This table documents apparent plagiarism in:

Warda, J, and M. Han. 2008. Mitochondria, the missing link between body and soul: Proteomic prospective evidence. Proteomics, Epub ahead of print.

Passages from Warda and Han are shown on the left, and passages from these sources are shown on the right:

Butterfield, D.A., M. Perluigi, and R. Sultana. 2006. Oxidative stress in Alzheimer's disease brain: New insights from redox proteomics. European Journal of Pharmacology 545: 39-50.

Reddy, P.H. 2006. Mitochondrial oxidative damage in aging and Alzheimer's disease: implications for mitochondrially targeted antioxidant therapeutics. 2006. Journal of Biomedicine and Biotechnology, article 31372

John, G.B., Y. Shang, L. Li, C. Renken, C. A. Mannella, J. M.L. Selker, L. Rangell, M. J. Bennett, and J. Zha. 2005. The mitochondrial inner membrane protein mitofilin D controls cristae morphology. Molecular Biology of the Cell 16: 1543-1554.

McDonald, T., S. Sheng, B. Stanley, D. Chen, Y. Ko, R. N. Cole, P. Pedersen, and J. E. Van Eyk. 2006. Expanding the subproteome of the inner mitochondria using protein separation technologies: One- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Molecular and Cellular Proteomics 5:2392-2411

Mitochondrial Research and Innovation Group, University of Rochester Medical Center: http://www.urmc.edu/mrig/

Finck, B.N., and D.P. Kelly. 2007. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115: 2540-2548.

Modica-Napolitano, J.S., and K.K. Singh. 2004. Mitochondrial dysfunction in cancer. Mitochondrion 4: 755-762.

In the comment thread at

http://scienceblogs.com/pharyngula/2008/02/a_baffling_failure_of_peer_rev.php, commenter "Sili" first suggested that the style of the Warda and Han paper suggested it might be plagiarized; Ian York ("Ian") first noticed plagiarism of McDonald et al.; "RobertC" first noticed plagiarism of John et al.; and Lars Juhl Jensen first noticed the plagiarism of Finck and Kelly and the MRIG web page.

John H. McDonald Department of Biological Sciences University of Delaware mcdonald@udel.edu February 10, 2008

Warda and Han 2008	Butterfield et al. 2006
Oxidative stress is caused by an imbalance	Oxidative stress is caused by an imbalance
between the pro-oxidant and antioxidant	in the prooxidant and antioxidant
systems, which may cause	systems. Oxidative stress may cause
reversible and/or irreversible modifications on	reversible and/or irreversible modifications on
sensitive proteins leading to structural,	sensitive proteins leading to structural,
functional, and stability modulations.	functional and stability modulations.
Oxidative damage of proteins is one of the	Oxidative damage of proteins is one of the
modifications leading to a severe failure of	modifications leading to a severe failure of
biological functions and cell death.	biological functions and cell death.
Mitochondrial-born free radicals may directly	Free radicals may directly
oxidize amino acid residue sidechains	oxidize amino acid residue side-chains
(mostly histidine, arginine, and lysine	(mostly hystidine, arginine and lysine
residues) or cause damage of proteins	residues) and also lead to damage of proteins
by an adduction of products of glycoxidation	by an adduction of products of glycoxidation
and/or lipid peroxidation.	and/or lipid peroxidation.
Protein modifications such as carbonylation,	Protein modifications such as carbonylation,
nitration, and protein-protein cross-linking are	nitration, and protein-protein cross-linking are
generally associated with loss of function and	generally associated with loss of function and
may lead to either the unfolding and	may lead to either the unfolding and
degradation of the damaged proteins or	degradation of the damaged proteins or
aggregation leading to accumulation as	aggregation leading to accumulation as
cytoplasmic inclusions, as observed in	cytoplasmic inclusions, as observed in
agerelated neurodegenerative disorders.	age-related neurodegenerative disorders
Therefore, accumulation of oxidatively	Therefore, accumulation of oxidatively
modified proteins disrupts cellular functions	modified proteins disrupts cellular functions
either by a loss of catalytic ability or by an	either by a loss of catalitic ability or by an
interruption of regulatory pathways	interruption of regulatory pathways
In addition to a variety of new approaches,	In addition to a variety of new approaches,
proteomics still relies heavily on 2-DE as the	proteomics still relies heavily on
	twodimensional electrophoresis as the
underlying separation technology. This	underlying separation technology. This technique uses the power of both
technique uses the power of both IEF and	isoelectric focusing and
SDS-PAGE	sodium dodecyl sulfate-polyacrylamide gel
SDS-IAOL	electrophoresis (SDS-PAGE)
to separate proteins firstly by their pI	to separate proteins firstly by their isoelectric
and then by their relative mobility.	point and then by their relative mobility
The expression profile, on the other hand, can	Alternatively, expression profiling can also be
be traced	obtained
by labeling a mixture of two samples with	by labeling a mixture of two samples with
different isotopes that bind to specific amino	different isotopes that bind to specific amino
acid side-chains. The resulting isotopic	acid side-chains. The resulting isotopic
labeled sample is further analyzed by MS.	labeling is further analyzed by a mass
	spectrometer.
This technique is referred to as isotopically	1
1 1 2	1 1 2
This technique is referred to as isotopically coded affinity tags (ICAT)	This technique is referred as isotopically coded affinity tags (ICAT)

The gel-separated proteins are digested into peptides by specific proteases, and an eluted peptide mixture is acquired. Database search programs can create theoretical PMFs for all the proteins in the database, and compare them with those obtained experimentally. ESI yields partial amino acid sequences from the peptides (sequence tags). Database searches are then performed using both molecular weight and sequence information. PMF is usually obtained with MALDI-TOF, and sequence tags by nano-ESI MS/MS.

The sensitivity of protein identification by MS is in the femtomole range. The identification of a protein from its peptide sequence derived from the mass spectrum has been facilitated by the development of proteomics databases. The first major protein database was Swiss-Prot. which allows protein identification by using online freely accessible computer algorithms. These search engines provide a theoretical protease digestion of the proteins contained in the database. Comparison of the resulting theoretical peptide masses to the experimental masses obtained from the in-gel digested proteins leads to protein identification. Several factors have to be considered to obtain correct protein identification, such as the protein size and the probability of a single peptide occurring in the whole database. The search engines produce a probability score for each entry, which is calculated by a mathematical algorithm specific for each search engine. Any hit with a score higher than that of statistical significance from the search engine is considered statistically significant and has an excellent chance of being the protein cut from a given spot. In addition, the molecular weight and the pI of the protein are calculated based on the position in the 2-D map to avoid any false identification.

First,

the gel-separated proteins are digested into peptides by specific proteases, and an eluted peptide mixture is acquired. Database search programs can create theoretical PMFs for all the proteins in the database, and compare them to those obtained experimentally. ESI yields partial amino acid sequences from the peptides (sequence tags). Database searches are then performed using both molecular weight and sequence information. PMF is usually obtained with MALDI-TOF, and sequence tags by nano-ESI tandem mass spectrometry (MS/MS). The sensitivity of protein identification by MS is in the femtomole range. The identification of a protein from its peptide sequence derived from the mass spectrum has been facilitated

by the development of proteomics databases. The first major protein database was Swiss-Prot, which allows protein identification by using

computer algorithms freely accessible online. These search engines provide a theoretical protease digestion of the proteins contained in the database. Comparison of the resulting theoretical peptide masses to the experimental masses obtained from the ingel digested proteins leads to protein identification. Several factors have to be considered to obtain correct protein identification, such as the protein size and the probability of a single peptide to occur in the whole database. The search engines produce a probability score for each entry, which is calculated by a mathematical algorithm that is specific for each search engine. Any hit with a score higher then that for statistical significance from the search engine is considered statistically significant and has an excellent chance to be the protein cut from a given spot. In addition, the molecular weight and the pI of the protein are calculated based on the position in the 2-dimensional map to avoid any false identification.

Warda and Han 2008	Reddy 2006
ROS generation has been shown to increase in	The generation of free radicals can occur via
mitochondria under conditions of excess electrons (e.g., increased caloric intake) or as	
a result of	
several cellular insults, including ultraviolet	several cellular insults, including ultraviolet
irradiation, redox-cycling of quinones, the	irradiation, redox-cycling of quinones, the
metabolism of xenobiotics, aging,	metabolism of xenobiotics, aging,
environmental mitochondrial toxins, and	environmental mitochondrial toxins, and
mutant toxic proteins (e.g., Ab in AD,	mutant toxic proteins (eg, A[beta] in AD,
mutant huntingtin in Huntington's disease,	mutant huntingtin in Huntington's disease,
alpha-synuclein in PD, mutant	alpha-synuclein in Parkinson's disease, mutant
SOD1 in amyotrophic lateral sclerosis)	SOD1 in amyotrophic lateral sclerosis)
The chronic exposure of ROS to cells can	The chronic exposure of ROS to cells can
result in oxidative damage to mitochondrial	result in oxidative damage to mitochondrial
and cellular proteins, lipids, and nucleic acids,	and cellular proteins, lipids, and nucleic acids,
and acute exposure to ROS can inactivate the	and acute exposure to ROS can inactivate the
TCA cycle aconitase and the iron-sulfur	TCA-cycle aconitase and the iron-sulfur
centers of ETC at complexes 1, 2, and 3,	centers of ETC at complexes 1, 2, and 3,
resulting in a shutdown of mitochondrial	resulting in a shutdown of mitochondrial
energy production	energy production.
Compared to other organs, the brain has been	Compared to other organs, the brain has been
found to be more vulnerable to oxidative	found to be more vulnerable to oxidative
stress due to its high lipid content, with more	stress due to its high lipid content, its
liability to lipid in a	relatively high any and matchelian and its
relatively high-oxygen metabolic environment, and	relatively high oxygen metabolism, and its
low level of antioxidant defenses	low level of antioxidant defenses
Soluble or insoluble forms of Ab have	Soluble or insoluble forms of A[beta] have
been suggested to impair ATP production by	been suggested to impair ATP production by
generating defects in mitochondrial energy	generating defects in mitochondrial energy
metabolism and oxidative stress, which	metabolism and oxidative stress. Taken
	together, these results
suggests that oxidative stress is a key event in	suggest that oxidative stress is a key event in
AD pathogenesis and other kinds of dementia.	AD pathogenesis.

However, until recently, a major limitation in	However, until recently, a major limitation in
developing antioxidant therapies	developing antioxidant therapies for AD
	patients
has been the inability to enhance antioxidant	has been the inability to enhance antioxidant
levels in mitochondria. Consequently, new	levels in mitochondria.
versions of	There has been a breakthrough in the
	mitochondrial targeting of antioxidants.
mitochondria-targeted antioxidants have been	Mitochondrially targeted antioxidants have
developed, which preferentially enter the	been developed, which preferentially enter the
mitochondria at several hundred-fold more	mitochondriaat several hundred-fold more
than natural antioxidants where	than they enter natural antioxidantswhere
they rapidly neutralize free radicals and	they rapidly neutralize free radicals and
decrease mitochondrial toxicity. To make a	decrease mitochondrial toxicity. However,
breakthrough, however,	decrease mitochondinal toxicity. However,
further research is needed to determine	further research is needed to determine
whether these mitochondria-targeted	whether these mitochondrially targeted
antioxidants can be used in mouse models of	antioxidants can be used in mouse models of
aging and in age-related neurodegenerative	aging and in age-related neurodegenerative
diseases such as AD, PD,	diseases such as Alzheimer's, Parkinson's,
	and Huntington's.
and Huntington's disease	<u> </u>
Warda and Han 2008	John et al. 2005
Although the molecular basis of cristae	Although the molecular basis for cristae
morphogenesis is not completely understood,	morphogenesis is still unknown,
there is increasing evidence that the	there is increasing evidence that the
mitochondrial fission and fusion machinery	mitochondrial fission and fusion machinery
plays an important role in this process.	plays an important role in this process.
OPA1/Mgm1, a large dynamin-like GTPase,	OPA1/Mgm1, a large dynamin-like GTPase,
is located in the intermembrane space, where	is located in the intermembrane space, the
its down-regulation results in altered cristae	same submitochondrial compartment where
architecture and dissipation of the	mitofilin resides.
mitochondrial membrane potential structure	

Logically, there is a connection between the	Comparative proteomic analysis of the
disrupted mitochondrial morphology and the	cerebral cortex of a seizuresensitive strain of
progression of neurodegenerative diseases,	gerbil and its seizure-resistant (SR)
since	counterpart revealed that gerbil mitofilin
comparative proteomic analysis of the	showed consistent differences in their
cerebral cortex of a seizure-sensitive strain of	isoelectric point between the two strains
gerbil and its seizure-resistant	(Omori et al., 2002). Sequence analysis of
counterpart revealed a marked difference in	mitofilin cDNAs showed several mutations in
the pI of mitofilin between the two strains .	the SR strains, including one that resides
	within a conserved region immediately
Another supportive study on cortical brain	carboxyl terminal of the membrane-anchoring
samples of fetal Down syndrome showed a	domain. A recent study in cortical brain
double-fold reduction of mitofilin,	samples of fetal Down syndrome showed a
highlighting its contribution as a	double-fold reduction of mitofilin,
mitochondrial protein in the development of	highlighting its importance for normal
this syndrome	mitochondrial function (Myung et al., 2003).
Warda and Han 2008	McDonald et al. 2006
Nevertheless, due to the large number of unique protein species along with the difference in their relative abundance, there is no single proteomics technology yet that has the full analytical capacity or sensitivity to realize the goal of complete mitochondrial proteome coverage.	Due to the large number of unique protein species produced coupled with differences in their relative abundance, there is as of yet no single proteomics technology that has the analytical capacity or sensitivity to realize the goal of complete proteome coverage.
The 2-DLC technique traditionally couples a	2-DLC traditionally couples a
charge-based method (e.g., IEF	chargebased method (e.g. isoelectric focusing
or strong cation exchange) as a first	or strong cation exchange) as a first
dimension with RP-HPLC as the second	dimension with RP-HPLC as the second
dimension, thereby increasing the extent of	dimension thereby increasing the extent of
protein fractionation compared with 1-DLC.	protein fractionation compared with 1-DLC.

Although intact mitochondria have been	Although intact mitochondria have been
studied using different proteomics	studied using different proteomics
technologies and the isolation protocol is well	technologies,
established	
the obtained data comprise only part of the	these databases comprise only part of the
estimated 697-4532 total mitochondrial	estimated 697- 4532 total mitochondrial
proteins. However, because these estimations	proteins. However, because these estimations
can have a false discovery rate of up to 68%,	can have a false discovery rate of up to 68%,
the absolute number of mitochondrial proteins	the absolute number of mitochondrial proteins
is not currently known. A problem with the	is not currently known. A problem with the
existing mitochondrial databases derived from	existing mitochondrial databases derived from
proteomics analysis is the bias toward	proteomics analysis has been the bias toward
proteins localized to the matrix and outer	proteins localized to the matrix and outer
membrane and the lack of IMM-associated	membrane and the lack of IMM-associated
proteins. To increase the coverage of the IMM	proteins. To increase the coverage of the IMM
subproteome, McDonald et al. used an	subproteome, Da Cruz et al. used an enriched
enriched IMM preparation and demonstrated	IMM preparation and demonstrated that there
that there are novel proteins within this	are novel proteins within this subproteome.
subproteome. Using the same well	Using the same well characterized IMM
characterized IMM preparation tested, there	preparation we tested the hypothesis that there
was	would be
minimal overlapping of observed proteins	a minimal overlap of observed proteins when
when using three different separation	using three different separation technologies
technologies (2-DE, 1-DLC, and 2-DLC),	(2-DE, 1-DLC, and 2-DLC)
thereby expanding proteome coverage.	thereby expanding proteome coverage.

Currently the database of McDonald and coworkers	Our database
contains 286 proteins	contains 286 proteins (82% of combined
not in the former database and 134	database) not in this database and 134 proteins
proteins not observed in any of these	not observed in any of these extensive
extensive databases.	databases (39% of the combined protein database).
This difference is likely due to both the	This difference is likely due to both the
enrichment of the IMM proteins prior to	enrichment of the IMM proteins prior to
analysis and the increased resolving power of	analysis and the increased resolving power of
separating proteins based on a variety of	separating proteins based on a variety of
physical characteristics. The majority of these	physical characteristics. The majority of these
proteins were observed only using 1-DLC,	proteins were observed only using 1-DLC (96
	proteins; 72%)
suggesting the promising use of this method	suggesting that this is a useful technology to
	use
for the future discovery of novel proteins in a	for the discovery of novel proteins in a
subproteome.	subproteome.

Warda and Han	Finck and Kelly
Emerging evidence	However, emerging evidence, including
	observations of the phenotypic expression of
	genetic defects in humans and animal models,
supports the notion that derangements in	supports the notion that derangements in
mitochondrial energy metabolism contribute	mitochondrial energy metabolism contribute
to cardiac dysfunction. For example, human	to cardiac dysfunction. For example, human
mitochondrial DNA mutations resulting in	mitochondrial DNA mutations resulting in
global impairment in mitochondrial	global impairment in mitochondrial
respiratory function cause hypertrophic or	respiratory function cause hypertrophic or
dilated cardiomyopathy and cardiac	dilated cardiomyopathy and cardiac
conduction defects. Mutations in nuclear	conduction defects. Mutations in nuclear
genes encoding mitochondrial fatty acid	genes encoding mitochondrial fatty acid
oxidation enzymes may also manifest as	oxydation enzymes may also manifest as
cardiomyopathy. Interestingly,	cardiomyopathy. Interestingly,
cardiomyopathies resulting from inborn errors	cardiomyopathies resulting from inborn errors
in mitochondrial fatty acid oxidation enzymes	in mitochondrial fatty acid oxydation enzymes
are often provoked by physiological or	are often provoked by physiological or
pathophysiological conditions that increase	pathophysiological conditions that increase
dependence on fat oxidation for myocardial	dependence on fat oxidation for myocardial
ATP production such as prolonged exercise or	ATP production such as prolonged exercise or
fasting associated with infectious illness. A	fasting associated with infectious illness. A
causal relationship between mitochondrial	causal relationship between mitochondrial
dysfunction and cardiomyopathy is also	dysfunction and cardiomyopathy also is
evidenced by several genetically engineered	evidenced by several genetically engineered
mouse models. Targeted deletion of the	mouse models. Targeted deletion of the
adenine nucleotide translocator 1, which	adenine nucleotide translocator 1, which
transports mitochondrially generated ATP to	transports mitochondrially generated ATP to
the cytosol, leads to mitochondrial	the cytosol, leads to mitochondrial
dysfunction and cardiomyopathy. Mice with	dysfunction and cardiomyopathy. Mice with
cardiac-specific deletion of the transcription	cardiac-specific deletion of transcription
factor of activated mitochondria, which	factor of activated mitochondria, which
controls transcription and replication of the	controls transcription and replication of the
mitochondrial genome, also exhibit marked	mitochondrial genome, also exhibit marked
impairments in mitochondrial metabolism,	impairments in mitochondrial metabolism,
severe cardiomyopathy, and premature mortality. Cardiomyopathy and/or conduction	severe cardiomyopathy, and premature mortality. Cardiomyopathy and/or conduction
defects are also observed in several mouse	defects also are observed in several mouse
models with targeted deletion of specific fatty	models with targeted deletion of specific FAO
acid oxidation enzymes.	enzymes.
Warda and Han	MRIG
Mitochondria are the gatekeepers of the life	Mitochondria are the gatekeepers of the life
and death of most cells in the body and	and death of most cells that
regulate signaling, metabolism, and energy	regulate signaling, metabolism, and energy
production needed for cellular function.	production needed for cellular function.

Recent scientific studies show that mitochondrial dysfunction is more commonplace for the development of many pathological events	Recent scientific studies show that mitochondrial dysfunction is more commonplace
than previously thought.	than previously thought and that substantial mitochondrial involvement is present in many acute and chronic diseases.
Mitochondrial dysfunction is now implicated in a wide range of human diseases, including aging, diabetes, atherosclerosis, heart failure, myocardial infarction, stroke and other ischemic- reperfusion injuries, neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD), cancer, HIV, sepsis, and trauma with multiorgan dysfunction or failure. Some rare mitochondrial diseases (e.g., MELAS, Kearns-Sayre) are associated with an altered mitochondrial genome and/or proteome. Mitochondrial abnormality is generally	Mitochondrial dysfunction is now implicated in a range of human diseases, including aging, diabetes, atherosclerosis, heart failure, myocardial infarction, stroke and other ischemic-reperfusion injuries, neurodegenerative diseases including Alzhiemer's and Parkinson's diseases; cancer, HIV; sepsis and trauma with multiorgan dysfunction or failure. Some rare mitochondria diseases (e.g., MELAS, Kearns-Sayre) are associated with large deletions in the mitochondrial genome.
prominent in sites with high-energy dependency.	
More recently, the so-called OXPHOS diseases that reflect a limited capacity to produce the energy needed to respond to normal stress conditions have been described.	More recently, the so-called OXPHOS diseases that reflect a limited capacity to produce the energy needed to respond to normal stress conditions, were associated with genetically determined deficiencies in mitochondrial energy production
Warda and Han	Modica-Napolitano et al.
With an estimated 1000 different mitochondrial proteins,	It is estimated that 1000 different proteins comprise mitochondria.
advances in proteomic technologies have made the quantitative analysis of protein expression in mitochondria possible. A mitochondrial proteomic database has	Advances in proteomic technologies have made possible the quantitative analysis of protein expression in mitochondria, and a mitochondrial proteomic database has
recently been established by the National Institutes of Standards and Technology.	recently been established by the National Institutes of Standards and Technology.
Research efforts to obtain mitochondrial protein profiles in normal and cancer cells will undoubtedly lead to identification of	Research efforts to obtain mitochondrial protein profiles in normal and cancer cells will undoubtedly lead to identification of
markers for clinical detection of cancer, and contribute to an understanding of how differential protein expression might influence the development of the disease	markers for clinical detection of cancer, and contribute to an understanding of how differential protein expression might influence the development of the disease.
av, eropinent of the aboubt	