will
actually use just this kind of site selection. One such problem is illustrated
in Section 7.3. In that case the receiver site was deliberately chosen at the
edge of a high mesa overlooking rather smooth terrain. This is a decidedly
atypical situation. One intuitively feels that it should be treated by setting
the effective height of the antenna equal to the height above the terrain that
lies below the mesa. But in the irregular terrain model it is the structural
height that must be adjusted.
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We usually define the structural height of an antenna to be the height
of the radiation center above ground. But if the antenna looks out over the
edge of a cliff, then it seems entirely natural to say that the cliff is really a
part of the antenna tower and to include its height in the structural height.
Another, more common, example of this same problem occurs in the design
and analysis of VHF and UHF broadcast stations. There, it is the usual
practice to site the antenna atop a hill or well up the side of a mountain in
order to gain a very definite height advantage. While we no longer have an
obvious cliff, this height advantage should still be accounted for by including
it in the structural height.

There are several rules used by various people to determine what the
ground elevation should be above which the antenna height is to be found.
The FCC uses the 2 to 10 mi (3 to 16 km) average elevation for the radial
of interest. Another rule that has been suggested is that one should not
count as “ground” anything that has a depression angle from the center of
radiation of more than 45°. In our own work we have sometimes said that
consideration of terrain elevations should begin at a point distant about 15
times the tower height.

The choice of a radio climate may be difficult or confusing for the reader.
The several climates described by the CCIR have not been mapped out as
various zones throughout the world, and there are no hard and fast rules to
describe each of the climates. Since our model is intended for use over irregu-
lar terrain, our preference is to use the Continental Temperate climate unless
there are clear indications to choose another. The CCIR curves showing vari-
ability in time are entirely empirical and depend on the climate chosen. The
curves for Continental and Maritime Temperate climates are based on a con-
siderable amount of data, while those for the other climates depend on much
smaller data samples. The Continental Temperate climate is common to
large land masses in the temperate zone. It is characterized by extremes of
temperature and pronounced diurnal and seasonal changes in propagation.
In mid-latitude coastal areas where prevailing winds carry moist maritime
air inland, a Maritime Temperate climate prevails. This situation is typi-
cal of the United Kingdom and of the west coasts of the United States and
Europe. For paths that are less than 100 km long, there is little difference
between the Continental and Maritime Temperate climates, but for longer
paths the greater occurrence of superrefraction and ducting in maritime ar-
eas may result in much higher fields for periods of 10 percent or less of the
year.
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In considering time variability, it is important to note that we are con-
cerned only with long-term variability, the changes in signal level that may
occur during an entire year. The data on which such estimates are based were
median values obtained over short periods of time, an hour or less. signal
distributions are then distributions of these medians. The yearly This elim-
inates much of the short-term variability, which is usually associated with
multipath. The rapid, short-term, multipath fading at a mobile receiver
depends on many local factors including the type of receiving equipment,
reflections from buildings and trees, and the speed at which the recording
vehicle travels. In smooth, uncluttered terrain there may be little if any mul-
tipath fading, whereas the most severe fast fading is Rayleigh distributed.
Even simple diversity techniques will greatly reduce this short-term multi-
path type of fading.
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6 Statistics and Variability

We come now to a discussion of how the ITS irregular terrain model treats
the statistics of radio propagation. As we have mentioned before it seems
undeniable that received signal levels are subject to a wide variety of ran-
dom variations and that proper engineering must take these variations into
account. Unfortunately, the problem is considerably more complicated than
problems of simple random variables one encounters in elementary probabil-
ity theory.

The principal trouble is that the population of observed signal levels is
greatly stratified—i.e., not only do the results vary from observation to ob-
servation (as one would expect) but even the statistics vary. Now it is not
surprising that this should be the case when one varies the fundamental
system parameters of frequency, distance, and antenna heights; nor is it
surprising when one varies the environment from, say, mountains in a con-
tinental interior to flat lands in a maritime climate, or from an urban area
to a desert. But even when such obvious parameters and conditions are ac-
counted for, there remain many subtle and important reasons why different
sets of observations have different statistics.

Our problem here is analogous in many ways to that of taking public
opinion polls. There results depend not only on the questions asked but also
on many subtleties concerning how, where, and when the questions are asked.
If one spends the working day telephoning people at their homes, then one
obtains the opinions of those people who own telephones and answer them
and who have remained at home that day. This procedure might still be a
random sampling and might, indeed, provide acceptable results, if it were
not for the fact that public opinion is, again, greatly stratified—i.e., that the
opinions of one segment of the population can differ greatly from those of
another.

In the case of radio propagation, it is the equipment and how, where, and
when it is used that provides an added dimension of variability. Perhaps one
or both terminals are vehicle mounted and constrained to streets and roads.
Perhaps, instead, one antenna is likely to be mounted on a rooftop. Perhaps
it is most probable that both antennas are well removed from trees, houses,
and other obstacles; or perhaps it is likely that one of the antennas is close
to such an obstacle or even inside a building, whether this be for convenience
or because concealment is desirable. It may be that two regions of the world
appear, even to the expert’s eye, to offer the same set of impediments to radio
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propagation and yet the differences—whose effects we do not understand—
may be important.

In any case, the way in which equipment is deployed has an often impor-
tant and unpredictable effect on observed signal levels. We propose here to
use the word situation to indicate a particular deployment, whether in ac-
tual use or simply imagined. In technical terms, a situation is a probability
measure imposed on the collection of all possible or conceivable propagation
paths and all possible or conceivable moments of time. (A good introduction
to the theory of probability measures is given by Walpole and Myers, 1972,
Ch. 1.) To choose a path and a time “at random” is therefore to choose
them according to this probability measure. Insofar as we want to get below
the level at which stratification is important, we would want to restrict a
situation (that is, to restrict the set of paths and times where the imposed
probability is non-zero) to include only paths with a common set of system
parameters, lying within a single, homogeneous region of the world. This
is a natural restriction except, perhaps, as it affects the distance between
terminals. The distance is a parameter which is difficult to fix while still
allowing a reasonable selection of paths.

If we are concerned with a single, well-defined communications link with
fixed terminals, then the situation involved has only a single isolated path
which is to be chosen with probability one. But the deployment of a land-
mobile system in one single area would define a more dispersed situation.
Note, moreover, that if the mobile units pass from an urban area to a sub-
urban or rural area, then we would suppose they pass from one situation to
another. If one sets out to make a set of measurements of received signal
levels, then one will sample from what is, if the measurement program has
been properly designed, a situation pre-defined by the program objectives.
Often the measurements will be in support of what will become a system de-
ployment. It is then always proper to ask whether the situation from which
the data are taken corresponds accurately enough to the situation in which
the system will operate.

Once again, all this fussiness would be unnecessary—and radio propaga-
tion engineering would long ago have become a finely honed tool—if it were
not that the population of received signal levels is a stratified one. The sys-
tem parameters, the environmental parameters, and the situation in which
one is to operate are all important and each of them has some effect on the
final statistics. The complexity of nature often forces us to empirical studies
of these statistics; but the large number of dimensions involved makes this a
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difficult task.

6.1 The Three Dimensions of Variability

We turn now to a general discussion of the physical phenomenology involved.
First, we should note that there is a very important part of the variability
that we do not wish to include. This is the short-term or small displacement
variability that is usually attributed to multipath propagation. Although it
is probably the most dramatic manifestation of how signal levels vary, we
exclude it for several reasons. For one, a proper description of multipath
should include the intimate details of what is usually known as “channel
characterization,” a subject that is beyond our present interests. For another,
the effects of multipath on a radio system depend very greatly on the system
itself and the service it provides. Often a momentary fadeout will not be of
particular concern to the user. When it is, the system will probably have
been constructed to combat such effects. It will use redundant coding or
diversity. Indeed, many measurement processes are designed so as to imitate
a diversity system. On fixed paths, where one is treating the received signal
level as a time series, it is common to record hourly medians—i.e., the median
levels observed during successive hours (or some comparable time interval).
We may liken the process to a time diversity system. If measurements are
made with a mobile terminal, one often reports on selected mobile runs about
30 m in length. Then, again, one records the median levels for each run, thus
simulating a space diversity system. Under the “frozen-in-space” hypothesis
concerning atmospheric turbulence, one expects hourly medians and 30-m
run medians to be about the same. (But the analogy becomes rather strained
for multipath in urban areas.) To the two measurement schemes above, it
would seem reasonable to add a third to correspond to frequency diversity.
This would be a “wideband” measurement in which the average or median
power over some segment of the spectrum were recorded. In any case, it is
only the variation of these local medians that concerns us.

If one still finds it necessary to consider instantaneous values of cw sig-
nals, then the usual practice is simply to tack on an additional variability
to those we shall describe here. Often, one assumes either that the signal is
locally steady (in areas where there is no multipath) or that it is Rayleigh
distributed (in areas with extreme multipath). Occasionally one will assume
an intermediate case, using the Nakagami-Rice (see, e.g., Rice et al., 1967,
Annex V) distributions or the Weibull distributions.
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If we set out to measure statistics of local medians, the first step that
occurs to us is to choose a particular fixed link and record measurements of
hourly median received signal levels for 2 or 3 years. The resulting statis-
tics will describe what we call the time variability on that one path. We
could characterize these observations in terms of their mean and standard
deviation; but, both because the distribution is asymmetric and not easily
classified as belonging to any of the standard probability distributions, and
because the practicing engineer seems to feel more comfortable with the al-
ternative, we prefer to use the quantiles of the observations. These are the
values not exceeded for given fractions of the time and are equivalent to a
full description of the cumulative distribution function as described in the
elementary texts on statistics. We would use such phrases as “On this path
for 95% of the time the attenuation did not exceed 32.6 dB.”

If we now turn our attention to a second path, we find to our dismay that
things have changed. Not only are individual values different, as we would
expect given the random nature of signal levels, but even the statistics have
changed. We have a “path-to-path” variability caused by the fact that we
have changed strata in the population of observable signal levels. Suppose,
now, that we make a series of these long-term measurements, choosing sample
paths from a single situation. In other words, we keep all system parame-
ters constant, we restrict ourselves to a single area of the earth and keep
environmental parameters as nearly constant as is reasonable, and we choose
path terminals in a single, consistent way. We still find that the long-term
time statistics change from path to path and the variation in these statis-
tics we call location variability. Of course, if the situation we are concerned
with has to do with a single, well-defined link, then it is improper to speak
of different paths and hence improper to speak of location variability. But
in the broadcast or mobile services, it is natural to consider such changes.
The most obvious reason for the observed variability is the accompanying
change in the profile of the terrain lying between the two terminals; although
the outward—statistical, so to speak—aspects of the terrain may remain
constant, the actual individual profiles, together with other, less obvious,
environmental changes, will induce large changes in observed signal level
statistics.

If we try to quantify location variability, we must talk of how time vari-
ability varies with path location. We have no recourse but to speak of the
statistics of statistics. Clinging to the terminology of quantiles, we would
speak of quantiles of quantiles and come up with some such phrase as “In
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this situation there will be 70% of the path locations where the attenuation
does not exceed 32.6 dB for at least 95% of the time.”

Finally, we must ask what effect there is when one changes from situa-
tion to situation. It should be no surprise to be told that the statistics we
have so painfully collected following the outline above have changed. If we
use like appearing situations—that is, if we change operations from one area
to another very similar area or if we merely change the sampling scheme
somewhat—then the observed changes in the location variability we call sit-
uation variability.

In other contexts this last variability is sometimes referred to as “predic-
tion error,” for we may have used measurements from the first situation to
“predict” the observations from the second. We prefer here to treat the sub-
ject as a manifestation of random elements in nature, and hence as something
to be described.

To make a quantitative description however, we must renew our discus-
sion of the character of a “situation.” We have defined a situation to be a
restricted probability measure on the collection of all paths and times. But if
we are to talk of changing situations—even to the point of choosing one “at
random”—then we must assume that there is an underlying probability mea-
sure imposed by nature on the set of all possible or conceivable situations.
And we must assume that at this level we have specified system parameters,
environmental parameters, and deployment parameters in sufficient detail so
that the variability that remains is no longer stratified—in other words, so
that any sample taken from this restricted population will honestly represent
that population. It is at this point that “hidden variables” enter—variables
whose effects we do not understand or which we simply have not chosen to
control. The values of these variables are at the whim of nature and differ
between what would otherwise be identical situations. The effects of these
differences produce the changes in observed statistics.

We are now at the third level of the statistical description, and evidently
we must speak of quantiles of quantiles of quantiles. This produces the
phrase, “In 90% of like situations there will be at least 70% of the locations
where the attenuation will not exceed 32.6 dB for at least 95% of the time.”

In general terms such quantiles would be represented as a function A(qT ,
qL, qS) of three fractions: qT , the fraction of time; qL, the fraction of locations;
and qS, the fraction of situations. The interpretation of this function follows
the same pattern as given above: In qS of like situations there will be at least
qL of the locations where the attenuation does not exceed A(qT , qL, qS) for
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at least qT of the time. Note that the inequalities implied by the words “at
least” and “exceeds” are important reminders that we are dealing here with
cumulative distribution functions. Note, too, that the order in which the
three fractions are considered is important. First, one chooses the situation,
then the location, and finally the time.

We recall that if a proposition is true with probability q then it is false
with probability 1−q. Working our way through all the inequalities involved,
we may also say: In 1 − qS of like situations there will be at least 1 − qL of
the locations where the attenuation does exceed A(qT , qL, qS) for at least
1− qT of the time. This is the kind of phrase one uses when trying to avoid
interference.

6.2 A Model of Variability

As complicated as it is, the three-fold description of quantiles does not com-
pletely specify the statistics. At the first level when we are considering time
variability it is sufficient. But at the very next level we have failed to no-
tice that we are trying to characterize an entire function of quantile versus
fraction of time qT . To do this completely, we would need to consider all
finite sequences qT l, qT2, . . . of fractions of time and to examine the resulting
observed quantiles all at once as a multivariate probability distribution. At
the third and final level, matters become even worse.

Obviously this becomes too complicated for practical applications; nor
would a study following such lines be warranted by our present knowledge.
But there are engineering problems that arise which can be aided by a more
complete description of these statistics. Implicit within the ITS irregular
terrain model is a second model which concerns variability and which can be
used to provide such a description. It is a relatively simple model using a
combination of simple random variables each of which depends on only one
of the three different dimensions of variability. While retaining the features
described in the previous paragraphs, it allows the engineer to derive formulas
for many needed statistics.

Experience shows us that when signal levels are expressed in decibel no-
tation the observed distributions tend to be normal or at least approximately
normal. It is from this fact that inspiration for the model is largely derived.
The broad statement of normality does, however, suffer from one important
flaw which appears when we discuss signal levels that exceed free space values.
Such signal levels are possible and are, indeed, observed; but their occurrence
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is rare and becomes increasingly more rare as one considers ever higher lev-
els. The distributions we obtain must be truncated or heavily abbreviated
at levels above free space.

As it happens, the terminology the ITS irregular terrain model uses to
describe the magnitude of variability differs in a slight way from that used
above. As in Rice et al. (1967, Annex V), the model considers the positive
direction of a deviation as an increase of signal level rather than of atten-
uation or loss. There is, of course, no real significance to this convention,
but the introduction of an extra minus sign does tend to confuse our subse-
quent arguments. For this one section, therefore, we shall adopt a different
posture. Using lower-case letters to refer to random variables, we suppose
that the object of concern is the signal level w which we measure in a decibel
scale. We leave the precise definition of this signal level deliberately vague,
since it is immaterial here whether we speak of power density, field strength,
receiver power, or whatever. It would be related to the attenuation a by the
formula

w = Wfs − a (3)

where Wfs, which is not a random variable, is the signal level that would be
obtained in free space.

The above change in convention requires a slight change in our definition
of a quantile. To retain the same relations as are used in practice, we now
say it is the value which is exceeded for the given fraction. For example, if w
were a simple random variable, we would define the quantile W (q) as being
the value which w exceeds with probability q. We should perhaps refer to
this as a “complementary” quantile, but instead we shall merely depend on
the context to determine the implied inequality. The rule to remember here
is that we assume the attitude of trying to detect a wanted signal. It must
be sufficiently large with a sufficiently high probability.

Our model of variability is a mathematical representation of how one
is to view the received signal level as a random variable. First we assume
the system parameters, the environmental parameters, and the deployment
parameters have been fixed. From the set of all situations with these pa-
rameters, we choose at random a particular one s. Then using that situation
(which is, remember, a probability measure) we choose at random a location
l and a time t. The triple (t, l, s) forms our elementary event, and the cor-
responding received signal level w(t, l, s) becomes a random variable. The
model expresses this function of three variables in a more explicit and man-
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ageable way. We first define a tentative value of the signal level

w′(t, l, s) = W0 + yS(s) + δL(s)yL(l) + δT (s)yT (t), (4)

where W0 is the overall median signal level; yS, yL, yT are three random vari-
ables called deviations; and δL, δT are another two random variables called
multipliers. The three deviations are measured in decibels and their median
values are 0 dB. The two multipliers are dimensionless, always positive, with
medians equal to unity. We now come to the important assumption that
the five random variables here are all mutually independent. This enables us
to treat each of them separately and then to combine them using standard
probability theory.

The final step in our model is to write

w(t, l, s) = M(w′(t, l, s)), (5)

where M is a modifying function which corrects values greater than the
free space value. For values of w′ less than the free space value, we set
M(w′) = w′; but otherwise M puts an upper limit on values or at any
rate reduces them considerably. As presently constituted, the ITS irregular
terrain model cuts back the excess over free space by approximately a factor
of 10. Thus, if Wfs is the free space value of received signal level, we have
M(w′) ≃ 0.9Wfs + 0.1w′ when w′ > Wfs.

The statistics of the three deviations and the two multipliers depend on
the system parameters, the environmental parameters, and the deployment
parameters. Except that the two multipliers must be positive, the five ran-
dom variables are approximately normally distributed. The deviations have
standard deviations on the order of 10 dB, while the multipliers have stan-
dard deviations equal to 0.3 or less. The actual values have been derived
from empirical evidence and engineering judgment.

Using this model we can, for example, recover the three-dimensional quan-
tiles discussed previously by following the prescribed procedure step by step.
At the first step we would assume there is a fixed situation and a fixed loca-
tion at which we observe the received signal level as a function of time. Now
one very useful property of quantiles has to do with the composition of ran-
dom variables with monotonically increasing functions. If, say, u is a random
variable with quantiles U(q) and if F is a monotonically increasing function,
then, as one can easily show, the random variable F (u) has the quantiles
F (U(q)). Since δT (s) is positive, the right-hand side of (4) is a monotonically
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increasing function of yT , and therefore the time variant quantiles are given
by

W ′
1(qT , l, s) = Wo + yS(s) + δL(s)yL(l) + δT (s)YT (qT ), (6)

where YT (qT ) is the qT quantile of yT . At the next step we would have a
fixed situation and a fixed time variant quantile, and we would look at (6)
as a function of location alone. Again, if YL(qL) is the qL quantile of yL, we
quickly find what is now a twofold quantile

W ′
2(qT , qL, s) = Wo + yS(s) + δL(s)YL(qL) + δT (s)YT (qT ). (7)

At the third step we must consider (7) as a random variable since the situ-
ation s is now to be chosen at random. But here we have a new problem.
The right-hand side of (7) is the sum of a fixed number Wo and three mutu-
ally independent random variables. The statistics of W ′

2 must therefore be
computed from the convolution of the corresponding three probability distri-
butions. When this has been done, we would pick off the desired quantile and
finally come upon the threefold expression W ′(qT , qL, qS). In the last step, we
recall that the modifying function M is monotonically increasing and so

W (qT , qL, qS) = M(W ′(qT , qL, qS)). (8)

The only difficult part in this sequence of computations appears when
we must find the convolution required by (7). To do this the ITS irregular
terrain model uses an approximation sometimes called pseudo-convolution.
This is a scheme described by Rice et al. (1967) to treat several applications
problems where the sum of independent random variables is concerned. For
completeness and because it is useful in many applications of the model, we
pause here to provide our own description.

In the general case we would have two independent random variables u
and v with corresponding quantiles U(q), V (q). We then seek the quantiles
W (q) of the sum w = u + v. We first form the deviations from the medians
which we recognize as having quantiles.

YU(q) = U(q)− U(0.5) (9)

YV (q) = V (q)− V (0.5),

and then we simply use a root-sum-square to derive

W (q) ≈ U(0.5) + V (0.5) + sign(0.5− q)
√
YU(q)2 + YV (q)2. (10)
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If u and v are normally distributed, this expression is exact. For other
distributions we can only say that results are reasonable and that in our
own experience using distributions that arise naturally in the applications
the expression is surprisingly accurate. It is, however, meant to be only an
approximation and must always be treated as such.

Note that the extension of (10) to more than two summands is straight-
forward. The expression even shares with actual convolution the property of
being associative and commutative so that the order in which summands are
combined is immaterial.

6.3 Reliability and Confidence

The use of the three-dimensional quantiles is perhaps best illustrated by its
application to the broadcast services. A broadcaster will need to provide
an adequate service to an adequate fraction of the locations at some given
range. But “adequate service” in turn implies an adequate signal level for an
adequate fraction of the time. For television channels 7 to 13, for example,
in order to provide Grade A service the broadcaster must deliver (O’Connor,
1968) a field strength 9 m above the ground which exceeds 64 dbµ for more
than 90% of the time, and that in at least 70% of the locations. Spectrum
managers and also the broadcast industry will in turn want to assure that
a sufficient fraction of the broadcasters can meet their objectives. If we
assume that each broadcaster operates in a separate “situation,” then this
last fraction is simply a quantile of the situation variability.

For other services, however, it is often difficult to see how the three-
dimensional quantiles fit in, and indeed it is probably the case that they do
not. Consider again the broadcast service. A single broadcaster will want
to know the probability with which a given service range will be attained or
exceeded. Since “service range” involves specified quantiles of location and
time, the probability sought concerns situation variability and we return to
three-dimensional statistics. On the other hand, consider the same problem
from the point of view of an individual receiver. That individual will want to
know only the probability at that one location of receiving adequate service—
that is, of receiving an adequate signal level for an adequate fraction of the
time. The distinction between location variability and situation variability
will be of no concern and should not enter into our considerations.

Using our model as in (4) and (5) we quickly note how we can accommo-
date a new kind of analysis. We can suppose that first both the situation and
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the location are chosen simultaneously and then, second, the time. The first
choice will have said that all four random variables in (4), excepting only
yT , are to be treated at once and are to be combined into a single deviation
yS + δLyL and a single multiplier δT . What we would have remaining is a
twofold description of variability involving time variability and a combined
situation/location variability, and this is precisely the description that the
individual receiver of a broadcast station would find useful.

To continue our discussions, we find it convenient here to introduce the
term reliability. This is a quantile of that part of the variability which enters
into the notion of “adequate service.” For the individual receiver of a broad-
cast station, reliability is concerned with a fraction of time. For a broadcaster,
however, reliability must be expressed as a twofold quantile involving time
and location variability separately. For the remaining variability—always at
a higher level in the hierarchy—we use the term confidence; and we mean this
term in the sense that if one makes a large number of engineering decisions
based on calculations that use the same confidence level, then, irrespective of
what systems or even what types of systems are involved, that same fraction
of the decisions should be correct—and, of course, the remainder should be
incorrect. Reliability is a measure of the variability that a radio system will
observe during the course of its deployment. Confidence will be measurable
only in the aggregate of a large number of radio systems. Clearly, differen-
tiation between the two will depend on the point of view one takes. To a
broadcaster, confidence will be a measure of the situation variability; to an
individual receiver of a broadcast station, it will be a measure of a combined
situation and location variability. But the spectrum planner of the broadcast
service will not speak of confidence at all; from that point of view all of the
variability is observable and is part of the system.

Remembering that we must retain the order in which the three kinds
of variability appear, there are four different ways that one can treat them
in combination, all of which have legitimate uses in one kind of service or
another. We call these the four modes of variability, although they are really
four different ways of treating the subject of variability.

Two of these four modes we have already discussed. In the broadcast mode
we treat all three kinds of variability separately. The typical user of this mode
would be the broadcaster for whom reliability would measure both location
and time variability and confidence would measure situation variability. In
the individual mode situation and location variability are combined so that
there remain this combined variability and time variability. Here, the typical
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user would be the individual receiver of a broadcast station for whom reli-
ability means the time availability, and confidence measures the combined
situation/location variability.

It would also be legitimate to combine location and time variability. We
call the result the mobile mode, since to a mobile radio unit changes in
location translate into changes in time. The typical user of this mode would
be a mobile system employing a single base station. Reliability would refer
to the combined location/time variability; it would probably translate into
fraction of attempts at establishing communications. Confidence would be a
measure of the situation variability.

Finally, in the single message mode we combine at once all three of the
kinds of variability, thus obtaining the more usual sort of one-dimensional
random variable. The statistics to be used here are much simpler than those
we have been discussing; but, we think, the useful applications are somewhat
limited. One application might be for a communications link that will be
used but once. Examples might include a disaster warning system or a radio
link attached to a self-destructing device. The statistics involved would then
be couched in terms of confidence levels. A more important application, how-
ever, would be for a mobile-to-mobile system where the two mobile units are
to be deployed worldwide. The statistics would translate into first-try success
probabilities (Hagn, 1980) and thereby become expressions of reliability.

6.4 Second Order Statistics

Until now we have been discussing only first order statistics—that is, the
statistics of received signal levels for a single path at a single time. But there
are many problems in which more needs to be known. These are problems
that depend on the relative signal levels on separate paths or at separate
times. For example, the problem of interference comes first to mind. Also,
there is the question of what happens on successive hops in a chain of com-
munication links, or how to treat the connectivity of a network of repeaters
such as has been suggested for military use.

The resolution of such problems depends on second or higher order statis-
tics where one considers the joint probabilities of obtaining given signal levels
over two or more paths. The most common statistic employed here is the
correlation coefficient, but in the general case one might well be forced to use
something more complicated.

Unfortunately, almost nothing is known about the subject. There have
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been studies concerning diversity systems in which correlation coefficients
have been found for the two time series obtained when two receiving antennas
are separated by only a few wavelengths or in frequency by only a small
fraction of the carrier. But when it is a matter of the local median levels,
studies of their possible relationships have been rare and inconclusive.

In attacking problems where higher order statistics are required, we seem
forced to devise ad hoc approaches. In our own work on interference, for
example, we have said that time and location variabilities are independent
while situation variabilities are completely dependent. In other words, we
have returned to the model in (4) and (5) and supposed two sets of these
equations—one for the desired link and one for the undesired link. Thus
we find a grand total of ten random variables to consider. Now in each
set of five we have assumed these to be mutually independent; but one can
still ask about correlations between terms of opposite equations. Our as-
sumption, based on very meager information, has been that terms involving
time and terms involving location are again mutually independent. On the
other hand, we have argued that the situation involving the receiver is the
same, or approximately the same, whether one considers the desired or the
undesired transmitter. It would then follow, for example, that the two val-
ues of yS are equal and therefore simply cancel out when one computes the
desired-to-undesired signal ratio. Clearly, these assumptions must be viewed
suspiciously; they enjoy only the benefit that they appear to give reasonable
looking results.
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7 Sample Problems

In this section we give a few examples of how the ITS irregular terrain model
can be used to solve engineering problems. They have been selected with
an eye towards variety, and because of the opportunities they provide to
illustrate different techniques. In none of them do we claim to have carried
the solution to its final completion. Our objective has been to set up the
problem, to describe how it relates to the model, and to provide only a few
illustrative results.

In this section all calculations pertaining to radio propagation have been
made by computer using the subprograms LRPROP and AVAR as described and
listed in Appendix A. No alterations, however slight, have been permitted.
On the other hand, we have not hesitated to prepare short applications pro-
grams which process input data into a form that can be used by the model
and which process the output of the model in ways that satisfy the require-
ments of the problem at hand.

We have tried to introduce as little new terminology as possible; what
does appear we hope is standard and recognizable throughout the engineering
profession.

7.1 The Operating Range

Our first problem is a simple one which we shall treat with immediately
available tools. We study a particular kind of transceiver meant to operate
from vehicles, and we ask to what range they should be able to communicate.
More precisely, remembering the many sources of variability within such a
system, we must ask to what range they should be able to communicate
reliably. The answer, then, will depend on what one will accept as adequate
reliability.

On the other hand, we can also turn the problem around and ask, for any
given range, what the probability of communications is. Using the terminol-
ogy of Hagn (1980), upon whose report much of the analysis of this section
is based, we speak of “first-try success probability”—the probability that a
communications channel is established, disregarding repeated attempts. We
assume that the system will operate worldwide and that the “first-tries” are
to be made in many areas. Thus, we assume it is the single message mode of
variability that we must use to describe the statistics of propagation. Other
parameters of the assumed system are given in Table 5. It is a low band
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Table 5: Design Parameters for a Symmetric Mobile-to-Mobile System

Frequency 45 MHz
Polarization Vertical
Antenna heights 2 m
Transmitter power 16 dBW
Antenna gains -3 dBi
Line losses 1 dB
kTB (B=25 kHz) -160 dBW
Rural noise, above kTB 21 dB
Required (rf) signal-to-noise ratio 6 dB
Margin for multipath (Rayleigh) fading 6 dB
Margin for uncertainties 7 dB

FM system in which both terminals use the same kind of equipment. The
required signal-to-noise ratio is the predetection value. To allow for the pos-
sibility of multipath fading, we have introduced a safety margin of 6 dB.
Assuming Rayleigh statistics, this amount below the median will pick up
about 85% of the points in any short run.

There are many other sources of variability in the system besides that
due to radio propagation. A particular transceiver will not have exactly the
parameters given in Table 1, neither as regards the transmitter output nor on
the receiver side as regards the sensitivity factors such as noise bandwidth.
The antennas, particularly when one thinks of random orientations, will have
variable gains. Man-made noise varies both in location and time.

In the report cited above, Hagn has carefully estimated the standard de-
viations of all these factors and, along with the propagation variability, com-
bined all sources of variability into one, using the root-sum-square. Here,
however, we have adopted a simpler approach in which we have merely in-
troduced an additional safety margin. Although this approach is often used
by designers, we should note how it changes the proper interpretation of
the results: For a large fraction of the transceivers deployed, the observed
performance should exceed the predicted performance.

If we start with the transmitter power, add to it the two antenna gains,
and subtract the two line losses, we find that the power available to the
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receiver equals 8 dBW less the losses in the propagation channel. For the
other side of the ledger, if we start with the noise power and add to it the
required signal-to-noise ratio and the two safety margins, we find satisfactory
reception if the received power exceeds -120 dBW. It follows that the system
will tolerate a basic transmission loss of as much as 128 dB.

To calculate the propagation losses, we have turned to the applications
program QKAREA listed in Appendix B. This is a simple program which ac-
cepts as input the parameters needed by the ITS irregular terrain model and
then lists selected quantiles of basic transmission loss at selected distances.
In Figure 5 we have reproduced the output from one such run. The input
consisted of the parameters in Table 5 together with values prescribing av-
erage terrain characteristics, ground constants, and climate. The principal
feature in the figure is the table of quantiles versus distance. The columns
are headed by percentages referred to as “confidence levels.” For the present
problem this is, as we have noted before, a misnomer and should be replaced
by “reliability” or “first-try success probability.”

Finally, to find the operational ranges we simply read down each column
to find the first distance at which the quantile of basic transmission loss
exceeds the tolerable limit of 128 dB. Doing this and using simple linear
interpolation on the crucial interval, we find the values listed in Table 6. Note
that this table really lists the quantiles of operational range as though this
latter were a random variable, as indeed it is. If one requires high reliability,
one must be content with rather short ranges. On the other hand, there
will always be a few locations in a few areas of the world where a first-try
succeeds even when the distance is greater than 20 km.

Note that we have first talked about worldwide operations and next about
average environmental conditions. What we really mean, of course, is any-
where in the world where conditions are average. For a more complete study
of this system, we could continue on to find operational ranges for other
than average conditions—for plains, hills, and mountains, for example, and
for poor, average, and good ground constants. Then we could display the
results as though the operational ranges were a function of the environmental
conditions. Or we could package them all together into one truly worldwide
table of range quantiles. This last step, however, would require a knowledge
of the fraction of attempted communications to be made under each set of
conditions.
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Figure 5: Output from a run of QKAREA concerning a mobile-to-mobile sys-
tem. The arrows point to intervals where the quantiles become equal to 128
dB.

Table 6: Operational Ranges Under Average Environmental Conditions

Reliability 95% 90% 80% 70% 50% 20% 10%
Range 2.9 km 3.7 km 5.0 km 6.2 km 8.7 km 16 km 24 km
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7.2 Optimum Television Station Separation

In this next sample problem we treat what might be called a system de-
sign. We determine possible values for some of the parameters related to the
placement of a network of cochannel television stations. Our aim will be to
maximize the area that such a network will serve.

It seems clear that we are speaking here of an interference-limited service.
If we imagine any arrangement of transmitters, we could require that they
all operate at very low powers so that there is no interference. The service
is then noise limited. But we can then increase the area covered simply by
increasing the transmitter powers; and we can continue to do this until the
stations begin to interfere with each other. At this point it is useless to
increase powers further since not only do the desired signals increase but
also the undesired signals increase.

To fix our ideas we imagine a plane surface infinite in extent which we
shall often call “the country” and on which we shall situate the broadcast
stations. We assume this plane has homogeneous terrain characteristics and
a uniform climate. To maximize the coverage area, we use the rules of clos-
est packing and assume the stations form a perfect triangular grid and the
transmitters all have identical characteristics—that is, that they are all at
the same height above the terrain and that they radiate the same power
levels from omnidirectional antennas.

For design purposes the United States is divided into three “zones.” Zone
1 consists of the urban northeast extending west to include Illinois; Zone 3
includes a narrow region surrounding the Gulf of Mexico; and Zone 2 in-
cludes everywhere else. Using Zone 2 as a comparison, stations in Zone 1
are presently packed closer together using lower transmitter heights, while
stations in Zone 3 are placed further apart in anticipation of better propaga-
tion conditions and higher interference fields. Also for design purposes one
speaks of Grade A service and Grade B service, a distinction that refers not
so much to the quality of reception as it does to the quality and mobility of
the assumed receiving systems. Grade A service pictures an urban environ-
ment with relatively inexpensive receiving systems and with relatively tight
constraints on where the receiving antennas are located.

For our sample problem we have chosen to examine a grid of Channel
10 stations and to require Grade A service. Channel 10 is in the center of
the so-called high VHF band (Channels 7–13), and Grade A service makes
the problem a little more interesting. Following O’Connor (1968), we have
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listed the design parameters in Table 7. These parameters are concerned
mostly with the assumed receiving system, but they also include required
interference ratios, required reliabilities, and for later comparison with the
values we shall obtain, the transmitter parameters presently prescribed for
Zone 1.

Adequate service to one location is defined to mean a satisfactory signal
for at least 90% of the time. Grade A service then requires adequate service
to at least 70% of the locations. In contrast, Grade B service requires the
same adequate service to only 50% of the locations.

When we examine the required desired-to-undesired ratios, we find that
a new complication is introduced. In television, co-channel stations actually
operate on three different frequencies, since by doing so the required interfer-
ence ratios can be drastically reduced. This has to do with synchronization
of the horizontal sweep, which is the first thing to become affected when
interference enters. The three frequencies consist of a nominal frequency and
two others, 10 kHz above and below the nominal. Precision required is 1
kHz. If two stations are separated in frequency by either 10 or 20 kHz, they
are said to operate on offset frequencies; otherwise they are non-offset. As
Table 7 shows, the difference in required desired-to-undesired ratios is a full
17 dB.

To take advantage of this feature, we should arrange to have neighboring
stations on offset frequencies. We superimpose on our triangular grid what is
essentially a three-channel network in the manner portrayed in Figure 6. In
that figure the zero, plus, and minus signs indicate the positions of stations
operating on the normal, high, and low frequencies, respectively. Let s be
the “separation distance”—the distance between adjacent nodes of the grid.
Then we note from Figure 6 that each station is surrounded by a circle of
six offset stations at the distance s and by a second circle of six non-offset
stations at the distance

√
3 s. We have succeeded in removing the most

grievous interference problems to a further distance.
At any one location a receiver will attempt to view a desired station while

being subject at the same time to interference from all the other cochannel
stations. That there are more than one undesired station is called the “multi-
ple interference problem.” Presumably the signals from the several undesired
stations will add together incoherently to form a total interfering signal; the
total power will be the sum of the individual powers. But when two signal
levels differ by only a few decibels the corresponding powers differ by a great
deal and the smaller contributes very little to the sum. We shall therefore
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Table 7: Design Parameters for a Grid of Channel 10 Television Stations

Frequency 193 MHz
Polarization Horizontal
Receiver Antenna Height 9 m
Receiver Antenna Gain∗ 2 dBi
Receiver Line Losses∗ 2 dB
kTB (B=4) MHz -138 dBW
Urban noise, above kTB∗ 19 dB
Required signal-to-noise ratio 30 dB
Required D/U ratios:

Offset frequencies 28 dB
Non-offset frequencies 45 dB

Required reliability∗ 70% locations, 90% time
Transmitter power, EIRP∗∗ 57 dBW
Transmitter antenna height∗∗ 305 m
Service range∗∗ 64 km
Station separation∗∗ 274 km

∗These entries define Grade A service.
∗∗These entries are the maximum values presently used in Zone 1. The
service range is a calculated value for Grade A service assuming 50%
confidence and no interference.
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Figure 6: A triangular grid of cochannel television stations showing the ar-
rangement of the three offset frequencies.

assume that of the many interfering signals only the strongest is of concern.
Going a step further, we shall assume that the desired station is the nearest
and that the one undesired station of concern is the next nearest.

Suppose a receiver location is on the direct line joining the desired station
with an adjacent offset station. If it is distant x from the desired station,
it will be distant s − x from the undesired station. We can then compute
the desired-to-undesired ratio R(x); or more precisely we can compute the
necessary quantile of this ratio. For small x we expect R to be very large;
as x increases, R will decrease monotonically, reaching very large negative
numbers as x approaches s. Indeed, since we are using quantiles on the high
side and thereby favoring the undesired signal, R will reach zero when x
is somewhat short of the midpoint at s/2. If Ro is the required desired-to-
undesired ratio, there will be a distance r at which

R(r) = Ro. (11)

Since Ro is positive, r will be less than s/2. For distances greater than r,
the ratio R(x) will be less than the required ratio, and interference will
be intolerable. But for distances less than r, the observed ratio exceeds the
required ratio and interference is tolerable. We say that r is the “interference-
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free range” although, since we are not really free of interference, the term is
somewhat of a misnomer.

If we consider another radial leading out from our desired station, then
the interference-free range along that radial will be larger than r since the
distance to the undesired station is somewhat larger. However, we must not
forget that there are six undesired stations surrounding the desired station at
a distance s. When the bearing of the receiver location changes sufficiently it
will be subject to interference from another one of these six. In consequence
there will be a region surrounding the desired station which we may call the
interference-free service area of that station. It will have hexagonal symmetry
and an inscribed circle of radius r.

Generally, this region will look very much like a regular hexagon with,
however, convex, curvilinear sides. But note that at the vertex of this re-
gion there will be two equidistant undesired stations. One may well imag-
ine, therefore, that this is a real case of multiple interference, that the true
interference-free range will be somewhat less than indicated by the position
of the corner, and that we should suppose these corners somewhat rounded
off. Without entering into too many details, we may then suppose that the
actual interference-free service area is precisely a circle of radius r.

We must also consider the effects of interference from the six nearest non-
offset stations. Ignoring for the moment the offset stations, we find again a
circle within which service will suffer only tolerable interference. Thus for any
given separation distances we find two service ranges, one concerned with the
offset stations and one with the non-offset stations. We shall assume that the
interference-free range r which is to be the primary result of our calculations
is equal to the smaller of the two. Thus in our final picture surrounding
each node of our triangular grid there is a circle within which one can obtain
satisfactory service.

The area of a single one of the triangles that form the grid is (
√
3/4)s2

while the area of that triangle which is covered by an interference-free signal
from one of its three vertices is (π/2)r2. Thus the fraction of a single triangle
(and hence of the entire country) that is served is the number

ρ =
2π√
3

(r
s

)2

. (12)

It is then our aim to find the optimum value of s—the value of s that maxi-
mizes this fraction.
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We must hasten to note that this is a narrow use of the term “optimum.”
While it does seem to be a natural definition, in actual practice there may
well be other influences that should be considered. For example, the resulting
ranges may be too small to make an individual station economically viable;
or the ranges may be too large so that overcoming noise requires more trans-
mitter power than is reasonable. Of course, the most severe criticism of our
approach is that we seem to be covering land whereas we should be trying to
reach people. It is one of our implicit assumptions that the two problems are
equivalent, or, at least, that the solution of one provides useful information
for the solution of the other.

It is interesting to see what happens to our problem if we use a simple
model of radio propagation. For example, let us assume that free-space
calculations suffice. For the offset stations we find

R(x) = 20 log

(
s− x

x

)
, (13)

and setting R(r) = Ro and solving for r we obtain

r/s = (1 + 10Ro/20)−1. (14)

Similarly, if R1 is the required desired-to-undesired ratio for the non-offset
stations, we find

r/s =
√
3(1 + 10R1/20)−1. (15)

In both cases the ratio r/s, and hence also the fraction ρ, is independent of
the separation distance s. There is no optimum value, and from this point
of view it makes no difference how far apart the stations are placed. Using
values from Table 7, we find that the non-offset stations are overpowering
and that the final fraction of interference-free service coverage is a paltry
0.03%. Clearly, the bulge of the earth plays a very important role in allowing
television service at all.

Turning to the ITS irregular terrain model, a particular question will be
how to treat properly the statistics involved. Clearly, we require something
very like the broadcast mode of variability modified, however, by the need
to find quantiles of a ratio of two signals.

As we have noted in Section 6.4, it will be our assumption that location
and time variabilities of the two signals are statistically independent, but
that situation variabilities are exactly correlated. Now to each service area
there presumably corresponds a separate situation and therefore, one would
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suppose, a separate interference-free range—the range is a random variable.
But because the situation variabilities are exactly correlated, they have a
strong tendency to cancel against each other in the ratio; consequently the
range should exhibit only a very small variability. In any case, however, since
we seek the fraction of the country covered, it is really the average service
area we need. This average we may approximate with the median, and then
it will follow that we require the medians of the situation variabilities.

Going immediately to median values for the terms involving situation
variability, we find from (3) and (4) that at a particular receiver location l
and a particular time t the desired-to-undesired ratio becomes

R(x) = 20 log[(s− x)/x]− AoD + AoU

+ yLD(l)− yLU(l) + yTD(t)− yTU(t), (16)

where the additional subscripts D and U refer to the desired and undesired
transmitters, respectively, and where the Ao’s are overall medians of atten-
uation. Remembering how the required reliability is stated, we first note
that satisfactory service is achieved at the location l provided R exceeds the
required desired-to-undesired ratio Ro for at least 90% of the time. In other
words, we must first compute the 0.9 quantile of R for each fixed location. As
one sees, this may be reduced to the simple problem of finding the quantile
YTR(.9) for the difference between the two independent random variables,
yTD and yTU. At the next step we must ask whether this 0.9 quantile exceeds
Ro at a sufficient number of locations. We must therefore compute the 0.7
quantile of the time-variant quantile. Again, this reduces to the problem of
finding the quantile YLR(.7) for the difference between the two independent
random variables, yLD and yLU . In the end we find that the quantile of R(x)
required by the problem is given by

R(x) = 20 log[(s− x)/x]− AoD + AoU + YLR(.7) + YTR(.9). (17)

To compute the two quantiles of deviations, we use the method of pseudo-
convolution to obtain

YTR(.9) = −
√

YTD(.9)2 + YTU(.1)2 (18)

YLR(.7) = −
√
YLD(.7)2 + YLU(.3)2

where the additional Y ’s are the indicated quanti1es of the corresponding
random variables. Note that both quantiles of the ratio are negative since
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both refer to fractions greater than 0.5. Note also that for the undesired
station quantiles we use the complementary quantile. This is because to
form the convolution we must add the two random variables yD and −yU ;
and if yU has the quantiles YU(q) then −yU has the quantiles −YU(1− q).

There remains the problem of how to obtain the four quantiles of individ-
ual deviations. We suppose we have available to us the threefold quantiles of
attenuation A(qT , qL, qS) as described in Section 6, and from these we shall
obtain the required deviations. Always putting qS = 0.5, we may write

YTD(.9) = AD(.9, .7, .5)− AD(.5, .7, .5) (19)

YTU(.1) = AU(.1, .3, .5)− AU(.5, .3, .5)

YLD(.7) = AD(.5, .7, .5)− AD(.5, .5, .5)

YLU(.3) = AU(.5, .3, .5)− AU(.5, .5, .5)

where, we note, the AD and AU are different functions since they refer to
different distances.

At this point we have gathered together the parameters and the formulas
needed. It remains to make the calculations. To do this we have assem-
bled a short applications program that considers a sequence of proposed
station separations s, computes desired-to-undesired ratios, solves (11) for
the interference-free range r, and prints it out together with other pertinent
data.

The results of one run of this program are shown in Figure 7. To em-
ulate conditions in Zone 1, we have assumed transmitter heights of 300 m,
hilly terrain with ∆h = 90 m, and a continental temperate climate with
Ns = 301 N-units. The curve in Figure 7 shows the fraction ρ as a function
of the separation distance s. The maximum appears when s = 210 km at
which separation distance the interference-free range is 48.6 km, implying
that 19.5% of the country is covered with an interference-free signal. Note
that the curve has two corners, one at the optimum distance of 210 km and
another at about 145 km. They appear because for distances between them it
is the non-offset stations that determine the interference-free range whereas
for other distances the range is determined by the closer offset stations. At
the optimum distance, therefore, both offset and non-offset stations are con-
tributing equally to the interference. It may also be interesting to note that
for a separation distance of 274 km, which is the distance presently invoked
for Zone 1, the interference-free range is 56.5 km and 15.4% of the country
is covered.
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Figure 7: Fraction of the country receiving an interference-free signal versus
the station separation. We have assumed transmitting antennas 300 m high
and average terrain characteristics.

With the interference-free range determined, we can also find the trans-
mitter power required to overcome noise. Using the receiver characteristics
listed in Table 7, and now requiring 90% confidence, we find that for the
conditions that obtain at the optimum spacing, we need 53.3 dBW EIRP.

If we were to continue with this problem, we would evaluate these same
quantities for varying terrain types, climates, transmitting antenna heights,
and frequencies (television channels). The way in which the optimum sep-
aration distance varies might then lead to a second phase of the problem
which attempts a broader look at how best to provide television service to
the country.

7.3 Comparison with Data

As a final example, we want to show a comparison of predictions from the ITS
area model with a single set of measured data. This will give us the opportu-
nity to display some of the more obscure aspects of the model and, perhaps,
to demonstrate the terrible intransigence of measured data. It should be
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emphasized at the outset that no single set of data can claim to “verify” the
model; that requires a large number of sets of data. Our purpose here can
only be to show some of the techniques that might be used in an extensive
study.

The set of measured data we have selected is that reported by McQuate
et al. (1970). It is familiarly known as the R3 data since it involved the
third receiving site in a sequence of special measurement programs. We have
chosen this set on a whim, by which we hope to mean “at random.” It is
immediately available to us; there is no previously published account of its
analysis; and it serves to illustrate several problems.

In the measurement program six frequencies were used ranging from 200
MHz to 9 GHz. The transmitter was mobile; it would go to a preselected
point, set up there, and begin operations. The receiving antennas were
mounted on a carriage which could be continuously moved up and down
a 15 m tower; received signal levels were recorded as a function of height.

For this particular set the receiver tower was erected atop North Table
Mountain in central Colorado (to be precise, at 39◦47’30” N., 105◦11’59” W.);
it was at the edge of a cliff from where it could look out to the north and
east across the plains. The experiment was specifically designed to simulate
a low-flying aircraft above the plains, and so the transmitter sites were all
in this sector. The plan for choosing these sites involved taking a map of
the region, drawing on it circles of convenient radii (5, 10, 20 km, etc.) with
centers at the receiver site, and finding where these circles crossed convenient
roads. Except for the necessity of keeping to roads, this procedure appears
to provide a suitably random selection. We shall have more to say about this
below.

Again at whim—and perhaps because the data might also be construed
to simulate a UHF television transmitter—we have chosen to use the data
for 410 MHz. This leaves us with a specific one of the receiver heights to
choose. If we examine the published curves, we note that for increasing
receiver height the signal levels tend to start out with rather low values,
increase dramatically in the first several meters, and then show a moderate,
but not excessive, amount of lobing. Now actually, in order to allow for
sufficient guying, the tower was positioned some 8 m back from the edge of
the cliff. It is therefore not surprising that at the lower receiver heights we
observe ground effects which rapidly disappear at higher heights. The lobing
pattern we would attribute to a scattering of energy from the cliff’s edge.

In keeping with the purpose of the experiment, we should therefore choose

60



Figure 8: The R3 data at 410 MHz; 44 points.

one of the higher receiver heights. And in keeping with the spirit of the kind
of radio propagation model we are considering where multipath effects are
kept to a minimum, we should choose not a specific height but a smoothed
out average over a range of heights. What we have done is to use signal levels
from heights of 10, 11, 12, 13, and 14 m; to find their median value; and to
ascribe that value to a height of 12 m above the cliff top.

The resulting data for the 44 different paths on which these measurements
were taken are displayed in Figure 8 where we have plotted the observed
attenuation relative to free space versus distance. A glance at this plot can
only bring dismay. There seems to be no structure at all to this set. Over
half of the points are clustered around free space, and if there is any trend
it would almost seem that attenuation decreases with distance. Our first
inclination is to abandon this set and to look elsewhere. But remembering
our aim is merely to provide an illustrative example, we continue. If one is
truly interested in sets of data concerning air-to-ground or UHF television
propagation, summaries of others may be found in Johnson and Gierhart
(1979) or in Damelin et al. (1966).

In contrast to the previous examples, here we are concerned with a very
particular region of the world. We must therefore determine parameter values
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for the model from that particular region, and, we should emphasize, from
that particular situation.

We would assume that the complete set of data represents a sample drawn
from one single situation—although the wide range of distances might argue
for a different conclusion. As for the kind of statistics involved, we recall
that the measurements are spot measurements; that is, the transmitter was
dispatched to a random location and at some random time the measurements
were recorded. Thus time variability is inextricably entangled with the more
naturally expected location variability. Our treatment of statistics should
therefore be in terms of the mobile mode of variability. We use the notation
A(qL, qC) to indicate the quantile of attenuation which, with confidence qC ,
is not exceeded for at least qL of the observations. The subscript L serves
to remind us that in reality time variability is small at the short distances
we shall consider, and the observed variability will be dominated by location
variability. We refer to confidence rather than “fraction of like situations”
since we have no set of like situations, nor do we ever expect to obtain one.
We can only suppose if we make a large number of (independent) statements
with a given confidence qC , then qC of them will be correct irrespective of
whether the situations involved are like or unlike.

To decide on the proper environmental parameters, our first thought
might be to use Figures 2 and 3 together with the coordinates given above.
Using digitized versions of these maps, we find values ∆h=444 m, NS=236
N-units, and also an average terrain elevation of 2120 m. But for the situ-
ation here these values are wrong. Directly west of North Table Mountain
and directly west of the sector in which the measurements were made, there
rise abruptly the foothills of the Front Range of the Rocky Mountains. The
mountains of this range are majestic, being among the highest in the contigu-
ous United States; and the foothills provide spectacular changes in elevation.
Now the values given above assume that it is just as likely that a path goes
west into these foothills as that it goes east into the Colorado plains, and
thus they reflect the properties of the foothills to a considerable extent. The
paths in which we are interested, however, stay entirely clear of the foothills
and exhibit quite different characteristics.

In the original data report quoted above, plots are provided of the terrain
profiles for each measurement path. From these plots, or digitized versions of
them, we can derive directly the parameters we need. For example, a short
study of the plots shows an average terrain elevation of about 1700 m. From
Figure 2 we find No = 300 N-units and hence from (2) we derive Ns = 250
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N-units.
It is clear that the cliff and the mountain below must be included as

part of the antenna structure; this is particularly so when we remember the
primary purpose of the experiment. We must therefore estimate the height
of the mountain above its base as one important parameter. In addition we
also need the terrain irregularity parameter ∆h.

If we are given a terrain profile leading away from the receiver tower, we
can do two things: We can compute the (asymptotic) ∆h for that path, and
we can find a linear least squares fit to the profile (indeed, that may have
been part of the computation for ∆h), extend that back beneath the receiver
tower, and so find a value for the height of the cliff top above that profile.
In the computations here, we should be careful not to use the cliff as part
of the profile; we are assuming that it is part of the antenna “tower.” And
furthermore, at the bottom of the cliff there is a steep talus slope that, in
some directions, may extend outwards nearly 1 km. This, too, should not be
considered part of the profile. Our computations should use only a portion
of the profile, and that portion should begin at least 1 km away from the
receiver site.

Using the path profiles of the experiment, we have made such calculations.
Restricting ourselves to the 34 paths that are nominally 10 km or more in
length, we have found that the individual values of the asymptotic ∆h vary
from 31 to 212 m with a median of 126 m. It is this latter that we would
propose to use in predictions. Similarly, we have found that the top of the
cliff lies between 156 and 390 m above the profiles and that the median value
is 263 m. Adding the 12 m tower height, we would propose 275 m for the
structural height of the receiver.

The calculations on each profile were made by computer using subroutines
related to the ITS model in the point-to-point mode and listed in Appendix
A. It may seem odd that we use point-to-point techniques to treat an area
prediction; but then the determination of the environmental parameters of
a specific area is clearly related to the determination of these parameters
on individual paths. Still more odd, however, is the fact that we have used
precisely those paths on which the measurements were made. To justify this
we would argue (1) that the profiles are conveniently available, having been
determined as part of the measurement program, and (2) that there seems no
better way to assure that we are making our determinations from the same
“situation” as that from which the measurements came. An alternative is
possible and would have been forced on us if we had been making predictions
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Figure 9: Predicted and observed values of attenuation for the R3 data.
Assumed parameters: f=410 MHz, hg1 = 275 m, hg2 = 6.6 m, ∆h=126 m,
Ns = 250 N-units.

prior to the measurement program. We simply proceed as before, choosing,
however, our own set of paths. While this set is arbitrary, it should imitate
as closely as possible the situation of the measurement program. We would
suppose a sequence of radials beginning at the receiving site and extending
into the sector of interest. And finally we would use terrain profiles for that
portion of those radials that extend from 1 km to perhaps 40 or 50 km.

For the final parameters, we note that the transmissions were horizontally
polarized, and we would assume average ground and a continental temper-
ate climate. At the high frequency and the short distances involved, these
assumptions are not critical.

In Figure 9 we have replotted the data of Figure 8 and superimposed
on them predictions from the prediction model using the parameters given
above. To be precise, we have plotted five quantiles of the expected attenu-
ation as functions of distance. The central solid curve is the overall median
prediction—the “best estimate.” For the other four we can interpret them as
meaning that with 90% confidence at most 10% of the observations will lie
above the upper dotted curve and at most 10% will lie below the lower dotted
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curve; and with the same confidence at most 50% of the observations will
lie above the upper dashed curve and at most 50% below the lower dashed
curve. Indeed, of the 44 observations available to us, we find that 2 lie above
the upper dotted curve and none below the lower dotted curve; that 14 lie
above the upper dashed curve and 5 below the lower dashed curve. Note
that for distances greater than 60 km, the difference between the two dotted
curves is about 45 dB. According to the ITS irregular terrain model, if we
want to consider an interval within which we are fairly confident that a large
majority of observed signal levels will lie, then that interval must be very
wide.

One notable aspect of Figure 9 is the tendency of both predictions and
observations to level out at free space values where the attenuation vanishes.
In the case of the predictions, this tendency demonstrates both the “free
space” region where the reference attenuation vanishes and the effects of the
“modifying” function described in Section 6. The observations, we note, may
take on rather large positive values of attenuation but will form tight clusters
about zero. Of course, we also note that at large distances the observations
still show a stubborn tendency towards free space values that the predictions
fail to reproduce.

The wide scatter of attenuation values that one observes in Figure 8
exhibits the “observational variability”—which we are here interpreting as
a combined location and time variability. Although it may not be appar-
ent from Figure 8, in principle the statistics of this observational variability
should depend on the parameters of the measurements and, in particular, on
the distance. Following this stricture we may look at observational variability
at particular distances by plotting, as we have done in Figure 9, the cumula-
tive distribution functions of attenuation. In Figure 10a are the results for a
distance of 20 km. The horizontal axis is a normal probability scale so that
straight lines on the graph represent normal distributions. The solid curve
is the “best estimate” distribution function as obtained from the model, and
the two dashed curves give 10% and 90% confidence ranges. The dotted
curve is the sample cumulative distribution function using the 10 measure-
ments made on paths with distances of approximately 20 km. This figure
demonstrates again how both predictions and data level off at free space val-
ues. Note also how the slope of the sample distribution function at the higher
quantiles agrees with that of the predictions. Figure 10b gives similar results
for a distance of 50 km. The wide disparity here between predictions and
observations restates the tendency mentioned above for the observed data to
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attain free space values even at the longer distances.
Let us examine this dependence on distance in a little more detail. In de-

veloping a propagation model, one technique often employed is to group the
data into successive intervals of values of a parameter one wants to examine—
in the present case, distance. If enough data are available, the use of over-
lapping intervals is particularly desirable. Then one finds median values in
each group, plots these medians against the corresponding parameter, and
tries to construct a curve that passes adequately near those medians.

There are too few data in our present set to allow us to make any very
profound discoveries. Indeed, this is a paradox common to most measurement
programs. There are several thousand data exhibited in the original report.
By restricting our selves to a single frequency and a single receiver height, we
have suddenly reduced this number to a mere 44; and if we further restrict
ourselves to a small range of distances, we find very few data remaining.

All of which brings us to the question of sampling error. Presumably a set
of measurements represents a limited sample drawn from the population that
comprises a situation. Any statistics we compute from this sample, such as
the cumulative distributions of Figure 10 or the medians we want to consider,
are random variables subject to the laws of probability. Any value we obtain
is no more “correct” than is the face after a single coin toss the correct face.
If it is at all possible, when we report a sample statistic, we should also
estimate its probable error; that is, we should provide some indication as
to how far from the corresponding population statistic it might reasonably
be, simply because it was estimated from a limited sample. Of course, as
the sample size increases the probable error here should decrease, tending to
zero. Nevertheless, an indication of its magnitude is quite valuable.

As an example of how such estimates might be made, consider the sample
median. If the sample size n is large enough and if the sample comes from a
normally distributed population, then the standard deviation of the sample
median is approximately

σ
√
π/2n

where σ is the standard deviation of the population. This represents the
probable error of the value we obtain and is the estimate we might provide.
The formula comes from the theory of large samples, but we do not require
here very great accuracy and the formula is probably adequate even for fairly
small sized samples. To particularize, the observational variability predicted
by the ITS irregular terrain model for any one distance has a standard de-
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(a) Distance, about 20 km; 10 points.

(b) Distance, about 50 km; 11 points.

Figure 10: Predicted and observed curves of observational variability for the
R3 data.
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viation of about 10 dB; so if we have a sample of 10 data then the standard
deviation of the sample median will be approximately 4 dB; the 10% and
90% confidence levels for the population median will differ from the sample
median by about 5 dB. To put this another way, we would then have only
80% confidence that the population median lies within a 10 dB range.

In Figure 11 we have plotted medians for the few groups of distances
available to us. The vertical bars are drawn at the median distances for each
group; the ticks across them indicate the sample medians of attenuation; and
their end points determine an approximately 10% to 90% confidence interval
for the population medians. In deciding on these confidence intervals, we have
not used the large sample theory described above; instead we have employed
the more robust scheme given by Walsh (1962; ch. 6). This scheme depends
only on the sample values and is nonparametric in that it assumes very few
properties of the population(s) from which the data are drawn. It provides
a discrete sequence of exact confidence levels from which we have picked
the one lying closest to 10% or 90%. Above each bar in Figure 11 we have
indicated what the exact level is. For example, at 20 km 6% of such samples
will be drawn from populations whose medians lie above the bar and a like
number from populations whose medians lie below the bar. The bar itself
thus comprises an 88% confidence interval.

Note that in Figure 11 the term “confidence” is being used to describe
two quite different quantities. The vertical bars indicate confidence inter-
vals pertaining to sampling error arising from a limited sample and induced,
presumably, by observational variability at the given distance. On the other
hand, the curves which also form a part of Figure 11 delineate a confidence in-
terval which is a prediction of the model and pertains to situation variability.
Nevertheless, both confidence intervals refer to the same value—the popu-
lation median. For example, let us consider the four measurements taken
at almost 80 km. As indicated by the vertical bar we have 94% confidence
that the sample was drawn from a population whose median attenuation was
less than about 14 dB. On the other hand, we predict from the model that
with 90% confidence the same population should have a median attenua-
tion greater than about 25 dB. While these two statements are not entirely
contradictory, the disparity is certainly considerable.

Very often a comparison, such as we are making here, between model
predictions and measured data, is as much a critique of the data as it is of
the model. Consider again the four measurements taken at nearly 80 km.
As one can tell from the abrupt change in slope of the predicted median
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Figure 11: Predicted and observed medians for the R3 data. The bars in-
dicate confidence levels for the sample medians at approximately 10% and
90%.

attenuation, the smooth earth horizon distance implied by our parameters
is about 76 km. If we account also for an irregular earth, paths at this
distance should mostly be well beyond line of sight. And yet, looking at the
corresponding profiles in the original data report, we find that two of the four
are clear line-of-sight paths while the other two are just barely obstructed.
The hills, instead of obstructing these paths, seem to have provided platforms
which elevate the transmitter above the terrain. Two conjectures come to
mind: (1) there is some phenomenon of nature in which hills do indeed tend
to elevate more terminals than they obstruct, and that the ITS irregular
terrain model fails to recognize this; and (2) for some reason we shall never
know there was a tendency in the experiment to pick transmitter sites with
favorable positions; in other words, these sites were not, after all, chosen “at
random.”

For the second conjecture we can devise a test of sorts to examine whether
the paths do show a bias. We look at the immediate foreground of the
transmitter in the direction of the receiver and ask what the slope of the
terrain is. If the sites are chosen at random, it would seem reasonable to
expect that the probability with which the ground slopes down towards the
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receiver is the same as the probability with which it slopes up; we would also
expect there will be cases in which the transmitter is at the top of a hill and
some in which it is at the bottom of a depression. The test, then, consists
of comparing the number of paths which slope down with the number which
slope up; of course, there will be sampling error so that we would not expect
these numbers to be equal, but we would expect them to be reasonably close.
While the test is obviously inspired by the theory of radio propagation, note
that it is purely geometric and in itself is entirely independent of what use
is to be made of the paths involved.

To carry out such a test for the R3 data, we have simply examined the
published terrain profiles and tried in that way to categorize each transmitter
site. For the four paths nearly 80 km long we found three of them slope down
towards the receiver and the fourth is at the top of a hill. For the 11 paths at
approximately 50 km six slope down, one slopes up, two are at the top of hills,
one is at the bottom of a depression, and the last is located in a long level
stretch that we cannot classify. For all 34 paths whose lengths are nominally
10 km or more, 12 slope down, 3 slope up, 3 are at tops of hills, 2 at bottoms
of depressions, and the remaining 14 are on long level stretches. In actual
practice we discovered that these classifications are somewhat subjective, and
so we would not give too much credence to the exact results. Nevertheless,
there is a strong indication here that the paths are indeed biased towards
high received signal levels.

Perhaps, then, our choice of parameters is wrong in that we have assumed
random siting for the transmitter. Going to the other extreme, we have
redrawn Figure 10 using, for the predicted quantiles, all the same parameters
except that we have assumed the transmitter is very carefully sited. The
results are shown in Figure 12.

Note that the discrepancy between predictions and observations has de-
creased, but not dramatically so. In any case, this is “post-act” analysis,
carried out after we have discovered a discrepancy. It should be avoided in
any serious statistical study.

For many, the only interesting question to ask in a comparison of measure-
ments with predictions is the question of how the totality of measurements
compares with the “best estimate” (i.e., median) prediction. The idea is to
compute the deviations

y = A(.5, .5)− Aobs (20)

and to treat them as samples of a random variable. Note that the sign
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Figure 12: Predicted and observed values of attenuation versus distance
for the R3 data. The predictions assumed the transmitters were sited very
carefully.

here is in keeping with the sign in (4) and that the predicted median must
be recomputed for each observation, but only because the distance changes.
Note, too, that the random variations in these deviations are a consequence
of observational variability, and that, since the locations (and the times)
must be assumed to have been independently selected, the deviations should
be all mutually independent.

Returning to the randomly sited predictions of Figure 10, we have plotted
in Figure 13 the cumulative distribution of the deviations for all 44 observa-
tions. But this plot is wrong. It is wrong because the points from which it is
made come from very different distributions, and they cannot be combined
in this way into a single distribution. Now, while it is true that the standard
deviation of observational variability changes with distance, the change is
very slight and this is not what troubles us. The real difficulty involves the
same feature we have noted before—that both data and predictions flatten
out at free space values—and at different distances this flattening appears
at different deviations from the predicted medians. Thus the fact that in
Figure 13 the median deviation is about 0 dB and that this is only one point
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Figure 13: The sample cumulative distribution of deviations. As indicated
in the text, this is a misleading plot.

in a long, flat interval of the curve, merely reflects the fact that a great many
of the observations were made at distances less than about 20 km. If the
data set had not so emphasized these shorter distances, the long flat interval
would not have been so pronounced. Similarly, the flat interval at about
20 dB is due to the accident that several paths had distances clustering at
about 50 km. The consequence of such contamination is that the cumulative
distribution function of Figure 13 can serve no useful purpose.

There is a way out of the problem. If the high fields represented by free
space values had saturated the receiver or sent measuring devices off-scale,
we would have been in a similar quandary. We could not then have recorded
received signal levels but could only have reported they were too high to
measure. Similarly, in the present case we can imagine that the propagation
channel itself has become “saturated.” Indeed, this is entirely in keeping with
the model of variability described in Section 6.3, for the modifying function
described there is analogous to the saturation curve of a receiver. We can
suppose that what we really want to measure is the unmodified attenuation
a′, because we expect that the statistics of the corresponding deviations are
nearly invariant with distance. However, we must also suppose that when
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Figure 14: The sample cumulative distribution of deviations assuming the
data are censored when A ≤ 0.5 dB.

the measured attenuation is nearly zero or less the value of a′ cannot be
determined.

At this point we have an example of what is known as a sample with
censored data (Walsh, 1962; Efron, 1979) where for some of the data we
have properly measured values while for others we know only that they lie
in certain infinite intervals. The latter are the censored data; they should
be neither discarded as useless nor accepted on an equal footing with the
remaining data.

Using the method of Kaplan and Meier (1958), we can construct a sample
cumulative distribution function for such censored samples. In Figure 14 we
have plotted the results for the R3 data when we assume that all data are
to be censored if the measured attenuation is less than or equal to 0.5 dB.
We feel that this gives a fairly accurate picture of the true statistics of the
deviations. Note that a full 19 of the 44 data were censored.

Another very important example of censored data, which does not appear
in the present data set but does in many others, occurs when signal levels fall
below the sensitivity of the receiver. Here we truly have attenuations that are
unmeasurable, but only because the radio system used is inadequate. Since
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one important purpose of a measurement program is to discover when it is
that signal levels might be below sensitivity, the very fact that we have found
such locations is of prime importance to us. Such “data” should never be
discarded as being useless; they should simply be treated as censored data. In
other words, although we cannot say what the actual attenuation is, we can
say that it definitely exceeds some known threshold value. Experimentalists
should take note here. It is an important part of the report on system
parameters to provide an estimate of the system sensitivity.

From Figure 14 we can see that the sample median of the deviations is
11 dB and that the sample 20% to 80% range is 27 dB. From the latter
number we find that the average slope (on the normal probability scale we
have used) is 16 dB, a value that can be likened to a standard deviation.
These two numbers can be used to describe the discrepancy between the
measured data and the “best estimate” predictions.

The ITS irregular terrain model predicts that, barring the possibility
of signal levels greater than free space, the observational variability is very
nearly normally distributed. Indeed, the curve of Figure 14 appears to the
eye to be as nearly linear as one could expect. If we insist that the deviations
involved do indeed come from a normal distribution then, despite the fact
that we have numerous censored data, we can derive more precise estimates
for the underlying mean and standard deviation by resorting to the maximum
likelihood estimate.

In general, we would suppose a sample of size n of which m of the de-
viations have observed values y1 . . . ym and r(= n − m) are known only to
exceed threshold values η1 . . . ηr. We first define the likelihood function

L(µ, σ) =
m∏
i=1

1

σ
Z

(
yi − µ

σ

) r∏
j=1

Q

(
ηj − µ

σ

)
(21)

where Z(x) is the probability density function for the standard normal distri-
bution and Q(x) its complementary cumulative distribution function. Then
the estimates we seek are the values of µ and σ which maximize L.

Using the same censored data as they appear in Figure 14, we have made
these calculations and find an estimated mean of 10.6 dB and an estimated
standard deviation of 14 dB. It is interesting to note how these numbers
relate to our model of variability. If we rewrite (4) slightly to allow for the
assumed mode of variability, we might suppose

y = yS(s) + δL(s)yL(l) (22)
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and then what we have said is that for the single situation of the R3 data the
value of yS(s) is estimated to be 10.6 dB. Furthermore, since the standard
deviation of yL is about 10 dB, we can also say that, again for this one
situation, we estimate δL(s) to be 1.4. Note how, in presenting these sample
statistics, we have violated our own stricture to always include an estimate
of the probable error. Unfortunately, that must remain a problem for future
work.

To summarize this section, we have subjected the ITS irregular terrain
model to several tests involving a small subset of data from a single measure-
ment program. Not surprisingly, the model has passed some of these tests
and failed others. But recall that our aim here has not been concerned with
whether the tests were passed or failed, but rather with illustrating some of
the techniques one might use in a more extensive study.
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A LRPROP and AVAR—An Implementation of

the ITS Model For Mid-range Frequencies

In this appendix we give the explicit source code listing for a computer imple-
mentation of version 1.2.1 of the ITS irregular terrain model (the Longley-
Rice model) for radio propagation at frequencies between 20 MHz and 20
GHz. Accompanying the listing are directions to the programmer for intro-
ducing the proper subroutines into an applications program.

The language used is FORTRAN and conforms to the 1966 ANSI stan-
dards. We believe it is also compatible with the 1977 ANSI standards. On
most modern computers the routine should be usable with no modification.
For satisfactorily accurate results we require floating point numbers having
at least six significant decimal figures and a range at least as large as 10±35.

The routines have been constructed so as to be both flexible and efficient.
Redundant or unnecessary computations have been avoided, and there are
no iterative processes involved. The routines may be used for either the
“area prediction” mode or the “point-to-point” mode; and if the desired
output consists only of the reference attenuation, one may entirely divorce
the calculations from those concerned with statistics.

The two modes of operation use very similar calling sequences, and they
are treated below in parallel.

Using the Longley-Rice model of radio propagation generally involves
three consecutive steps: the preparation of parameters, the computation of
the reference attenuation, and then the computation of selected statistics.
Around these processes the programmer will put others which assemble the
required input and which manipulate the resulting output. These latter we
leave largely to the user’s ingenuity, and in what follows we try to describe
only the central three processes.

Parameter preparation is accomplished by one of two subroutines: QLRA
for the area prediction mode and QLRPFL for the point-to-point mode. Also
useful is the subroutine QLRPS. The reference attenuation is computed by
LRPROP and the statistics by the function subprogram AVAR. Internally, most
of the input and output is contained in the three common blocks /PROP/,
/PROPA/, and /PROPV/. A few of the variables involved there must also be
accessed directly by the user.
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A.1 Common Blocks

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,

DH,ENS,GME,ZGND,HE(2),DL(2),THE(2)

COMPLEX ZGND

This is the collection of the principal system and path parameters. It also
includes the reference attenuation and an error marker. Note that all heights
and distances are measured in meters.

KWX Error marker. Indicates by its value the severity of the warning:
0 no warning
1 caution; parameters are close to limits
2 impossible parameters; default values have been substi-

tuted
3 internal calculations show parameters out of range
4 parameters out of range

AREF Reference attenuation. This is computed by the subroutine
LRPROP.

MDP Mode of the propagation model. Values:
−1 point-to-point
1 area prediction; to initialize
0 area prediction; to continue
For further remarks see note 2 below.

DIST Distance between terminals. See note 3 below.
HG Heights of the antennas above ground.
WN Wave number of the radio frequency.
DH Terrain irregularity parameter.
ENS Surface refractivity.
GME Effective earth’s curvature.
ZGND Surface transfer impedance.
HE Effective antenna heights.
DL Horizon distances.
THE Horizon elevation angles.

Note 1. The error marker KWX is meant to serve as a warning to the
user that one or more of the parameters have values that make the results
dubious or unusable. Except when it has the value 2, there is no effect on the
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computations. The value is cumulative in that after a series of calculations
it will retain its highest value. Since it is never reset to 0, the user must do
this himself.

Note 2. The value of MOP is handled automatically by QLRA and QLRPFL.
In the area prediction mode it must first be set to 1 whereupon LRPROP will
initialize various constants and set MDP to 0. On subsequent calls where it is
only the distance that varies, LRPROP need not recompute those constants.

Note 3. The value of DIST is entered in two ways. In the point-to-point
mode it is entered directly into /PROP/. This is done automatically by QRPFL.
In the area prediction mode the distance is an actual parameter in the call
to LRPROP.

COMMON/PROPV/LVAR,SGC,MDVAR,KLIM

This is the collection of instructions for treating variability in the sub-
routine AVAR.

LVAR Level to which coefficients in AVAR must be defined. Each time
the parameter indicated below is changed, LVAR must be set to
at least:
level parameter
0 none
1 DIST

2 HE, etc.
3 WN

4 MDVAR

5 KLIM

The subroutine AVAR will compute the necessary coefficients and
reset LVAR to 0.

SGCR The standard deviation of confidence. Output by AVAR, it may
be used to compute a confidence level.

MDVAR Mode of variability calculations. Values:
0 Single message mode: Time, location, and situation vari-

ability are combined together to give a confidence level.
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1 Individual mode: Reliability is given by time availabil-
ity. Confidence is a combination of location and situation
variability.

2 Mobile mode: Reliability is a combination of time and
location variability. Confidence is given by the situation
variability.

3 Broadcast mode: Reliability is given by the two-fold
statement of at least qT of the time in qL of the loca-
tions. Confidence is given by the situation variability.

In addition, to these values may be added either or both of the
numbers 10 and 20 with the meanings:
+10 Location variability is to be eliminated as it should when

a well-engineered path is being treated in the point-to-
point mode.

+20 Direct situation variability is to be eliminated as it should
when considering interference problems. Note that there
may still be a small residual situation variability.

KLIM Climate code. Values:
1 Equatorial
2 Continental subtropical
3 Maritime subtropical
4 Desert
5 Continental temperate
6 Maritime temperate over land
7 Maritime temperate over sea

COMMON/PROPA/DLSA,DX,AEL,AKl,AK2,AED,EMD,AES,EMS,

DLS(2),DLA,THA

The collection of parameters and coefficients which define the reference
attenuation as a function of distance. Ordinarily of no interest to the user.

COMMON/SAVE/...

A collection of miscellaneous constants and coefficients which must remain
defined in certain of the subroutines. Used in place of the SAVE directive and
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of no interest to the user.

A.2 Parameter preparation

The reference attenuation requires the variables
MDP, DIST, HG, WN, DH, ENS, GME, ZGND, HE, DL, THE

and also an attention to KWX. The statistics require the variables
MDVAR, KLIM, ZT, ZL, ZC and also an attention to LVAR; note that the

value of MDVAR determines the meanings of ZT, ZL, ZC. The following
subroutines should be used to introduce many of these variables.

CALL QLRPS(FMHZ,ZSYS,EN0,IPOL,EPS,SGM)

This will define WN, ENS, GME, ZGND in /PROP/
FMHZ Frequency in MHz.
ZSYS Average elevation above sea level of the system; if 0, EN0

will be interpreted as ENS.
EN0 Minimum monthly mean surface refractivity reduced to

sea level; if it is desired to introduce ENS instead, then
set ZSYS=0.

IPOL Polarization code: 0, horizontal; 1, vertical.
EPS,SGM Ground constants.

CALL QLRA(KST,KLIM,MDVAR)

Prepares parameters for the area prediction mode. Prior to this call one
should define HG, DH and WN, ENS, GME, ZGND in /PROP/. The present
routine will then define HE, DL, THE, LVAR, and optionally KLIM, MDVAR.

It sets MDP=l.
KST Siting criterion code for each terminal; an array of length

2.
KLIM Climate code. If greater than 0, the routine will put this

value in /PROPV/ and set LVAR=5.
MDVAR Mode of variability. If non-negative, the routine will put

this value in /PROPV/ and set LVAR to at least 4.
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CALL QLRPFL(PFL,KLIM,MDVAR)

Prepares parameters for the point-to-point mode and calls LRPROP thus
defining also the reference attenuation AREF. Prior to this call one should
define HG and WN, ENS, GME, ZGND in /PROP/. One should also have pre-
pared a terrain profile in the array PFL. For this we imagine a sequence of
elevations p0, p1, . . . , pnp taken at equal intervals ξ from the point under the
first terminal to that under the second. Note that the path distance is then
npξ.

PFL Terrain profile. An array packed with the values
np, ξ, po, . . . , pnp, in that order. Thus PFL(l) is the float-
ing point representation of np PFL(2) equals the in-
terval ξ between profile points, and PFL(i+3) equals
pi, i = 0, . . . , np, i.e., the elevation of the point distant
iξ from the first terminal. The total length of the array
is np + 3.

KLIM Climate code. If greater than 0, the routine will put this
value in /PROPV/ and set LVAR=5.

MDVAR Mode of variability. If non-negative, the routine will put
this value in /PROPV/ and set LVAR to at least 4.

In any case the routine sets LVAR to at least 3.
It should be noted that the Longley-Rice model is silent on many of

the details for defining some of the path parameters. This is particularly
true of the effective heights he1,2 and, to some lesser degree, of the terrain
irregularity parameter ∆h. The effective height, for example, is defined as the
height above the “effective reflecting plane,” and in the past the investigator
has been urged to use his own best judgment as to where that plane should
be placed. The subroutine QLRPFL, in trying to automate the definition of
all parameters, has been forced to define explicitly all missing details. It has
done this in a way that seems reasonable and in full accord with the intent
of the model. These techniques should not, however, be construed to have
any “official” standing.
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A.3 The reference attenuation

After defining all necessary parameters, the next step is to compute the
reference attenuation. This is done by a single call.

CALL LRPROP(D)

This will define the reference attenuation AREF in /PROP/. prior to this
call one should have defined MDP, WN, HG, DH, ENS, GME, ZGND, HE, DL,

THE in /PROP/. In the point-to-point mode (when MDP=-l), the distance
should also have been defined as DIST in /PROP/. The formal parameter D
will be ignored. In the area prediction mode (when MDP=l or 0), D represents
the distance and LRPROP will replace DIST in /PROP/ by this value. Also,
on the first entry after a set of parameters has been defined, one should set
MDP=l. Then LRPROP will set switches, define certain constants, and reset
MDP to 0. On subsequent calls, if it is only the distance that changes, one
should not redefine MDP.

In the area prediction mode there is also a special call obtained by setting
D=0. In general, a call to LRPROP will result in the definition of only those
coefficients that are necessary to compute the reference attenuation at the
indicated distance. In this special call, however, all coefficients in /PROPA/

will be defined. If desired, the user can then consider these coefficients to be
additional output from LRPROP.

A.4 Statistics

Statistics are available through the function subprogram AVAR in the form of
quantiles—i.e., values of attenuation which are not exceeded for a fraction
q of the samples. Rather than using the fraction q directly, however, we
convert our terminology to an equivalent standard normal deviate z defined
by

q = Q(z) =
1√
2π

∫ ∞

z

e−t2/2dt.

The function Q is the complementary normal probability function as defined
in most texts on statistics. This standard normal deviate is used because
the random variables involved are all normally distributed or very nearly
normally distributed, and calculations using them are greatly simplified. We
use the complementary function rather than the direct function because we
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usually think in terms of a received signal level rather than a loss or an
attenuation and would like to say that this level is at least so large for a
fraction q = Q(z) of the samples.

Note that Q is a monotonically decreasing function and that as q goes
from 0 to 1, z goes from ∞ to −∞. For example, Q(0) = 0.5, Q(1.28155) =
0.1, and Q(−1.28155) = 0.9.

Before using AVAR, one should have defined all system and path param-
eters in /PROP/ and also the reference attenuation AREF. In addition, one
should define LVAR, MDVAR, KLIM in /PROPV/.

Then the function AVAR can be evaluated. It has three formal parameters
whose meanings are determined by the mode of variability as specified in
MDVAR. In what follows we use freely a notation such as QC, ZC to indicate
a pair consisting of a probability and its corresponding standard normal
deviate.

Single message mode (MDVAR=0)

A=AVAR(0.,0.,ZC)

Then with confidence QC the attenuation will not exceed A. The first two
parameters are unused.

Individual and mobile modes (MDVAR=l or 2)

A=AVAR(ZR,0.,ZC)

Then with confidence QC the attenuation will not exceed A with a reliability
at least as large as QR. The second of the three parameters is unused.

Broadcast mode (MDVAR=3)

A=AVAR(ZT,ZL,ZC)

Then with confidence QC there will be at least QL of the locations where the
attenuation will not exceed A for at least QT of the time.

In addition to AVAR there are two small function subprograms which, if
desired, can be used to facilitate the translation between probabilities and
standard normal deviates.

Q=QERF(Z)

Z=QERFI(Q)

These are the Q error function and the inverse of the Q error function re-
spectively.
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A.5 Suggested Operational Flow

TO USE THE AREA PREDICTION MODE

SET KWX=0

DEFINE HG, DH AND CALL QLRPS

OPTIONALLY , DEFINE MDVAR , KLIM

CALL QLRA

LOOP FOR SELECTED DISTANCES D

↑ SET LVAR=MAX(LVAR , 1)

↑ CALL LRPROP(D)

↑ LOOP FOR SELECTED QUANTILES

↑ ↑ A=AVAR (...)

↑ ↑ OUTPUT A

↑ ↑--REPEAT
↑--REPEAT
CHECK KWX

ENDTO

TO USE THE POINT -TO -POINT MODE

SET KWX=0

DEFINE PFL , HG AND CALL QLRPS

OPTIONALLY , DEFINE MDVAR , KLIM

CALL QLRPFL

LOOP FOR SELECTED QUANTILES

↑ A=AVAR (...)

↑ OUTPUT A

↑--REPEAT
CHECK KWX

ENDTO

A.6 Source code listings

The subprograms on the following pages are arranged in logical order. First is
LRPROP followed by several ancillary subprograms. Then comes AVAR followed
by the additional routines QERF and QERFI. The last group consists of the
preparatory routines QLRPS, QLRA, and QLRPFL, the latter followed by several
ancillary subprograms.
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SUBROUTINE LRPROP(D)

C COMPUTES AREF, THE REFERENCE VALUE OF RADIO ATTENUATION

C VERSION 1.2.1 (AUG 71/MAR 77/APR 79)

C OF THE LONGLEY-RICE (1968) MODEL

C PRINCIPAL CHANGES-

C 1.1. A SIMPLIFICATION OF THE LINE-OF-SIGHT AND SCATTER

C ROUTINES

C 1.2. A CHANGE IN THE LINE-OF-SIGHT ROUTINE AND IN THE

C SUBSEQUENT CALCULATIONS. RESULTS ARE IMPROVED WHEN

C ONE OR BOTH ANTENNAS ARE HIGH.

C VALID ONLY FOR...

C FREQUENCIES BETWEEN 20 MHZ AND 20 GHZ

C ANTENNA HEIGHTS BETWEEN 0.5 M AND 3000 M

C ELEVATION ANGLES LESS THAN 200 MRAD

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

COMMON/PROPA/DLSA,DX,AEL,AK1,AK2,AED,EMD,AES,EMS,DLS(2),DLA,THA

C

COMMON/SAVE/SAVA(6),WLOS,WSCAT,DMIN,XAE,SAVB(40)

C

LOGICAL WLOS,WSCAT

C

DATA THIRD/0.3333333/

C

IF(MDP) 10,32,10

C

10 CONTINUE

DO 11 J=1,2

11 DLS(J)=SQRT(2.*HE(J)/GME)

DLSA=DLS(1)+DLS(2)

DLA=DL(1)+DL(2)

THA=AMAX1(THE(1)+THE(2),-DLA*GME)

WLOS=.FALSE.

WSCAT=.FALSE.

C

C CHECK PARAMETER RANGES
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IF(ENS .LT. 250. .OR. ENS .GT. 400.) GO TO 154

IF(GME .LT. 75E-9 .OR. GME .GT. 250E-9) GO TO 154

IF(REAL(ZGND) .LE. ABS(AIMAG(ZGND))) GO TO 154

DO 121 J=1,2

IF(ABS(THE(J)) .GT. 200E-3) GO TO 153

IF(DL(J) .LT. 0.1*DLS(J) .OR. DL(J) .GT. 3.*DLS(J))

X GO TO 153

121 CONTINUE

IF(WN .LT. 0.838 .OR. WN .GT. 210.) GO TO 151

DO 122 J=1,2

IF(HG(J) .LT. 1. .OR. HG(J) .GT. 1000.) GO TO 151

122 CONTINUE

GO TO 158

153 KWX=MAX0(KWX,3)

151 KWX=MAX0(KWX,1)

IF(WN .LT. 0.419 .OR. WN .GT. 420.) GO TO 154

DO 132 J=1,2

IF(HG(J) .LT. 0.5 .OR. HG(J) .GT. 3000.) GO TO 154

132 CONTINUE

GO TO 158

154 KWX=4

158 CONTINUE

DMIN=ABS(HE(1)-HE(2))/200E-3

C

C COEFFICIENTS FOR THE DIFFRACTION RANGE

C

Q=ADIFF(0.)

XAE=(WN*GME**2)**(-THIRD)

D3=AMAX1(DLSA,1.3787*XAE+DLA)

D4=D3+2.7574*XAE

A3=ADIFF(D3)

A4=ADIFF(D4)

EMD=(A4-A3)/(D4-D3)

AED=A3-EMD*D3

C

IF(MDP) 33,32,31

31 MDP=0

32 DIST=D
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IF(DIST .LE. 0.) GO TO 38

33 CONTINUE

IF(DIST .GT. 1000E3) KWX=MAX0(KWX,1)

IF(DIST .LT. DMIN) KWX=MAX0(KWX,3)

IF(DIST .LT. 1E3 .OR. DIST .GT. 2000E3) KWX=4

38 CONTINUE

C

IF(DIST .GE. DLSA) GO TO 50

C

IF(WLOS) GO TO 48

C

C COEFFICIENTS FOR THE LINE-OF-SIGHT RANGE

C

Q=ALOS(0.)

D2=DLSA

A2=AED+D2*EMD

D0=1.908*WN*HE(1)*HE(2)

IF(AED .LT. 0.) GO TO 41

D0=AMIN1(D0,0.5*DLA)

D1=D0+0.25*(DLA-D0)

GO TO 42

41 D1=AMAX1(-AED/EMD,0.25*DLA)

42 A1=ALOS(D1)

IF(D0 .GE. D1) GO TO 43

A0=ALOS(D0)

Q=ALOG(D2/D0)

AK2=AMAX1(0.,((D2-D0)*(A1-A0)-(D1-D0)*(A2-A0))/

X ((D2-D0)*ALOG(D1/D0)-(D1-D0)*Q))

IF(AK2 .GT. 0.) GO TO 44

IF(AED .GE. 0.) GO TO 44

43 AK2=0.

AK1=(A2-A1)/(D2-D1)

IF(AK1 .GT. 0.) GO TO 46

GO TO 45

44 AK1=(A2-A0-AK2*Q)/(D2-D0)

IF(AK1 .GE. 0.) GO TO 46

AK1=0.

AK2=DIM(A2,A0)/Q
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IF(AK2 .GT. 0.) GO TO 46

45 AK1=EMD

46 AEL=A2-AK1*D2-AK2*ALOG(D2)

WLOS=.TRUE.

48 IF(DIST .LE. 0.) GO TO 50

AREF=AEL+AK1*DIST+AK2*ALOG(DIST)

GO TO 60

C

50 IF(WSCAT) GO TO 58

C

C COEFFICIENTS FOR THE SCATTER RANGE

C

Q=ASCAT(0.)

D5=DLA+200E3

D6=D5+200E3

A6=ASCAT(D6)

A5=ASCAT(D5)

IF(A5 .LT. 1000.) GO TO 51

EMS=EMD

AES=AED

DX=10E6

GO TO 52

51 EMS=(A6-A5)/200E3

DX=AMAX1(DLSA,DLA+0.3*XAE*ALOG(47.7*WN),

X (A5-AED-EMS*D5)/(EMD-EMS))

AES=(EMD-EMS)*DX+AED

52 WSCAT=.TRUE.

C

58 IF(DIST .GT. DX) GO TO 59

AREF=AED+EMD*DIST

GO TO 60

59 AREF=AES+EMS*DIST

C

60 AREF=DIM(AREF,0.)

RETURN

END

FUNCTION ADIFF(D)
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C THE *DIFFRACTION ATTENUATION* AT DISTANCE D

C A CONVEX COMBINATION OF SMOOTH EARTH DIFFRACTION AND

C DOUBLE KNIFE-EDGE DIFFRACTION

C A CALL WITH D=0 SETS UP INITIAL CONSTANTS

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

COMMON/PROPA/DLSA,DX,AEL,AK1,AK2,AED,EMD,AES,EMS,DLS(2),DLA,THA

C

COMMON/SAVE/WD1,XD1,AFO,QK,AHT,XHT,SAVE(44)

C

DATA THIRD/0.3333333/

C

IF(D .GT. 0.) GO TO 10

C

Q=HG( 1 )*HG(2)

QK=HE(1)*HE(2)-Q

IF(MDP .LT. 0) Q=Q+10.

WD1=SQRT(1.+QK/Q)

XD1=DLA+THA/GME

Q=(1.-0.5*EXP(-DLSA/50E3))*DH

Q=0.78*Q*EXP(-(Q/16.)**0.25)

AFO=AMIN1(15.,2.171*ALOG(1.+4.77E-4*HG(1)*HG(2)*WN*Q))

QK=1./CABS(ZGND)

AHT=20.

XHT=0.

DO 1 J=1,2

A=0.5*DL(J)**2/HE(J)

WA=(A*WN)**THIRD

PK=QK/WA

Q=(1.607-PK)*151.0*WA*DL(J)/A

XHT=XHT+Q

AHT=AHT+FHT(Q,PK)

1 CONTINUE

ADIFF=0.

GO TO 80

C
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10 CONTINUE

TH=THA+D*GME

DS=D-DLA

Q=0.0795775*WN*DS*TH**2

ADIFF=AKNFE(Q*DL(1)/(DS+DL(1)))+AKNFE(Q*DL(2)/(DS+DL(2)))

A=DS/TH

WA=(A*WN)**THIRD

PK=QK/WA

Q=(1.607-PK)*151.0*WA*TH+XHT

AR=0.05751*Q-4.343*ALOG(Q)-AHT

Q=(WD1+XD1/D)*AMIN1(((1.-0.8*EXP(-D/50E3))*DH*WN),6283.2)

WD=25.1/(25.1+SQRT(Q))

ADIFF=(AR-ADIFF)*WD+ADIFF+AFO

80 RETURN

END

FUNCTION ALOS(D)

C THE *LINE-OF-SIGHT ATTENUATION* AT DISTANCE D

C A CONVEX COMBINATION OF PLANE EARTH FIELDS AND

C DIFFRACTED FIELDS

C A CALL WITH D=0 SETS UP INITIAL CONSTANTS

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

COMMON/PROPA/DLSA,DX,AEL,AK1,AK2,AED,EMD,AES,EMS,DLS(2),DLA,THA

C

COMMON/SAVE/WLS,SAVE(49)

C

COMPLEX R

C

ABQ(R)=REAL(R)**2+AIMAG(R)**2

C

IF(D .GT. 0.) GO TO 10

C

WLS=0.021/(0.021+WN*DH/AMAX1(10E3,DLSA))

ALOS=0.

GO TO 80
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C

10 CONTINUE

Q=(1.-0.8*EXP(-D/50E3))*DH

S=0.78*Q*EXP(-(Q/16.)**0.25)

Q=HE(1)+HE(2)

SPS=Q/SQRT(D**2+Q**2)

R=(SPS-ZGND)/(SPS+ZGND)*EXP(-WN*S*SPS)

Q=ABQ(R)

IF(Q .LT. 0.25 .OR. Q .LT. SPS) R=R*SQRT(SPS/Q)

ALOS=EMD*D+AED

Q=WN*HE(1)*HE(2)*2./D

ALOS=(-4.343*ALOG(ABQ(CMPLX(COS(Q),-SIN(Q))+R))-ALOS)*WLS+ALOS

C

80 RETURN

END

FUNCTION ASCAT(D)

C THE *SCATTER ATTENUATION* AT DISTANCE D

C USES AN APPROXIMATION TO THE METH0DS OF NBS TN101 WITH

C CHECKS FOR INADMISSABLE SITUATIONS

C FOR PROPER OPERATION, THE LARGER DISTANCE (D=D6)

C MUST BE THE FIRST CALLED

C A CALL WITH D=0 SETS UP INITIAL CONSTANTS

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

COMMON/PROPA/DLSA,DX,AEL,AK1,AK2,AED,EMD,AES,EMS,DLS(2),DLA,THA

C

COMMON/SAVE/AD,RR,ETQ,H0S,SAVE(46)

C

IF(D .GT. 0.) GO TO 10

C

AD=DL(1)-DL(2)

RR=HE(2)/HE(1)

IF(AD) 1,2,2

1 AD=-AD

RR=1./RR
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2 ETQ=(5.67E-6*ENS-2.32E-3)*ENS+0.031

H0S=-15.

ASCAT=0.

GO TO 80

C

10 CONTINUE

IF(H0S .GT. 15.) GO TO 12

TH=THE(1)+THE(2)+D*GME

R2=2.*WN*TH

R1=R2*HE(1)

R2=R2*HE(2)

IF(R1 .GT. 0.2 .OR. R2 .GT. 0.2) GO TO 11

ASCAT=1001.

GO TO 80

11 SS=(D-AD)/(D+AD)

Q=RR/SS

SS=AMAX1(0.1,SS)

Q=AMIN1(AMAX1(0.1,Q),10.)

Z0=(D-AD)*(D+AD)*TH*0.25/D

ET=(ETQ*EXP(-AMIN1(1.7,Z0/8.0E3)**6)+1.)*Z0/1.7556E3

ETT=AMAX1(ET,1.)

H0=(H0F(R1,ETT)+H0F(R2,ETT))*0.5

H0=H0+AMIN1(H0,(1.38-ALOG(ETT))*ALOG(SS)*ALOG(Q)*0.49)

H0=DIM(H0,0.)

IF(ET .LT. 1.) H0=ET*H0+(1.-ET)*4.343*ALOG(((1.+1.4142/R1)*

X (1.+1.4142/R2))**2*(R1+R2)/(R1+R2+2.8284))

IF(H0 .LE. 15. .OR. H0S .LT. 0.) GO TO 13

12 H0=H0S

13 H08=H0

TH=THA+D*GME

ASCAT=AHD(TH*D)+4.343*ALOG(47.7*WN*TH**4)-

X 0.1*(ENS-301.)*EXP(-TH*O/40E3)+H0

80 RETURN

END

FUNCTION AKNFE(V2)

C KNIFE-EDGE DIFFRACTION

C THE FRESNEL INTEGRAL AS A FUNCTION OF V**2
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C

IF(V2 .GT. 5.76) GO TO 2

1 AKNFE=6.02+9.11*SQRT(V2)-1.27*V2

GO TO 8

2 AKNFE=12.953+4.343*ALOG(V2)

8 RETURN

END

FUNCTION FHT(X,PK)

C THE HEIGHT GAIN OVER A SMOOTH SPHERICAL EARTH

C TO BE USED IN THE *THREE RADII* METH0D

C

IF(X .LT. 200.) GO TO 2

FHT=0.05751*X-4.343*ALOG(X)

IF(X .GE. 2000.) GO TO 8

W=0.0134*X*EXP(-0.005*X)

FHT=(1.-W)*FHT+W*(17.372*ALOG(X)-117.)

GO TO 8

2 IF(PK .GT. 1.E-5) GO TO 3

IF(X .GT. 1.) GO TO 4

FHT=-117.

GO TO 8

3 W=-ALOG(PK)

IF(X*W**3 .GT. 5495.) GO TO 4

FHT=2.5E-5*X**2/PK-8.686*W-15.

GO TO 8

4 FHT=17.372*ALOG(X)-117.

8 RETURN

END

FUNCTION H0F(R,ET)

C THE H0 FUNCTION FOR SCATTER FIELDS

C

DIMENSION A(5),B(5)

C

DATA A( 1 ) ,A( 2) ,A( 3) ,A( 4) ,A( 5)

X / 25., 80.,177.,395.,705./

DATA B(1),B(2),B(3),B(4),B(5)
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X / 24., 45., 68., 80.,105./

C

IT=ET

IF(IT) 2,2,1

1 IF(IT-5) 5,4,3

2 IT=1

GO TO 4

3 IT=5

4 Q=0.

GO TO 6

5 Q=ET-FLOAT(IT)

6 X=(1./R)**2

H0F=4.343*ALOG((A(IT)*X+B(IT))*X+1.)

IF(Q .NE. 0.)

X H0F=(1.-Q)*H0F+Q*4.343*ALOG((A(IT+1)*X+B(IT+1))*X+1.)

RETURN

END

FUNCTION AHD(TD)

C THE F(TH*D) FUNCTION FOR SCATTER FIELDS

C

DIMENSION A(3),B(3),C(3)

C

DATA A(1),A(2),A(3)/133.4,104.6,71.8/

DATA B(1),B(2),B(3)/0.332E-3,0.212E-3,0.157E-3/

DATA C(1),C(2),C(3)/-4.343,-1.086,2.171/

C

I=1

IF(TD .LE. 10E3) GO TO 1

I=2

IF(TD .LE. 70E3) GO TO 1

I=3

1 AHD=A(I)+B(I)*TD+C(I)*ALOG(TD)

RETURN

END

FUNCTION AVAR(ZZT,ZZL,ZZC)

C QUANTILES OF ATTENUATION RELATIVE TO FREE SPACE
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C INCLUDES LONG-TERM TIME VARIABILITY, LOCATION VARIABILITY,

C AND SITE VARIABILITY

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

COMMON/PROPV/LVAR,SGC,MDVAR,KLIM

C

COMMON/SAVE/SAVE(13),KDV,WL,WS,DEXA,DE,VMD,VS0,SGL,

X SGTM,SGTP,SGTD,TGTD,GM,GP,CV1,CV2,YV1,YV2,YV3,

X CSM1,CSM2,YSM1,YSM2,YSM3,CSP1,CSP2,YSP1,YSP2,YSP3,CSD1,ZD,

X CFM1,CFM2,CFM3,CFP1,CFP2,CFP3

C

DIMENSION BV1(7),BV2(7),XV1(7),XV2(7),XV3(7)

DIMENSION BSM1(7),BSM2(7),XSM1(7),XSM2(7),XSM3(7)

DIMENSION BSP1(7),BSP2(7),XSP1(7),XSP2(7),XSP3(7)

DIMENSION BSD1(7),BZD1(7)

DIMENSION BFM1(7),BFM2(7),BFM3(7),BFP1(7),BFP2(7),BFP3(7)

C

LOGICAL WS,WL

C

C EQUATOR, CON SUB, MAR SUB, DESERT, CON TMP, MAR LND, MAR SEA

C

DATA BV1(1), BV1(2), BV1(3), BV1(4), BV1(5), BV1(6), BV1(7)

X / -9.67, -0.62, 1.26, -9.21, -0.62, -0.39, 3.15/

DATA BV2(1), BV2(2), BV2(3), BV2(4), BV2(5), BV2(6), BV2(7)

X / 12.7, 9.19, 15.5, 9.05, 9.19, 2.86, 857.9/

DATA XV1(1), XV1(2), XV1(3), XV1(4), XV1(5), XV1(6), XV1(7)

X /144.9E3,228.9E3,262.6E3, 84.1E3,228.9E3,141.7E3,2222.E3/

DATA XV2(1), XV2(2), XV2(3), XV2(4), XV2(5), XV2(6), XV2(7)

X /190.3E3,205.2E3,185.2E3,101.1E3,205.2E3,315.9E3,164.8E3/

DATA XV3(1), XV3(2), XV3(3), XV3(4), XV3(5), XV3(6), XV3(7)

X /133.8E3,143.6E3, 99.8E3, 98.6E3,143.6E3,167.4E3,116.3E3/

DATA BSM1(1),BSM1(2),BSM1(3),BSM1(4),BSM1(5),BSM1(6),BSM1(7)

X / 2.13, 2.66, 6.11, 1.98, 2.68, 6.86, 8.51/

DATA BSM2(1),BSM2(2),BSM2(3),BSM2(4),BSM2(5),BSM2(6),BSM2(7)

X / 159.5, 7.67, 6.65, 13.11, 7.16, 10.38, 169.8/

DATA XSM1(1),XSM1(2),XSM1(3),XSM1(4),XSM1(5),XSM1(6),XSM1(7)
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X /762.2E3,100.4E3,138.2E3,139.1E3, 93.7E3,187.8E3,609.8E3/

DATA XSM2(1),XSM2(2),XSM2(3),XSM2(4),XSM2(5),XSM2(6),XSM2(7)

X /123.6E3,172.5E3,242.2E3,132.7E3,186.8E3,169.6E3,119.9E3/

DATA XSM3(1),XSM3(2),XSM3(3),XSM3(4),XSM3(5),XSM3(6),XSM3(7)

X / 94.5E3,136.4E3,178.6E3,193.5E3,133.5E3,108.9E3,106.6E3/

DATA BSP1(1),BSP1(2),BSP1(3),BSP1(4),BSP1(5),BSP1(6),BSP1(7)

X / 2.11, 6.87, 10.08, 3.68, 4.75, 8.58, 8.43/

DATA BSP2(1),BSP2(2),BSP2(3),BSP2(4),BSP2(5),BSP2(6),BSP2(7)

X / 102.3, 15.53, 9.60, 159.3, 8.12, 13.97, 8.19/

DATA XSP1(1),XSP1(2),XSP1(3),XSP1(4),XSP1(5),XSP1(6),XSP1(7)

X /636.9E3,138.7E3,165.3E3,464.4E3, 93.2E3,216.0E3,136.2E3/

DATA XSP2(1),XSP2(2),XSP2(3),XSP2(4),XSP2(5),XSP2(6),XSP2(7)

X /134.8E3,143.7E3,225.7E3, 93.1E3,135.9E3,152.0E3,188.5E3/

DATA XSP3(1),XSP3(2),XSP3(3),XSP3(4),XSP3(5),XSP3(6),XSP3(7)

X / 95.6E3, 98.6E3,129.7E3, 94.2E3,113.4E3,122.7E3,122.9E3/

DATA BSD1(1),BSD1(2),BSD1(3),BSD1(4),BSD1(5),BSD1(6),BSD1(7)

X / 1.224, 0.801, 1.380, 1.000, 1.224, 1.518, 1.518/

DATA BZD1(1),BZD1(2),BZD1(3),BZD1(4),BZD1(5),BZD1(6),BZD1(7)

X / 1.282, 2.161, 1.282, 20., 1.282, 1.282, 1.282/

DATA BFM1(1),BFM1(2),BFM1(3),BFM1(4),BFM1(5),BFM1(6),BFM1(7)

X / 1., 1., 1., 1., 0.92, 1., 1./

DATA BFM2(1),BFM2(2),BFM2(3),BFM2(4),BFM2(5),BFM2(6),BFM2(7)

X / 0., 0., 0., 0., 0 .25, 0., 0./

DATA BFM3(1),BFM3(2),BFM3(3),BFM3(4),BFM3(5),BFM3(6),BFM3(7)

X / 0., 0., 0., 0., 1.77, 0., 0./

DATA BFP1(1),BFP1(2),BFP1(3),BFP1(4),BFP1(5),BFP1(6),BFP1(7)

X / 1., 0.93, 1., 0.93, 0.93, 1., 1./

DATA BFP2(1),BFP2(2),BFP2(3),BFP2(4),BFP2(5),BFP2(6),BFP2(7)

X / 0., 0.31, 0., 0.19, 0.31, 0., 0./

DATA BFP3(1),BFP3(2),BFP3(3),BFP3(4),BFP3(5),BFP3(6),BFP3(7)

X / 0., 2.00, 0., 1.79, 2.00, 0., 0./

C

DATA RT,RL/7.8,24./

C

DATA THIRD/0.3333333/

C

CURV(C1,C2,X1,X2,X3)=(C1+C2/(1.+((DE-X2)/X3)**2))*

X ((DE/X1)**2)/(1.+((DE/X1)**2))
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C

IF(LVAR .EQ. 0) GO TO 60

IF(LVAR .LT. 5)

X GO TO (10,20,30,40),LVAR

C CLIMATE

IF(KLIM .GT. 0. AND. KLIM .LE. 7) GO TO 51

KLIM=5

KWX=MAX0(KWX,2)

51 CV1=BV1(KLIM)

CV2=BV2(KLIM)

YV1=XV1(KLIM)

YV2=XV2(KLIM)

YV3=XV3(KLIM)

CSM1=BSM1(KLIM)

CSM2=BSM2(KLIM)

YSM1=XSM1(KLIM)

YSM2=XSM2(KLIM)

YSM3=XSM3(KLIM)

CSP1=BSP1(KLIM)

CSP2=BSP2(KLIM)

YSP1=XSP1(KLIM)

YSP2=XSP2(KLIM)

YSP3=XSP3(KLIM)

CSD1=BSD1(KLIM)

ZD=BZD1(KLIM)

CFM1=BFM1(KLIM)

CFM2=BFM2(KLIM)

CFM3=BFM3(KLIM)

CFP1=BFP1(KLIM)

CFP2=BFP2(KLIM)

CFP3=BFP3(KLIM)

C MODE OF VARIABILITY

40 KDV=MDVAR

WS=KDV .GE. 20

IF(WS) KDV=KDV-20

WL=KDV .GE. 10

IF(WL) KDV=KDV-10

IF(KDV .GE. 0 .AND. KDV .LE. 3) GO TO 41
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KDV=0

KWX=MAX0(KWX,2)

41 KDV=KDV+ 1

C FREQUENCY

30 Q=ALOG(0.133*WN)

GM=CFM1+CFM2/((CFM3*Q)**2+1.)

GP=CFP1+CFP2/((CFP3*Q)**2+1.)

C SYSTEM PARAMETERS

20 DEXA=SQRT(18E6*HE(1))+SQRT(18E6*HE(2))+(575.7E12/WN)**THIRD

C DISTANCE

10 IF(DIST .GE. DEXA) GO TO 11

DE=130E3*DIST/DEXA

GO TO 12

11 DE=130E3+DIST-DEXA

12 VMD=CURV( CV1 , CV2, YV1, YV2, YV3)

SGTM=CURV(CSM1,CSM2,YSM1,YSM2,YSM3)*GM

SGTP=CURV(CSP1,CSP2,YSP1,YSP2,YSP3)*GP

SGTD=SGTP*CSD1

TGTD=(SGTP-SGTD)*ZD

SGL=0.

VS0=0.

IF(WL) GO TO 13

Q=(1.-0.8*EXP(-AMIN1(20.,DIST/50E3)))*DH*WN

SGL=10.*Q/(Q+13.)

13 IF(WS) GO TO 14

VS0=(5.+3.*EXP(-AMIN1(20.,DE/100E3)))**2

14 CONTINUE

C

LVAR=0

C

60 CONTINUE

ZT=ZZT

ZL=ZZL

ZC=ZZC

GO TO (600,601,602,603),KDV

600 ZT=ZC

601 ZL=ZC

GO TO 603
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602 ZL=ZT

603 CONTINUE

IF(ABS(ZT) .GT. 3.10) GO TO 605

IF(ABS(ZL) .GT. 3.10) GO TO 605

IF(ABS(ZC) .GT. 3.10) GO TO 605

GO TO 608

605 KWX=MAX0(KWX,1)

608 CONTINUE

IF(ZT .GT. 0.) GO TO 611

SGT=SGTM

GO TO 618

611 IF(ZT .GT. ZD) GO TO 612

SGT=SGTP

GO TO 618

612 SGT=SGTD+TGTD/ZT

618 CONTINUE

VS=VS0+(SGT*ZT)**2/(RT+ZC**2)+(SGL*ZL)**2/(RL+ZC**2)

GO TO (620,621,622,623),KDV

620 YR=0.

SGC=SQRT(SGT**2+SGL**2+VS)

GO TO 628

621 YR=SGT*ZT

SGC=SQRT(SGL**2+VS)

GO TO 628

622 YR=SQRT(SGT**2+SGL**2)*ZT

SGC=SQRT(VS)

GO TO 628

623 YR=SGT*ZT+SGL*ZL

SGC=SQRT(VS)

628 CONTINUE

C

AVAR=AREF-VMD-YR-SGC*ZC

IF(AVAR .LT. 0.) AVAR=AVAR*(29.-AVAR)/(29.-10.*AVAR)

RETURN

END

FUNCTION QERF(Z)

C THE STANDARD NORMAL COMPLEMENTARY PROBABILITY
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C APPROXIMATION DUE TO C. HASTINGS, JR.

C MAX ERROR 7.5E-8

C

DATA B1,B2,B3,B4,B5/0.319381530,-0.356563782,1.781477937,

X -1.821255987,1.330274429/

DATA RP,RRT2PI/4.317008,0.398942280/

C

X=Z

T=ABS(X)

IF(T .LT. 10.) GO TO 1

QERF=0.

GO TO 2

1 T=RP/(T+RP)

QERF=EXP(-0.5*X**2)*RRT2PI*((((B5*T+B4)*T+B3)*T+B2)*T+B1)*T

2 IF(X .LT. 0.) QERF=1.-QERF

RETURN

END

FUNCTION QERFI(Q)

C THE INVERSE OF QERF, GIVES THE STANDARD NORMAL DEVIATE AS A

C FUNCTION OF THE COMPLEMENTARY PROBABILITY

C TRUNCATED AT 0.000001 AND 0.999999

C APPROXIMATION DUE TO C. HASTINGS, JR.

C MAX ERROR 4.5E-4

C

DATA C0,C1,C2/2.515516698,0.802853,0.010328/

DATA D1,D2,D3/1.432788,0.189269,0.001308/

C

X=0.5-Q

T=AMAX1(0.5-ABS(X),0.000001)

T=SQRT(-2.*ALOG(T))

QERFI=T-((C2*T+C1)*T+C0)/(((D3*T+D2)*T+D1)*T+1.)

IF(X .LT. 0.) QERFI=-QERFI

RETURN

END

SUBROUTINE QLRPS(FMHZ,ZSYS,EN0,IPOL,EPS,SGM)

C PREPARES PARAMETERS
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C SETS--

C WN,ENS,GME,ZGND

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

C

COMPLEX ZQ

C

DATA GMA/157E-9/

C

WN=FMHZ/47.7

ENS=EN0

IF(ZSYS .NE. 0.) ENS=ENS*EXP(-ZSYS/9460.)

GME=GMA*(1.-0.04665*EXP(ENS/179.3))

ZQ=CMPLX(EPS,376.62*SGM/WN)

ZGND=CSQRT(ZQ-1.)

IF(IPOL .NE. 0) ZGND=ZGND/ZQ

RETURN

END

SUBROUTINE QLRA( KST, KLIMX,MDVARX)

DIMENSION KST(2)

C PREPARES THE LONGLEY-RICE MODEL IN THE AREA PREDICTION MODE

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

COMMON/PROPV/LVAR,SGC,MDVAR,KLIM

C

DO 10 J=1,2

IF(KST(J)-1) 11,12,13

11 HE(J)=HG(J)

GO TO 15

12 Q=4.

GO TO 14

13 Q=9.

14 IF(HG(J) .LT. 5.) Q=Q*SIN(0.3141593*HG(J))
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HE(J)=HG(J)+(1.+Q)*EXP(-AMIN1(20.,2.*HG(J)/AMAX1(1E-3,DH)))

15 Q=SQRT(2.*HE(J)/GME)

DL(J)=Q*EXP(-0.07*SQRT(DH/AMAX1(HE(J),5.)))

THE(J)=(0.65*DH*(Q/DL(J)-1.)-2.*HE(J))/Q

10 CONTINUE

C

MDP=1

LVAR=MAX0(LVAR,3)

IF(MDVARX .LT. 0) GO TO 21

MDVAR=MDVARX

LVAR=MAX0(LVAR,4)

21 IF(KLIMX .LE. 0) GO TO 22

KLIM=KLIMX

LVAR=5

22 CONTINUE

RETURN

END

SUBROUTINE QLRPFL(PFL, KLIMX, MDVARX )

DIMENSION PFL(5)

C

C SETS UP AND RUNS THE LONGLEY-RICE MODEL IN THE POINT-TO-POINT

C MODE USING THE TERRAIN PROFILE IN PFL.

C PFL(1)=ENP, PFL(2)=XI, PFL(3)=Z(0),...

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

COMMON/PROPV/LVAR,SGC,MDVAR,KLIM

C

DIMENSION XL(2)

C

DIST=PFL(1)*PFL(2)

NP=PFL(1)

CALL HZNS(PFL)

C FIND DELTA H

DO 11 J=1,2

11 XL(J)=AMIN1(15.*HG(J),0.1*DL(J))
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XL(2)=DIST-XL(2)

DH=DLTHX(PFL,XL(1),XL(2))

C FIND EFFECTIVE HEIGHTS HE

IF(DL(1)+DL(2) .LT. 1.5*DIST) GO TO 25

C LINE-OF-SIGHT

CALL ZLSQ1(PFL,XL(1),XL(2),ZA,ZB)

HE(1)=HG(1)+DIM(PFL(3),ZA)

HE(2)=HG(2)+DIM(PFL(NP+3),ZB)

DO 21 J=1,2

21 DL(J)=SQRT(2.*HE(J)/GME)*EXP(-0.07*SQRT(DH/AMAX1(HE(J),5.)))

Q=DL(1)+DL(2)

IF(Q .GT. DIST) GO TO 23

Q=(DIST/Q)**2

DO 22 J=1,2

HE(J)=HE(J)*Q

22 DL(J)=SQRT(2.*HE(J)/GME)*EXP(-0.07*SQRT(DH/AMAX1(HE(J),5.)))

23 GO TO 28

C TRANSHORIZ0N

25 CALL ZLSQ1(PFL,XL(1),0.9*DL(1),ZA,Q)

CALL ZLSQ1(PFL,DIST-0.9*DL(2),XL(2),Q,ZB)

HE(1)=HG(1)+DIM(PFL(3),ZA)

HE(2)=HG(2)+DIM(PFL(NP+3),ZB)

28 CONTINUE

C

MDP=-1

LVAR=MAX0(LVAR,3)

IF(MDVARX .LT. 0) GO TO 31

MDVAR=MDVARX

LVAR=MAX0(LVAR,4)

31 IF(KLIMX .LE. 0) GO TO 32

KLIM=KLIMX

LVAR=5

32 CONTINUE

C

CALL LRPROP(0.)

C

RETURN

END
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FUNCTION DLTHX(PFL,X1,X2)

DIMENSION PFL(5)

C

C COMPUTES THE TERRAIN IRREGULARITY PARAMETER DH FROM THE

C PROFILE PFL BETWEEN POINTS AT X1 .LT. X2.

C

DIMENSION S(247)

C

NP=PFL(1)

XA=X1/PFL(2)

XB=X2/PFL(2)

DLTHX=0.

IF(XB-XA .LT. 2.) GO TO 80

KA=0.1*(XB-XA+8.)

KA=MIN0(MAX0(4,KA),25)

N=10*KA-5

KB=N-KA+1

SN=N-1

S(1)=SN

S(2)=1.

XB=(XB-XA)/SN

K=XA+1.

XA=XA-FLOAT(K)

DO 10 J=1,N

11 IF(XA .LE. 0.) GO TO 12

IF(K .GE. NP) GO TO 12

XA=XA-1.

K=K+1

GO TO 11

12 S(J+2)=PFL(K+3)+(PFL(K+3)-PFL(K+2))*XA

10 XA=XA+XB

CALL ZLSQ1(S,0.,SN,XA,XB)

XB=(XB-XA)/SN

DO 15 J=1,N

S(J+2)=S(J+2)-XA

15 XA=XA+XB

C
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DLTHX=QTILE(N,S(3),KA)-QTILE(N,S(3),KB)

DLTHX=DLTHX/(1.-0.8*EXP(-AMIN1(20.,(X2-X1)/50E3)))

80 RETURN

END

SUBROUTINE HZNS(PFL)

DIMENSION PFL(5)

C

C TO FIND HORIZ0NS FROM ANTENNAS WITH HEIGHTS HG AT THE TWO

C ENDS OF THE PROFILE PFL.

C PFL(1)=ENP, PFL(2)=XI, PFL(3)=Z(D), ...

C OUTPUT--DISTANCES DL, TAKE-OFF ANGLES THE.

C DL=DIST IF THE PATH IS LINE OF SIGHT

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

C

LOGICAL WQ

C

NP=PFL(1)

XI=PFL(2)

ZA=PFL(3)+HG(1)

ZB=PFL(NP+3)+HG(2)

QC=0.5*GME

Q=QC*DIST

THE(2)=(ZB-ZA)/DIST

THE(1)=THE(2)-Q

THE(2)=-THE(2)-Q

DL(1)=DIST

DL(2)=DIST

IF(NP .LT. 2) GO TO 18

SA=0.

SB=DIST

WQ=.TRUE.

DO 10 I=2,NP

SA=SA+XI

SB=SB-XI
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Q=PFL(I+2)-(QC*SA+THE(1))*SA-ZA

IF(Q .LE. 0.) GO TO 11

THE(1)=THE(1)+Q/SA

DL(1)=SA

WQ=.FALSE.

11 IF(WQ) GO TO 10

Q=PFL(I+2)-(QC*SB+THE(2))*SB-ZB

IF(Q .LE. 0.) GO TO 10

THE(2)=THE(2)+Q/SB

DL(2)=SB

10 CONTINUE

C

18 RETURN

END

FUNCTION QTILE(NN,A,IR)

DIMENSION A(NN)

C

C REORDERS A SO THAT A(J),J=1 ... IR ARE ALL .GE.

C ALL A(I),I=IR ... NN. IN PARTICULAR, A(IR) WILL HAVE THE SAME

C VALUE IT WOULD HAVE IF A WERE COMPLETELY SORTED IN

C DESCENDING ORDER.

C RETURNS QTILE=A(IR)

C

M=1

N=NN

K=MIN0(MAX0(1,IR),N)

10 CONTINUE

Q=A(K)

I0=M

J1=N

11 CONTINUE

DO 12 I=I0,N

IF(A(I) .LT. Q) GO TO 13

12 CONTINUE

I=N

13 J=J1

DO 14 JJ=M,J1
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IF(A(J) .GT. Q) GO TO 15

14 J=J-1

J=M

15 IF(I .GE. J) GO TO 16

R=A(I)

A(I)=A(J)

A(J)=R

I0=I+1

J1=J-1

GO TO 11

16 IF(I .GE. K) GO TO 17

A(K)=A(I)

A(I)=Q

M=I+1

GO TO 10

17 IF(J .LE. K) GO TO 20

A(K)=A(J)

A(J)=Q

N=J-1

GO TO 10

20 QTILE=Q

RETURN

END

SUBROUTINE ZLSQ1(Z,X1,X2,Z0,ZN)

DIMENSION Z(5)

C

C LINEAR LEAST SQUARES FIT BE’IWEEN X1, X2 TO THE FUNCTION

C DESCRIBED BY Z--

C Z(1)=EN, NUMBER OF INTERVALS, Z(2) =XI, INTERVAL LENGTH,

C Z(J+3), J=0,...,EN, FUNCTION VALUES.

C OUTPUT-- VALUES OF THE LINE, Z0 AT 0, ZN AT XT.

C

XN=Z(1)

XA=AINT(DIM(X1/Z(2),0.))

XB=XN-AINT(DIM(XN,X2/Z(2)))

IF(XB .GT. XA) GO TO 1

XA=DIM(XA,1.)
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XB=XN-DIM(XN,XB+1.)

1 JA=XA

JB=XB

N=JB-JA

XA=XB-XA

X=-0.5*XA

XB=XB+X

A=0.5*(Z(JA+3)+Z(JB+3))

B=0.5*(Z(JA+3)-Z(JB+3))*X

IF(N .LT. 2) GO TO 11

DO 10 I=2,N

JA=JA+1

X=X+1.

A=A+Z(JA+3)

B=B+Z(JA+3)*X

10 CONTINUE

11 A=A/XA

B=B*12./((XA*XA+2.)*XA)

Z0=A-B*XB

ZN=A+B*(XN-XB)

RETURN

END
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B QKAREA—An Applications Program

The routine QKAREA (Quick Area) is a main program designed to illustrate
one way to use the Longley-Rice model in the area prediction mode. Written
under the constraints of 1966 ANSI Fortran, it is meant to be used in a batch
environment. It reads cards to define parameters and prints out tables show-
ing estimated quantiles of basic transmission loss versus distance for a set of
confidence levels. In addition to the system and environmental parameters,
the user may choose from among four different modes of variability analysis
and the specific quantiles, both of reliability and of confidence, for which
computations will be made.

B.1 Input

Input is through a sequence of cards of ten different “types.” Each type
introduces a particular set of parameters or directs the program to perform
a particular operation. The cards may appear in any number and in almost
any order and as many output pages for as many different systems as desired
may be produced. The concept is that the information on any one card will
change values for the indicated parameters while leaving all other values as
they were previously defined. When all desired changes have been made,
the user requests an execution run, whereupon computations are made and a
page of output produced. At the very beginning all param- eters are assigned
default values which are therefore the values used unless the user explicitly
changes them. Furthermore, most of the parameters by their nature must
have strictly positive values; if they are given zero or negative values on
the input cards, the program will simply ignore those values and therefore
retain those previously given. In particular, since Fortran interprets a blank
field as a zero value, such a blank field may be used to indicate that the
corresponding parameter is not to be changed.

The cards are read in 10-column fields, the first of which is a sequence of
digits and the remaining seven floating point numbers read with an F10.0

format. Column 1 is always an “execute” indicator: if it is any non-zero
digit, then as soon as the card is processed the program makes its compu-
tations using parameter values as are then defined. The digit in column 2
indicates the card type and defines how the remaining digits in the first ten
columns and how the floating point numbers in the remaining fields are to
be interpreted. In outline, the ten types can be described as follows:
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Col.
123 11, . . .

Stop X0 (or a blank card)
Title X1 (a 60 column title on the next card)
Distance X2 do, d1, ds1, d2, ds2
Reliability X3V qT , qL
Confidence X4 qC1, qC2, . . .
Environment X5C ∆h,No, Zs, ϵ, σ
System X6NPSS fMHz, hg1, hg2

(Alternate) X7NPSS fMHz, hg1, hg2,∆h,Ns, ϵ, σ
Execute X8
Reset X9

In this table we have begun the representation of a card with the execute
digit X in column 1 and the card type digit in column 2. Following this there
may be single upper case letters indicating particular parameters with single
digit values and then there comes a sequence of variables. These latter are to
be replaced by floating point values in successive 10-column fields beginning
at column 11. The card types and definitions of the variables are described
in detail below.

Card Type 0. Stop. When this card is read the program has finished the
job If the execute digit is set, a page of output is produced first. This card,
which can be entirely blank should be the last card of the input deck. On
many computers, however, it is unnecessary. This is true if, upon reading an
end of file marker, the computer either leaves the input variables unchanged
or zeroes them out.

Card Type 1. Title. If desired the user may supply a short title which
will appear at the top of the output pages. This title will consist of the
first 60 columns on the card that immediately follows a card of type 1. The
default title reads “Area predictions from the Longley-Rice model, version
1.2.1.”

Card Type 2. Distances. This card defines the distances at which quan-
tities of basic transmission loss will be computed and displayed. There are
three intended formats: (i) do alone with the remaining variables omitted—
only the single distance do; (ii) do, d1, ds1 alone—distances from do to d1 in
steps of ds1; and (iii) all five variables—after stepping through to d1 as above,
distances continue on to d2 in steps of ds2. All distances are measured in kilo-

113



meters. If do and d1 are nonpositive, the card is ignored; otherwise the entire
schema of distances is changed irrespective of what was previously defined.
If some of the variables such as the step sizes are undefined, the program will
use its own algorithms to define them. In particular, if do is nonpositive, it
will be replaced by ds1. In the original default condition, distances go from
10 to 150 km in steps of 10 km and then on to 500 km in steps of 50 km.

Card Type 3. Reliability. This card defines the mode of variability and
if needed, the quantiles of required reliability. The mode is given in terms of
the service intended by the system under study and is defined by the digit
V with values

V = 0, single-message service
1, individual service
2, mobile service
3, broadcast service.

Since V can have the value 0, it must always be explicitly given whenever
this card type is used. If V=0, there is no meaning to reliability and any
quantiles given on the card are ignored. If V is 1 or 2 the quantile in the first
field, measured as a percentage, will be used as the required reliability; that
in the second field will be ignored. If V is 3, then qT is the required percent
of time and qL the required percent of locations. If a quantile needed by the
variability mode is missing or nonpositive, it will be replaced by the value
of 50 percent; thus, if this card is used, all indicated data should probably
be explicitly defined. The original default condition assumes the broadcast
service (V=3) with both qT and qL equal to 50 percent.

Card Type 4. Confidence. This card defines a sequence of confidence
levels which will be used as the second independent vari.able (the first being
distance) for which quantiles of basic transmission loss will be computed. to
seven of these quantiles, all measured as percentages. There may be from
one Each of the listed quantiles will be used in the order given to head a
column in the output table. Each use of the card redefines the entire list of
confidence levels. If none are specified, the program defaults to a single level
equal to 50 percent. The original default condition uses three levels equal to
50, 90, and 10 percent, in that order.

Card Type 5. Environmental parameters. With this card one can
specify parameters relating to the terrain, the atmosphere, and the ground.
The digit C defines the radio climate according to the coded values:
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C = 1, equatorial
2, continental subtropical
3, maritime subtropical
4, desert
5, continental temperate
6, maritime temperate overland
7, maritime temperate oversea.

If the digit is 0 or blank it is ignored, and the climate code used will be the
one previously defined. The terrain irregularity parameter ∆h is measured
in meters; since zero is a legitimate value, when this card is used one must
always be sure to define this parameter explicitly. (If a strictly negative value
is used, however, the program will employ the previously defined value.) The
parameter No, measured in N-units, is the surface refractivity of the atmo-
sphere as reduced to sea level, while Zs, measured in meters, is the average
elevation of the ground surface for which the actual surface refractivity Ns

will be computed. If the indicated value of No is positive, then the value of
Zs must also be supplied; but note that if one wants instead to introduce
directly the value of Ns, then one should merely set Zs to zero or leave that
field blank. The dielectric constant ϵ of the ground and the conductivity σ
measured in siemens per meter are in the last two fields. These are treated as
a pair; if the value of ϵ is positive, then the value of σ must also be supplied;
if the value of ϵ is nonpositive, both fields will be ignored. The default values
use a continental temperate climate (C=5), an average terrain irregularity
with ∆h = 90 m, a four-thirds earth with Ns = 301 N-units, and an average
ground with ϵ = 15 and σ = 0.005 S/m.

Card Type 6. System parameters. On this card one can specify the
parameters that define the system under study and how that system is to
be deployed. The digit P defines the polarization: 0 for horizontal and 1
for vertical polarization. The two digits S give the siting criterion codes,
first for terminal 1 and then for terminal 2; values: 0 for random siting,
1 for careful siting, and 2 for very careful siting. Since these three digits
can have the value 0, they must always be explicitly defined. Some relief,
however, is offered by the “no read” digit N. If N=1 then none of the three
digits PSS will be read. In any other case all three will be read and used.
The frequency fMHz is measured in megahertz and is the value of the carrier
frequency. And the heights hg1, hg2, measured in meters, are the heights
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above ground of the antennas at the two corresponding terminals. If there is
a question, it is the so-called center of radiation of the antenna that should
be used. The default values use vertical polarization (P=1), random siting
(S=0) at both terminals, a frequency of 100 MHz, and antenna heights of 3
m at both terminals. The latter, of course, are not meant to be useful but
only to assure that there is no such thing as an undefined parameter.

Card Type 7. An alternative to card types 5 and 6. This card may be
used to introduce most system and environmental parameters at once. The
variables have the same meaning and the same input conventions described
above. Note that it is the actual surface refractivity Ns that is used here;
and recall that ∆h should always be defined and that if the digit N is not 1
then all three digits PSS should be defined.

Card Type 8. Execute. When this card is read, the program imme-
diately makes its computations using the data that have been previously
defined. This is an alternative to setting the execute digit on the preceding
card.

Card Type 9. Reset. When this card is read, the program will reset all
parameters to their default values. Any following inI)ut cards may proceed
on the assumption that they are effectively the first cards in the job run.

Installation. The program is written in Fortran and conforms to the
1966 ANSI standards. We think it is also compatible with the 1977 ANSI
standards. Thus on most modern computers it should be operable with very
few modifications. The few changes that might be necessary are listed below.

1. Some compilers require a PROGRAM card as the first card of the main
program. When this is so, a suitable version of such a card should
replace the first comment card which now reads “PROGRAM QKAREA”.

2. The input and output files are identified through the two variables KIN
and KOT. These in turn are assigned fixed values in a DATA statement
near the beginning of the main program. Presently, the values are 5
and 6, respectively. When other values are necessary or desired, one
should replace that DATA statement with a suitable alternative.

3. The only use of Hollerith characters, aside from Hollerith constants
within FORMAT statements, is in the reading and writing of the title
cards. Presently, this is done with a 15A4 format which will work
adequately on many computers. When it is necessary or desirable to
make adjustments here, one should change the FORMAT statements 1001
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and 2011 and also the length of the array ITL where the title card is
stored.

4. The only non-trivial use of the printer control character is for position-
ing the printer page at the beginning of a page of output. When it is
necessary to delete this use, one should replace FORMAT statement 2001
with a suitable alternative.

5. With one exception the output lines never exceed 65 characters. The
exception is the actual table of computed quantiles of basic transmission
loss. The lines there can, if completely filled, occupy as many as 77
characters. When this is too long, one should merely refrain from
requesting the full seven different quantiles.

We should also mention the common block /SAVE/. A few of the subpro-
grams are entered several times and expect some of their local variables to
have retained the values previously defined. The use of the common block
to store such values will, since the block is also present in the main program,
assure that the values are retained. Many Fortran processors, however, do
always retain the values of local variables. When this is so, the common block
/SAVE/ may be deleted wherever it appears without affecting any results. In
1977 ANSI Fortran a suitably phrased SAVE directive would be preferable.

The Longley-Rice model has been successfully installed on fairly small
minicomputers. For such computers that do not use the full Standard For-
tran, however, the present implementation will probably require considerable
modification. The areas where it violates the Standard Basic Fortran, and
therefore where one might encounter difficulties, include the following: (i)
symbolic names of six characters, (ii) logical variables and logical IF state-
ments, (iii) complex variables and some complex arithmetic, (iv) FUNCTION
subprograms that redefine entities in common, (v) array dec1arators in COMMON
statements, (vi) labeled common blocks, (vii) DATA statements, and (viii) the
“A” format descriptor.

In general, the program should be operable and results satisfactorily ac-
curate on any computer with floating point numbers having at least six sig-
nificant decimal figures and a range at least as large as 10±35.
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C PROGRAM QKAREA

C *QUICK AREA*

C TO ILLUSTRATE THE USE OF THE LONGLEY-RICE MODEL

C IN THE AREA PREDICTION MODE

C

C INPUT IS IN 10-COL FIELDS, THE FIRST OF WHICH IS

C A SEQUENCE OF DIGITS

C IN PARTICULAR,

C COL 1 IS THE *EXECUTE* COLUMN--A NON-ZERO DIGIT

C WILL FORCE OUTPUT

C COL 2 INDICATES THE CARD TYPE--

C

C COL

C 12 11,...

C STOP- X0 (OR A BLANK CARD)

C TITLE- X1 (NEXT CARD HAS 60-COL TITLE)

C DISTANCES- X2 D0,D1,DS1,D2,DS2

C RELIABILITY- X3V QT,QL

C CONFIDENCE- X4 QC1,QC2,...

C ENVIRONMENT- X5C DH,N0,ZS,EPS,SGM

C SYSTEM- X6NPSS FMHZ,HG1,HG2

C (ALTERNATE) X7NPSS FMHZ,HG1,HG2,DH,NS,EPS,SGM

C EXECUTE- X8

C RESET- X9

C

COMMON/PROP/KWX,AREF,MDP,DIST,HG(2),WN,DH,ENS,GME,ZGND,

X HE(2),DL(2),THE(2)

COMPLEX ZGND

COMMON/PROPV/LVAR,SGC,MDVAR,KLIM

C

COMMON/PROPA/DLSA,DX,AEL,AK1,AK2,AED,EMD,AES,EMS,DLS(2),DLA,THA

COMMON/SAVE/SAVE(50)

C

DIMENSION JIN(6),XIN(7)

DIMENSION ITL(15)

DIMENSION KST(2)

DIMENSION QC(7),ZC(7),XLB(7)
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C

LOGICAL WQIT,WCON,WTL

C

C THE I/O UNITS ARE.DEFINED HERE

DATA KIN,KOT/5,6/

C

DATA GMA/157E-9/

C

DATA DB/8.685890/

DATA AKM/1000./

C

WQIT=.FALSE.

WCON=.TRUE.

GO TO 190

C

10 CONTINUE

C READ INPUT SEQUENCE

C

1000 FORMAT(6I1,4X,7F10.0)

1001 FORMAT(15A4)

C

JIN(1)=0

JIN(2)=0

READ(KIN,1000) JIN,XIN

WCON=JIN(1) .EQ. 0

JQ=JIN(2)

IF(JQ .NE. 0)

X GO TO (110,120,130,140,150,160,170,180,190),JQ

C

WQIT=.TRUE.

GO TO 20

110 CONTINUE

READ(KIN,1001) ITL

WTL=.TRUE.

GO TO 20

120 CONTINUE

XIN(1)=DIM(XIN(1),0.)

Q=XIN(2)-XIN(1)
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IF(Q .GT. 0.) GO TO 121

IF(XIN(1) .EQ. 0.) GO TO 128

D0=XIN(1)

DS=0.

DSC=0.

ND=1

NDC=0

GO TO 128

121 IF(XIN(3) .LE. 0.) XIN(3)=AMAX1(1.,AINT(Q/20.+0.5))

IF(XIN(1) .LE. 0.) XIN(1)=XIN(3)

D0=XIN(1)

DS=XIN(3)

DSC=DS

ND=DIM(XIN(2),XIN(1))/DS+1.75

NDC=0

IF(XIN(4) .LE. XIN(2)) GO TO 128

IF(XIN(5) .LE. 0.) XIN(5)=5.*XIN(3)

DSC=XIN(5)

JQ=(XIN(4)-XIN(2))/DSC+0.75

NDC=ND

ND=ND+JQ

128 GO TO 20

130 CONTINUE

MDVAR=MIN0(JIN(3),3)

LVAR=MAX0(LVAR,4)

QT=50.

QL=50.

ZT=0.

ZL=0.

IF(XIN(1) .LE. 0.) GO TO 131

QT=XIN(1)

ZT=QERFI(QT/100.)

131 IF(XIN(2) .LE. 0.) GO TO 138

QL=XIN(2)

ZL=QERFI(QL/100.)

138 GO TO 20

140 CONTINUE

NC=0
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DO 141 JC=1,7

IF(XIN(JC) .LE. 0.) GO TO 141

NC=NC+1

QC(NC)=XIN(JC)

ZC(NC)=QERFI(QC(NC)/100.)

141 CONTINUE

IF(NC .GT. 0) GO TO 148

NC=1

QC(1)=50.

ZC(1)=0.

148 GO TO 20

150 CONTINUE

IF(JIN(3) .LE. 0) GO TO 151

KLIM=JIN(3)

LVAR=5

151 IF(XIN(1) .GE. 0.) DH=XIN(1)

IF(XIN(2) .LE. 0.) GO TO 152

EN0=XIN(2)

ZSYS=XIN(3)

152 IF(XIN(4) .LE. 0.) GO TO 158

EPS=XIN(4)

SGM=XIN(5)

158 GO TO 20

160 CONTINUE

IF(JIN(3) .EQ. 1) GO TO 161

IPOL=MIN0(JIN(4),1)

KST(1)=MIN0(JIN(5),2)

KST(2)=MIN0(JIN(6),2)

161 IF(XIN(1) .GT. 0.) FMHZ=XIN(1)

IF(XIN(2) .GT. 0.) HG(1)=XIN(2)

IF(XIN(3) .GT. 0.) HG(2)=XIN(3)

GO TO 20

170 CONTINUE

IF(JIN(3) .EQ. 1) GO TO 171

IPOL=MIN0(JIN(4),1)

KST(1)=MIN0(JIN(5),2)

KST(2)=MIN0(JIN(6),2)

171 IF(XIN(1) .GT. 0.) FMHZ=XIN(1)
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IF(XIN(2) .GT. 0.) HG(1)=XIN(2)

IF(XIN(3) .GT. 0.) HG(2)=XIN(3)

IF(XIN(4) .GE. 0.) DH=XIN(4)

IF(XIN(5) .LE. 0.) GO TO 172

EN0=XIN(5)

ZSYS=0.

172 IF(XIN(6) .LE. 0.) GO TO 178

EPS=XIN(6)

SGM=XIN(7)

178 GO TO 20

180 CONTINUE

WCON=.FALSE.

GO TO 20

190 CONTINUE

FMHZ=100.

HG(1)=3.

HG(2)=3.

DH=90.

EN0=301.

ZSYS=0.

EPS=15.

SGM=0.005

IPOL=1

KST(1)=0

KST(2)=0

KLIM=5

MDVAR=3

LVAR=5

NC=3

QC(1)=50.

QC(2)=90.

QC(3)=10.

QT=50.

QL=50.

ZC(1)=0.

ZC(2)=-1.28155

ZC(3)= 1.28155

ZT=0.
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ZL=0.

D0=10.

DS=10.

DSC=50.

ND=22

NDC=15

WTL=.FALSE.

C

20 CONTINUE

IF(WCON) GO TO 30

C

C EXECUTION

C

KWX=0

CALL QLRPS(FMHZ,ZSYS,EN0,IPOL,EPS,SGM)

CALL QLRA(KST,-1,-1)

C

C WRITE HEADING

2001 FORMAT(1H1/1H0)

2002 FORMAT(1H )

2010 FORMAT(3X,

.62HAREA PREDICTIONS FROM THE LONGLEY-RICE MODEL, VERSION 1.2.1 )

2011 FORMAT(3X,15A4)

2015 FORMAT(12X,9HFREQUENCY,F12.0,4H MHZ)

2016 FORMAT(6X,15HANTENNA HEIGHTS,2F8.1,2H M)

2017 FORMAT(4X,17HEFFECTIVE HEIGHTS,2F8.1,

. 12H M (SITING=,I1,1H,,I1,1H))

2018 FORMAT(5X,16HTERRAIN, DELTA H,F12.0,2H M)

C

WRITE(KOT,2001)

IF(WTL) GO TO 211

WRITE(KOT,2010)

GO TO 212

211 WRITE(KOT,2011) ITL

212 WRITE(KOT,2002)

WRITE(KOT,2002)

WRITE(KOT,2015) FMHZ

WRITE(KOT,2016) HG
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WRITE(KOT,2017) HE,KST

WRITE(KOT,2018) DH

WRITE(KOT,2002)

C

2021 FORMAT(3X,4HPOL=,I1,6H, EPS=,F3.0,6H, SGM=,F6.3,4H S/M)

2022 FORMAT(3X,5HCLIM=,I1,5H, N0=,F4.0,5H, NS=,F4.0,4H, K=,F6.3)

C

Q=GMA/GME

WRITE(KOT,2021) IPOL,EPS,SGM

WRITE(KOT,2022) KLIM,EN0,ENS,Q

WRITE(KOT,2002)

C

2030 FORMAT(3X,22HSINGLE-MESSAGE SERVICE)

2031 FORMAT(3X,18HACCIDENTAL SERVICE/

. 8X,F5.1,27H PER CENT TIME AVAILABILITY)

2032 FORMAT(3X,14HMOBILE SERVICE/

. 8X,21HREQUIRED RELIABILITY-,F5.1,9H PER CENT)

2033 FORMAT(3X,17HBROADCAST SERVICE/

. 8X,21HREQUIRED RELIABILITY-,F5.1,14H PER CENT TIME/

. 29X,F5.1,19H PER CENT LOCATIONS)

C

IF(MDVAR .NE. 0)

X GO TO (231,232,233),MDVAR

C

WRITE(KOT,2030)

GO TO 238

231 WRITE(KOT,2031) QT

GO TO 238

232 WRITE(KOT,2032) QT

GO TO 238

233 WRITE(KOT,2033) QT,QL

238 WRITE(KOT,2002)

C

2040 FORMAT(3X,

.62HESTIMATED QUANTILES OF BASIC TRANSMISSION LOSS(DB) )

2041 FORMAT(7X, 4HDIST, 5X , 4HFREE,4X, 15HWITH CONFIDENCE/

. 8X,2HKM,5X,6HSPACE ,7F8.1)

2045 FORMAT(2X,3F9.1,6F8.1)
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C

C COMPUTE AND PRINT VALUES

WRITE(KOT,2040)

WRITE(KOT,2002)

WRITE(KOT,2041) (QC(JC),JC=1,NC)

WRITE(KOT,2002)

DT=DS

D=D0

DO 240 JD=1,ND

LVAR=MAX0(1,LVAR)

CALL LRPROP(D*AKM)

FS=DB*ALOG(2.*WN*DIST)

DO 241 JC=1,NC

241 XLB(JC)=FS+AVAR(ZT,ZL,ZC(JC))

WRITE(KOT,2045) D,FS,(XLB(JC),JC=1,NC)

IF(JD .EQ. NDC) DT=DSC

D=D+DT

240 CONTINUE

C

2081 FORMAT(3X,

.62H**WARNING- SOME PARAMETERS ARE NEARLY OUT OF RANGE. /

. 3X,

.62H RESULTS SHOULD BE USED WITH CAUTION. )

2082 FORMAT(3X,

.62H**NOTE- DEFAULT PARAMETERS HAVE BEEN SUBSTITUTED /

. 3X,

.62H FOR IMPOSSIBLE ONES. )

2083 FORMAT(3X,

.62H**WARNING- A COMBINATION OF PARAMETERS IS OUT OF RANGE. /

. 3X,

.62H RESULTS ARE PROBABLY INVALID. )

2084 FORMAT(3X,

.62H**WARNING- SOME PARAMETERS ARE OUT OF RANGE. /

. 3X,

.62H RESULTS ARE PROBABLY INVALID. )

C

IF(KWX .EQ. 0) GO TO 28

C
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C PRINT ERROR MESSAGES

WRITE(KOT,2002)

GO TO (281,282,283,284),KWX

281 WRITE(KOT,2081)

GO TO 28

282 WRITE(KOT,2082)

GO TO 28

283 WRITE(KOT,2083)

GO TO 28

284 WRITE(KOT,2084)

28 CONTINUE

C

30 CONTINUE

IF(.NOT. WQIT) GO TO 10

C

STOP

END
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