Visual Inertial Navigation Short Tutorial

Stergios Roumeliotis

University of Minnesota

Outline

- VINS Introduction
- IMU/Camera: Models, spatial/temporal calibration
- Image Processing: Feature extraction, tracking, loop closure detection
- VIO/SLAM
 - MSCKF feature classification/processing
 - MSCKF and its (mysterious) relation to optimization methods
 - Observability and inconsistency
- Mapping
 - Offline/online, centralized/distributed approaches
 - Map-based updates and inconsistency
- Interesting Research Directions

Introduction

- Visual Inertial Navigation Systems (VINS) combine camera and IMU measurements in real time to
 - Determine 6 DOF position & orientation (pose)
 - Create 3D map of surroundings
- Applications
 - Autonomous navigation, augmented/virtual reality

• VINS advantage: IMU-camera complementary sensors -> low cost/high accuracy

IMU Model

- IMU Measurement Model
 - Gyroscope: $\boldsymbol{\omega}_m(t) = {}^{I}\boldsymbol{\omega}(t) + \mathbf{b}_g(t) + \mathbf{n}_g(t)$
 - Accelerometer: $\mathbf{a}_m(t) = \mathbf{C}({}^{I}\mathbf{q}_G(t))({}^{G}\mathbf{a}(t) {}^{G}\mathbf{g}) + \mathbf{b}_a(t) + \mathbf{n}_a(t)$
- Continuous-time System Equations

$$I \dot{\mathbf{q}}_{G}(t) = \frac{1}{2} \mathbf{\Omega} (\boldsymbol{\omega}_{m}(t) - \mathbf{b}_{g}(t) - \mathbf{n}_{g}(t))^{I} \mathbf{q}_{G}(t)$$

$$\dot{\mathbf{b}}_{g}(t) = \mathbf{n}_{wg}(t)$$

$$G \dot{\mathbf{v}}_{I}(t) = \mathbf{C}^{T} (^{I} \mathbf{q}_{G}(t)) (\mathbf{a}_{m}(t) - \mathbf{b}_{a}(t) - \mathbf{n}_{a}(t)) + ^{G} \mathbf{g}$$

$$\dot{\mathbf{b}}_{a}(t) = \mathbf{n}_{wa}(t)$$

$$G \dot{\mathbf{p}}_{I}(t) = ^{G} \mathbf{v}_{I}(t)$$

-
$$\dot{\mathbf{x}}_{I}(t) = \mathbf{f}_{c}(\mathbf{x}_{I}(t), \mathbf{u}(t) - \mathbf{n}(t))$$

 $\mathbf{x}_{I} = \begin{bmatrix} I \mathbf{q}_{G}^{T} & \mathbf{b}_{g}^{T} & {}^{G}\mathbf{v}_{I}^{T} & \mathbf{b}_{a}^{T} & {}^{G}\mathbf{p}_{I}^{T} \end{bmatrix}^{T}$
 $\mathbf{u}(t) = \begin{bmatrix} \boldsymbol{\omega}_{m}(t)^{T} & \mathbf{a}_{m}(t)^{T} \end{bmatrix}^{T}$

q: Quaternion of orientation **C** : Rotation matrix **P**: Position v : Velocity a : Linear acceleration ω : Rotational velocity \mathbf{b}_a : Accel biases \mathbf{b}_a : Gyro biases **g** : Gravity \mathbf{n}_q : Gyro meas/nt noise \mathbf{n}_a : Accel meas/nt noise \mathbf{n}_{wg} : Gyro bias process noise \mathbf{n}_{wa} : Accel bias process noise

IMU Model

- IMU Measurement Model
 - Gyroscope: $\boldsymbol{\omega}_m(t) = {}^{I}\boldsymbol{\omega}(t) + \mathbf{b}_g(t) + \mathbf{n}_g(t)$
 - Accelerometer: $\mathbf{a}_m(t) = \mathbf{C}({}^{I}\mathbf{q}_G(t))({}^{G}\mathbf{a}(t) {}^{G}\mathbf{g}) + \mathbf{b}_a(t) + \mathbf{n}_a(t)$
- Continuous-time System Equations

$$\begin{split} {}^{I}\dot{\mathbf{q}}_{G}(t) &= \frac{1}{2}\mathbf{\Omega}(\boldsymbol{\omega}_{m}(t) - \mathbf{b}_{g}(t) - \mathbf{n}_{g}(t))^{I}\mathbf{q}_{G}(t) \\ \dot{\mathbf{b}}_{g}(t) &= \mathbf{n}_{wg}(t) \\ {}^{G}\dot{\mathbf{v}}_{I}(t) &= \mathbf{C}^{T}({}^{I}\mathbf{q}_{G}(t))(\mathbf{a}_{m}(t) - \mathbf{b}_{a}(t) - \mathbf{n}_{a}(t)) + {}^{G}\mathbf{g} \\ \dot{\mathbf{b}}_{a}(t) &= \mathbf{n}_{wa}(t) \\ {}^{G}\dot{\mathbf{p}}_{I}(t) &= {}^{G}\mathbf{v}_{I}(t) \end{split}$$

$$\begin{aligned} \dot{\mathbf{x}}_{I}(t) &= \mathbf{f}_{c}(\mathbf{x}_{I}(t), \mathbf{u}(t) - \mathbf{n}(t)) \\ \mathbf{x}_{I} &= \begin{bmatrix} {}^{I}\mathbf{q}_{G}^{T} & \mathbf{b}_{g}^{T} & {}^{G}\mathbf{v}_{I}^{T} & \mathbf{b}_{a}^{T} & {}^{G}\mathbf{p}_{I}^{T} \end{bmatrix}^{T} \\ \mathbf{u}(t) &= \begin{bmatrix} \boldsymbol{\omega}_{m}(t)^{T} & \mathbf{a}_{m}(t)^{T} \end{bmatrix}^{T} \end{split}$$

• IMU Integration [1]

 $\mathbf{x}_{I_k} = \mathbf{f}_d(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k}) + \mathbf{n}_k$

$$\mathcal{C}_u(\mathbf{x}_{I_{k-1}}, \mathbf{x}_{I_k}) = \|\mathbf{x}_{I_k} - \mathbf{f}_d(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k})\|_{\mathbf{Q}_k}^2$$

- IMU Intrinsics [2]
 - Accel/gyro scale factors & skewness
 - Accel-gyro relative orientation

q: Quaternion of

P: Position

v : Velocity

g : Gravity

 \mathbf{b}_a : Accel biases \mathbf{b}_a : Gyro biases

orientation C: Rotation matrix

a : Linear acceleration

 ω : Rotational velocity

 \mathbf{n}_q : Gyro meas/nt noise

 \mathbf{n}_a : Accel meas/nt noise

 \mathbf{n}_{wg} : Gyro bias process noise

 \mathbf{n}_{wa} : Accel bias process noise

Camera Model

Camera Measurement Model

 $\mathbf{z}_i^j = \mathbf{h}(^{C_i}\mathbf{p}_{f_j}) + \mathbf{n}_i^j , \quad ^{C_i}\mathbf{p}_{f_j} = \mathbf{C}(^{C_i}\mathbf{q}_G)(^{G}\mathbf{p}_{f_j} - ^{G}\mathbf{p}_{C_i})$

Camera Model

Camera Measurement Model

 $\mathbf{z}_i^j = \mathbf{h}({}^{C_i}\mathbf{p}_{f_j}) + \mathbf{n}_i^j , \quad {}^{C_i}\mathbf{p}_{f_j} = \mathbf{C}({}^{C_i}\mathbf{q}_G)({}^{G}\mathbf{p}_{f_j} - {}^{G}\mathbf{p}_{C_i})$

- Camera Intrinsics
 - Principal point & focal length
 - Distortion parameters
 - Rolling-shutter time

Distorted image

Geometry change

Camera-IMU Model

Camera Measurement Model

 $\mathbf{z}_i^j = \mathbf{h}(^{C_i}\mathbf{p}_{f_i}) + \mathbf{n}_i^j, \quad ^{C_i}\mathbf{p}_{f_i} = \mathbf{C}(^{C_i}\mathbf{q}_G)(^{G}\mathbf{p}_{f_i} - ^{G}\mathbf{p}_{C_i})$

- **Camera Intrinsics**
 - Principal point & focal length

Camera-IMU Extrinsics

 $\int^{C} \mathbf{q}_{I}$

 $^{C}\mathbf{\bar{\bar{q}}}_{I} =$

 \mathbf{p}_{f_3}

 $\{C_k\}$

[1] F. M. Mirzaei and S. I. Roumeliotis, "A Kalman Filter-based Algorithm for IMU-Camera Calibration: Observability Analysis and Performance Evaluation," TRO'08 [2] C. Guo, D. G. Kottas, R. DuToit, A. Ahmed, R. Li, and S. I. Roumeliotis, "Efficient visual-inertial navigation using a rolling-shutter camera with inaccurate timestamps," RSS'14

- Keypoint detection
 - Harris [1], DoG, FAST [2]

[1] C. Harris and M. Stephens, "A Combined Corner and Edge Detector," Alvey Vision Conference'81
[2] R. Edward and T. Drummond, "Machine learning for high-speed corner detection," ECCV'06

- Keypoint detection
 - Harris [1], DoG, FAST [2]
- Descriptor extraction
 - SIFT_[3], SURF_[4], ORB_[5], FREAK_[6], BRISK_[7], SDC_[8]

[3] D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," IJCV'04

[4] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-up robust features (SURF)," Computer Vision and Image Understanding'08

[5] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient alternative to SIFT or SURF," ICCV'11

[6] A. Alahi, R. Ortiz, Raphael, and P. Vandergheynst, "FREAK: Fast Retina Keypoint," CVPR'12

[7] S. Leutenegger, M. Chli, and R. Siegwart, "BRISK: Binary robust invariant scalable keypoints," ICCV'11

[8] R. Schuster, O. Wasenmuller, C. Unger, and D. Stricker, "SDC – Stacked Dilated Convolution: A Unified Descriptor Network for Dense Matching," CVPR'19

- Keypoint detection
 - Harris [1], DoG, FAST [2]
- Descriptor extraction
 - SIFT_[3], SURF_[4], ORB_[5], FREAK_[6], BRISK_[7], SDC_[8]
- Feature tracking (2D-to-2D)
 - KLT [9]

- Keypoint detection
 - Harris [1], DoG, FAST [2]
- Descriptor extraction
 - SIFT_[3], SURF_[4], ORB_[5], FREAK_[6], BRISK_[7], SDC_[8]
- Feature tracking (2D-to-2D)
 - KLT [9]
 - Descriptor-to-descriptor matching

- Keypoint detection
 - Harris [1], DoG, FAST [2]
- Descriptor extraction
 - SIFT_[3], SURF_[4], ORB_[5], FREAK_[6], BRISK_[7], SDC_[8]
- Feature tracking (2D-to-2D)
 - KLT [9]
 - Descriptor-to-descriptor matching
 - Outlier rejection (RANSAC)
 - w/out gyro: 5pt RANSAC [10]

- Keypoint detection
 - Harris [1], DoG, FAST [2]
- Descriptor extraction
 - SIFT_[3], SURF_[4], ORB_[5], FREAK_[6], BRISK_[7], SDC_[8]
- Feature tracking (2D-to-2D)
 - KLT [9]
 - Descriptor-to-descriptor matching
 - Outlier rejection (RANSAC)
 - w/out gyro: 5pt RANSAC [10]
 - w/ gyro: 2pt RANSAC [11]

[10] D. Nister, "An efficient solution to the five-point relative pose problem," TPAMI'04

[11] L. Kneip, M. Chli, and R. Siegwart, "Robust real-time visual odometry with a single camera and an IMU," British Machine Vision Conference'11

- Appearance-based image matching [1]
 - Create image descriptor from feature descriptors
 - Compare image descriptors against each other

- Appearance-based image matching [1]
 - Create image descriptor from feature descriptors
 - Compare image descriptors against each other

- Appearance-based image matching [1]
 - Create image descriptor from feature descriptors
 - Compare image descriptors against each other
- Outlier rejection / Geometric verification
 - 5pt_[2] (3pt+1_[3]) RANSAC to verify 2D-2D matches
 - P3P_[4] (P2+1_[5]) RANSAC for 2D-3D matches
 - Confirm loop-closure by matching consecutive images
 - Reduces false-positives
 - Delays map-based updates

[2] D. Nister, "An efficient solution to the five-point relative pose problem," TPAMI'04

[3] O. Naroditsky, X. Zhou, S. Roumeliotis, and K. Daniilidis, "Two efficient solutions for visual odometry using directional correspondence," TPAMI'12

[4] T. Ke, S. Roumeliotis, "An Efficient Algebraic Solution to the Perspective-Three-Point Problem," CVPR'17

[5] Z. Kukelova, M. Bujnak, and T. Pajdla, "Closed-form solutions to minimal absolute pose problems with known vertical direction," ACCV'11

- Appearance-based image matching [1]
 - Create image descriptor from feature descriptors
 - Compare image descriptors against each other
- Outlier rejection / Geometric verification
 - 5pt_[2] (3pt+1_[3]) RANSAC to verify 2D-2D matches
 - P3P_[4] (P2+1_[5]) RANSAC for 2D-3D matches
 - Confirm loop-closure by matching consecutive images
 - Reduces false-positives
 - Delays map-based updates

[2] D. Nister, "An efficient solution to the five-point relative pose problem," TPAMI'04

[3] O. Naroditsky, X. Zhou, S. Roumeliotis, and K. Daniilidis, "Two efficient solutions for visual odometry using directional correspondence," TPAMI'12

[4] T. Ke, S. Roumeliotis, "An Efficient Algebraic Solution to the Perspective-Three-Point Problem," CVPR'17

[5] Z. Kukelova, M. Bujnak, and T. Pajdla, "Closed-form solutions to minimal absolute pose problems with known vertical direction," ACCV'11

• Incremental BLS optimization^[1]

$$C_N = \sum_{k=1}^N \|\mathbf{x}_{I_k} - \mathbf{f}(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k})\|_{\mathbf{Q}_k}^2 + \sum_{k=1}^N \sum_j \|\mathbf{z}_k^j - \mathbf{h}(\mathbf{x}_{I_k}, {}^G\mathbf{p}_{f_j})\|_{\sigma^2\mathbf{I}}^2$$

• Issue: Memory/CPU req.s increase w/ time

• Incremental BLS optimization^[1]

$$C_N = \sum_{k=1}^N \|\mathbf{x}_{I_k} - \mathbf{f}(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k})\|_{\mathbf{Q}_k}^2 + \sum_{k=1}^N \sum_j \|\mathbf{z}_k^j - \mathbf{h}(\mathbf{x}_{I_k}, {}^G\mathbf{p}_{f_j})\|_{\sigma^2\mathbf{I}_k}^2$$

- Issue: Memory/CPU req.s increase w/ time
- Remedy: C-KLAM_[2] consistently marginalizes keyframes/features

• Incremental BLS optimization

$$C_N = \sum_{k=1}^N \|\mathbf{x}_{I_k} - \mathbf{f}(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k})\|_{\mathbf{Q}_k}^2 + \sum_{k=1}^N \sum_j \|\mathbf{z}_k^j - \mathbf{h}(\mathbf{x}_{I_k}, {}^G\mathbf{p}_{f_j})\|_{\sigma^2\mathbf{I}}^2$$

- Issue: Memory/CPU req.s increase w/ time
- Alternative VINS approach
 - Split the problem into
 - Frontend (Localization): Fast, but drifts w/ time
 - e.g., Visual Inertial Odometry (VIO)

• Incremental BLS optimization

$$C_N = \sum_{k=1}^N \|\mathbf{x}_{I_k} - \mathbf{f}(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k})\|_{\mathbf{Q}_k}^2 + \sum_{k=1}^N \sum_j \|\mathbf{z}_k^j - \mathbf{h}(\mathbf{x}_{I_k}, {}^G\mathbf{p}_{f_j})\|_{\sigma^2\mathbf{I}}^2$$

- Issue: Memory/CPU req.s increase w/ time
- Alternative VINS approach
 - Split the problem into
 - Frontend (Localization): Fast, but drifts w/ time
 - e.g., Visual Inertial Odometry (VIO)
 - Backend (Mapping): Slow, but more accurate
 - e.g., BLS, pose graph

- Loop-closure features
- Optimization window

• Incremental BLS optimization

$$C_N = \sum_{k=1}^N \|\mathbf{x}_{I_k} - \mathbf{f}(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k})\|_{\mathbf{Q}_k}^2 + \sum_{k=1}^N \sum_j \|\mathbf{z}_k^j - \mathbf{h}(\mathbf{x}_{I_k}, {}^G\mathbf{p}_{f_j})\|_{\sigma^2\mathbf{I}}^2$$

- Issue: Memory/CPU req.s increase w/ time
- Alternative VINS approach
 - Split the problem into
 - Frontend (Localization): Fast, but drifts w/ time
 - e.g., Visual Inertial Odometry (VIO)
 - Backend (Mapping): Slow, but more accurate
 - e.g., BLS, pose graph
 - Relocalize w/ loop closures
 - Assumes keyframes of backend as perfectly known -> inconsistency
 - Estimated covariance < true covariance

• State Vector

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{I_{k}} & \mathbf{x}_{I_{k-1}} & {}^{I_{k-2}} \bar{\bar{\mathbf{q}}}_{G} \dots {}^{I_{k-N}} \bar{\bar{\mathbf{q}}}_{G} & {}^{C} \bar{\bar{\mathbf{q}}}_{I} \end{bmatrix}^{T}$$
where $\mathbf{x}_{I} = \begin{bmatrix} {}^{I} \mathbf{q}_{G}^{T} & \mathbf{b}_{g}^{T} & {}^{G} \mathbf{v}_{I}^{T} & \mathbf{b}_{a}^{T} & {}^{G} \mathbf{p}_{I}^{T} \end{bmatrix}^{T}$

$${}^{I} \bar{\bar{\mathbf{q}}}_{G} = \begin{bmatrix} {}^{I} \mathbf{q}_{G}^{T} & {}^{G} \mathbf{p}_{I}^{T} \end{bmatrix}^{T}$$

$$\mathcal{C}_{k|k-1} = \underbrace{\|\tilde{\mathbf{x}}_{k-1}\|_{\mathbf{P}_{k-1|k-1}}^2}_{Prior} + \underbrace{\|\mathbf{x}_{I_k} - \mathbf{f}(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k})\|_{\mathbf{Q}_k}^2}_{IMU}$$

 ${}^{G}\mathbf{p}_{f_{j}}$

k - N + 1

 \mathbf{z}_{k-N}^{j}

 \mathbf{z}_k^{\jmath}

$$\mathcal{C}_{k|k-1} = \underbrace{\|\tilde{\mathbf{x}}_{k-1}\|_{\mathbf{P}_{k-1|k-1}}^2}_{Prior} + \underbrace{\|\mathbf{x}_{I_k} - \mathbf{f}(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k})\|_{\mathbf{Q}_k}^2}_{IMU}$$
$$\mathcal{C}_{k|k-1} \simeq \underbrace{\|\tilde{\mathbf{x}}_k\|_{\mathbf{P}_{k|k-1}}^2}_{New\ Prior}$$

$$\mathcal{C}_{k|k-1} = \underbrace{\|\tilde{\mathbf{x}}_{k-1}\|_{\mathbf{P}_{k-1|k-1}}^2}_{Prior} + \underbrace{\|\mathbf{x}_{I_k} - \mathbf{f}(\mathbf{x}_{I_{k-1}}, \mathbf{u}_{k-1:k})\|_{\mathbf{Q}_k}^2}_{IMU}$$
$$\mathcal{C}_{k|k-1} \simeq \underbrace{\|\tilde{\mathbf{x}}_k\|_{\mathbf{P}_{k|k-1}}^2}_{New\ Prior}$$

• Step 2: Marginalize all features
$$[O(N)]$$

 $\mathcal{C}_{k|k} = \|\tilde{\mathbf{x}}_k\|_{\mathbf{P}_{k|k-1}}^2 + \sum_j \|\mathbf{z}_{k-N:k}^j - \mathbf{f}(\mathbf{x}_{k-N:k}, \mathbf{p}_{f_j})\|^2$
 $\simeq \|\tilde{\mathbf{x}}_k\|_{\mathbf{P}_{k|k-1}}^2 + \sum_j \|\tilde{\mathbf{z}}_{k-N:k}^j - (\mathbf{H}_x^j \tilde{\mathbf{x}}_{k-N:k} + \mathbf{H}_f^j \tilde{\mathbf{p}}_{f_j})\|^2$
 $= \|\tilde{\mathbf{x}}_k\|_{\mathbf{P}_{k|k-1}}^2 + \sum_j (\|\mathbf{U}_j^T \tilde{\mathbf{z}}_{k-N:k}^j - \mathbf{U}_j^T \mathbf{H}_x^j \tilde{\mathbf{x}}_{k-N:k}\|^2 + \|\mathbf{V}_j^T \tilde{\mathbf{z}}_{k-N:k}^j - (\mathbf{V}_j^T \mathbf{H}_x^j \tilde{\mathbf{x}}_{k-N:k} + \mathbf{V}_j^T \mathbf{H}_f^j \tilde{\mathbf{p}}_{f_j})\|^2)$
 $\mathcal{C}'_{k|k} = \|\tilde{\mathbf{x}}_k\|_{\mathbf{P}_{k|k-1}}^2 + \sum_j^j \|\mathbf{U}_j^T \tilde{\mathbf{z}}_{k-N:k}^j - \mathbf{U}_j^T \mathbf{H}_x^j \tilde{\mathbf{x}}_{k-N:k}\|^2 \quad \text{where } [\mathbf{V}_j \quad \mathbf{U}_j]^T [\mathbf{V}_j \quad \mathbf{U}_j] = \mathbf{I}, \ \mathbf{U}_j^T \mathbf{H}_f^j = \mathbf{0}$
 $= \|\tilde{\mathbf{x}}_k\|_{\mathbf{P}_{k|k-1}}^2 + \|\tilde{\mathbf{z}}_{k-N:k} - \mathbf{H}_x \tilde{\mathbf{x}}_{k-N:k}\|^2$

• Step 3: Update [O(M³)]

$$\mathcal{C}'_{k|k} = \|\mathbf{\tilde{x}}_k\|_{\mathbf{P}_{k|k-1}}^2 + \|\mathbf{\tilde{z}}_{k-N:k} - \mathbf{H}_x\mathbf{\tilde{x}}_{k-N:k}\|^2$$
$$= \|\mathbf{\tilde{x}}_{k-N:k}\|_{\mathbf{P}_{k-N:k}}^2$$

• Step 3: Update [O(M³)]

$$\begin{aligned} \mathcal{C}'_{k|k} &= \|\mathbf{\tilde{x}}_k\|_{\mathbf{P}_{k|k-1}}^2 + \|\mathbf{\tilde{z}}_{k-N:k} - \mathbf{H}_x \mathbf{\tilde{x}}_{k-N:k}\|^2 \\ &= \|\mathbf{\tilde{x}}_{k-N:k}\|_{\mathbf{P}_{k-N:k}}^2 \end{aligned}$$

• Step 4: Marginalize the oldest pose $I_{k-N}\bar{\mathbf{q}}_G$

$$\mathcal{C}_{k|k}' = \|\mathbf{\tilde{x}}_{k-N:k}\|_{\mathbf{P}_{k-N:k}^{\oplus}}^{2}$$
$$\mathcal{C}_{k|k}' = \|\mathbf{\tilde{x}}_{k-N+1:k}\|_{\mathbf{P}_{k-N+1:k}^{\oplus}}^{2} + \|\mathbf{L}_{1}^{I_{k-N}}\mathbf{\tilde{\bar{q}}}_{G} + \mathbf{L}_{2}\mathbf{\tilde{x}}_{k-N+1:k}\|^{2}$$

• Step 3: Update [O(M³)]

$$\begin{aligned} \mathcal{C}'_{k|k} &= \|\mathbf{\tilde{x}}_k\|_{\mathbf{P}_{k|k-1}}^2 + \|\mathbf{\tilde{z}}_{k-N:k} - \mathbf{H}_x \mathbf{\tilde{x}}_{k-N:k}\|^2 \\ &= \|\mathbf{\tilde{x}}_{k-N:k}\|_{\mathbf{P}_{k-N:k}}^2 \end{aligned}$$

• Step 4: Marginalize the oldest pose $I_{k-N}\bar{\mathbf{q}}_G$

$$\begin{aligned} \mathcal{C}'_{k|k} &= \|\mathbf{\tilde{x}}_{k-N:k}\|^{2}_{\mathbf{P}^{\oplus}_{k-N:k}} \\ \mathcal{C}'_{k|k} &= \|\mathbf{\tilde{x}}_{k-N+1:k}\|^{2}_{\mathbf{P}^{\oplus}_{k-N+1:k}} + \|\mathbf{L}_{1}^{I_{k-N}}\mathbf{\tilde{\bar{q}}}_{G} + \mathbf{L}_{2}\mathbf{\tilde{x}}_{k-N+1:k}\|^{2} \\ \mathcal{C}''_{k|k} &= \underbrace{\|\mathbf{\tilde{x}}_{k-N+1:k}\|^{2}_{\mathbf{P}^{\oplus}_{k-N+1:k}}}_{Posterior} \end{aligned}$$

MSCKF Feature Classification & Processing

- Mature feature: Track starts at the oldest pose (to be marginalized)
 - Track spans part of the window -> Marginalize w/ MSCKF

MSCKF Feature Classification & Processing

- Mature feature: Track starts at the oldest pose (to be marginalized)
 - Track spans part of the window -> Marginalize w/ MSCKF
 - Track spans the whole window -> Add to the state vector as **SLAM** feature

MSCKF Feature Classification & Processing

- Mature feature: Track starts at the oldest pose (to be marginalized)
 - Track spans part of the window -> Marginalize w/ MSCKF
 - Track spans the whole window -> Add to the state vector as **SLAM** feature
- Immature feature: Track is still ongoing
 - Use as **state-only** feature (update states, but not covariance)

Filtering vs. Optimization-based Methods

- MSCKF (EKF) \iff MAP estimator w/ one Gauss-Newton iteration [1]
 - Iteratively processes camera meas/nts (Iterated EKF [2]), IMU meas/nts (IKS [3])
 - MSCKF (EKF) \iff SWF (EIF) [4]
 - Square-root variants: SR-EKF, SR-EIF [5]
 - Use Cholesky factor of covariance/Hessian
 - Better numerical properties
 - Single-precision arithmetic (4x speed up for ARM Neon coprocessor)

[1] A. H. Jazwinski, Stochastic processes and filtering theory, Academic Press, 1970

[2] P. S. Maybeck, Stochastic Models, Estimation and Control, vol. 1, Academic Press, 1979

[3] D. G. Kottas and S. I. Roumeliotis, "An iterative Kalman smoother for robust 3D localization on mobile and wearable devices," ICRA'15

[4] G. Sibley, L. Matthies, and G. Sukhatme, "Sliding window filter with application to planetary landing," JFR'10 [5] K. J. Wu, A. Ahmed, G. Georgiou, and S. I. Roumeliotis, "A square root inverse filter for efficient vision-aided inertial navigation on mobile devices," RSS'15

		EKF	EIF
	Prior	Covariance P	Information A
	Propagation	$\mathbf{P} \leftarrow egin{bmatrix} \mathbf{P} & \mathbf{P} \mathbf{\Phi}^T \ \mathbf{\Phi} \mathbf{P} & \mathbf{\Phi} \mathbf{P} \mathbf{\Phi}^T + \mathbf{W} \end{bmatrix}$	$egin{aligned} \mathbf{x} \leftarrow egin{bmatrix} \mathbf{x} \ \mathbf{x}_ u \end{bmatrix} \ \mathbf{A} \leftarrow egin{bmatrix} \mathbf{A} + \mathbf{\Phi}^T \mathbf{W}^{-1} \mathbf{\Phi} & -\mathbf{\Phi}^T \mathbf{W}^{-1} \ -\mathbf{W}^{-1} \mathbf{\Phi} & \mathbf{W}^{-1} \end{bmatrix} \end{aligned}$
	Update	$ \begin{split} \mathbf{S} &= \mathbf{H} \mathbf{P} \mathbf{H}^T + \mathbf{\Sigma} \\ \mathbf{P}^{\oplus} &= \mathbf{P} - \mathbf{P} \mathbf{H}^T \mathbf{S}^{-1} \mathbf{H} \mathbf{P} \\ \mathbf{P} \leftarrow \mathbf{P}^{\oplus} \\ \Delta \mathbf{x} &= \mathbf{P} \mathbf{H}^T \mathbf{S}^{-1} \mathbf{r} \\ \mathbf{x}^{\oplus} &= \mathbf{x} \end{split} $	$\mathbf{A}^{\oplus} = \mathbf{A} + \mathbf{H}^{T} \mathbf{\Sigma}^{-1} \mathbf{H}$ $\mathbf{b}^{\oplus} = \mathbf{H}^{T} \mathbf{\Sigma}^{-1} \mathbf{r}$ $\mathbf{A} \leftarrow \mathbf{A}^{\oplus}$ $\Delta \mathbf{x} = \mathbf{A}^{\oplus^{-1}} \mathbf{b}^{\oplus}$ $\mathbf{x} + \Delta \mathbf{x}, \ \mathbf{x} \leftarrow \mathbf{x}^{\oplus}$
)	Marginalization	$egin{aligned} \Pi \mathbf{x} = \ \Pi \mathbf{P} \Pi^T = egin{bmatrix} \mathbf{P}_{\mu\mu} & \mathbf{P}_{\mu ho} \ \mathbf{P}_{ ho\mu} & \mathbf{P}_{ ho ho} \end{bmatrix} \ \mathbf{P} \leftarrow \mathbf{P}_{ ho ho} \end{aligned}$	$egin{bmatrix} \mathbf{x}_{\mu} \ \mathbf{x}_{ ho} \end{bmatrix}, \ \mathbf{x} \leftarrow \mathbf{x}_{ ho} \ \mathbf{\Pi} \mathbf{A} \mathbf{\Pi}^T = egin{bmatrix} \mathbf{A}_{\mu\mu} & \mathbf{A}_{\mu ho} \ \mathbf{A}_{ ho\mu} & \mathbf{A}_{ ho ho} \end{bmatrix} \ \mathbf{A}_{ ho ho}' = \mathbf{A}_{ ho ho} - \mathbf{A}_{ ho\mu} \mathbf{A}_{\mu\mu}^{-1} \mathbf{A}_{\mu ho} \ \mathbf{A} \leftarrow \mathbf{A}_{ ho ho}' \end{pmatrix}$

Due to *mismatch* of observability properties btwn nonlinear system and linearized estimator [1,2,3,4]

[1] S. Julier and J. Uhlmann, "A counter example to the theory of simultaneous localization and map building," ICRA'01

[2] J. A. Castellanos, J. Neira, and J. D. Tardos, "Limits to the consistency of EKF-based slam," IFAC'04

[3] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, "Observability-based rules for designing consistent EKF SLAM estimators," IJRR'10

[4] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, "Camera-IMU-based localization: Observability analysis and consistency improvement," IJRR'14

Due to mismatch of observability properties btwn nonlinear system and linearized estimator [1,2,3,4]

Ideal linearized system $egin{cases} \mathbf{x}_{k+1|k} &= \mathbf{\Phi}_{k|k} \mathbf{x}_{k|k} + \mathbf{G}_{k|k} \mathbf{u}_k \ \mathbf{z}_k &= \mathbf{H}_{k|k} \mathbf{\hat{x}}_{k|k} \end{cases}$

[3] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, "Observability-based rules for designing consistent EKF SLAM estimators," IJRR'10
 [4] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, "Camera-IMU-based localization: Observability analysis and consistency improvement," IJRR'14

Due to *mismatch* of observability properties btwn nonlinear system and linearized estimator [1,2,3,4]

[3] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, "Observability-based rules for designing consistent EKF SLAM estimators," IJRR'10
 [4] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, "Camera-IMU-based localization: Observability analysis and consistency improvement," IJRR'14

Due to *mismatch* of observability properties btwn nonlinear system and linearized estimator [1,2,3,4]

[3] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, "Observability-based rules for designing consistent EKF SLAM estimators," IJRR'10
 [4] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, "Camera-IMU-based localization: Observability analysis and consistency improvement," IJRR'14

• Offline: BA [1,2], CM [3]

[1] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, "Bundle Adjustment - A Modern Synthesis," Vision Algorithms: Theory and Practice, 2000

[2] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, R. Siegwart, "Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization," RSS'14

[3] C. Guo, K. Sartipi, R. DuToit, G. Georgiou, R. Li, J. O'Leary, E. Nerurkar, J. Hesch, and S. Roumeliotis, "Resource-Aware Large-Scale Cooperative Three-Dimensional Mapping Using Multiple Mobile Devices," TRO'18

- Offline: BA [1,2], CM [3]
- Online
 - BLS Approximation: PTAM^[4], iSAM2^[5], C-KLAM^[6]
 - Employ approximations e.g., perfect keyframe/feature assumption, delay relinearization, duplicate meas/nts

[4] G. Klein and D. Murray, "Parallel Tracking and Mapping for Small AR Workspaces," ISMAR'07

[5] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, "iSAM2: Incremental Smoothing and Mapping using the Bayes Tree," IJRR'12

[6] E.D. Nerurkar, K.J. Wu, and S.I. Roumeliotis, "C-KLAM: Constrained Keyframe-Based Localization and Mapping," ICRA'14

- Offline: BA [1,2], CM [3]
- Online
 - BLS Approximation: PTAM^[4], iSAM2^[5], C-KLAM^[6]
 - Employ approximations e.g., perfect keyframe/feature assumption, delay relinearization, duplicate meas/nts
 - Sub-mapping: Tectonic SAM [7], Gravity aligned sub-maps[8]
 - Divide map into submaps and merge

[7] K. Ni, D. Steedly, and F. Dellaert, "Tectonic SAM: Exact, out-of-core, submap-based SLAM," ICRA'07
[8] K. Sartipi and S. Roumeliotis, "Efficient alignment of visual-inertial maps," ISER'18

- Offline: BA [1,2], CM [3]
- Online
 - BLS Approximation: PTAM^[4], iSAM2^[5], C-KLAM^[6]
 - Employ approximations e.g., perfect keyframe/feature assumption, delay relinearization, duplicate meas/nts
 - Sub-mapping: Tectonic SAM [7], Gravity aligned sub-maps[8]
 - Divide map into submaps and merge
 - Pose-graph: Gutmann and Konolige [9], GraphSLAM[10], VINS-Mono [11]
 - Use features to determine relative poses and optimize only for poses

[9] J. Gutmann and K. Konolige, "Incremental Mapping of Large Cyclic Environments," CIRA'99

[10] S. Thrun and M. Montemerlo, "The GraphSLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures," IJRR'05

[11] T. Qin, P. Li, and S. Shen, "VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator," TRO'18

• Mapped keyframes/key features provided by the Backend to the Frontend

- Loop-closure features
- Optimization window

- Mapped keyframes/key features provided by the Backend to the Frontend
- Map assumed perfectly known [1,2]

- ★ Loop-closure features
 - Optimization window

- Mapped keyframes/key features provided by the Backend to the Frontend
- Map assumed perfectly known [1,2]
 - Advantage: Constant processing cost
 - Disadvantage: Inconsistent

$$\mathcal{C}_{map} = ||\mathbf{z}_k^j - \mathbf{h}(\mathbf{x}_k, \mathbf{p}_{f_j})||_{\sigma^2 \mathbf{I}}^2 \simeq ||\tilde{\mathbf{z}}_k^j - \mathbf{H}_k^j \tilde{\mathbf{x}}_k - \mathbf{H}_{f_j}^j ||_{\sigma^2 \mathbf{I}}^2$$

Optimization window

A. Mourikis, N. Trawny, S. Roumeliotis, A. Johnson, A. Ansar, and L. Matthies, "Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing," TRO'09
 S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart, "Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization," RSS'14

- Mapped keyframes/key features provided by the Backend to the Frontend
- Map assumed perfectly known [1,2]
 - Advantage: Constant processing cost
 - Disadvantage: Inconsistent
 - Remedy: Inflate meas/mnt noise

$$\mathcal{C}_{map} = ||\mathbf{z}_k^j - \mathbf{h}(\mathbf{x}_k, \mathbf{p}_{f_j})||_{\sigma^2 \mathbf{I}}^2 \simeq ||\tilde{\mathbf{z}}_k^j - \mathbf{H}_k^j \tilde{\mathbf{x}}_k - \mathbf{H}_j^j \mathbf{p}_{f_j}||_{4\sigma^2 \mathbf{I}}^2$$

- Mapped keyframes/key features provided by the Backend to the Frontend
- Map assumed perfectly known [1,2]
 - Advantage: Constant processing cost
 - Disadvantage: Inconsistent
 - Remedy: Inflate meas/mnt noise

A Vision-aided Inertial Navigation System with Map-based Corrections

MARS Lab University of Minnesota CVPR 2015

$$\mathcal{C}_{map} = ||\mathbf{z}_k^j - \mathbf{h}(\mathbf{x}_k, \mathbf{p}_{f_j})||_{\sigma^2 \mathbf{I}}^2 \simeq ||\tilde{\mathbf{z}}_k^j - \mathbf{H}_k^j \tilde{\mathbf{x}}_k - \mathbf{H}_{f_j}^j ||_{4\sigma^2 \mathbf{I}}^2$$

- Consistent alternatives:
 - Schmidt Kalman Filter [3]
 - RISE-SLAM [4]

A. Mourikis, N. Trawny, S. Roumeliotis, A. Johnson, A. Ansar, and L. Matthies, "Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing," TRO'09
 S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart, "Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization," RSS'14
 R. Dutoit, J. Hesch, E. Nerurkar, and S. Roumeliotis, "Consistent Map-based 3D Localization on Mobile Devices," ICRA'17
 T. Ke, K. Wu and S. Roumeliotis, "RISE-SLAM: A Resource-aware Inverse Schmidt Estimator for SLAM," IROS'19

Cooperative VIO/SLAM

- Data from multiple devices are fused to create an area representation
- Centralized [1,2]
 - Computation is offloaded from device
 - Require powerful server for processing

 $\{G_1$

[1] M. Karrer, P. Schmuck, and M. Chli, "CVI-SLAM collaborative visual-inertial SLAM," RAL'18

[2] C. Guo, K. Sartipi, R. DuToit, G. Georgiou, R. Li, J. O'Leary, E. Nerurkar, J. Hesch, and S. Roumeliotis, "Resource-Aware Large-Scale Cooperative Three-Dimensional Mapping Using Multiple Mobile Devices," TRO'18

Cooperative VIO/SLAM

- Data from multiple devices are fused to create an area representation
- Centralized [1,2]
 - Computation is offloaded from device
 - Require powerful server for processing
- Distributed [3,4]

• All devices cooperate to compute a single area representation

[3] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F. Dellaert, "Distrik [4] T. Cieslewski, S. Choudhary, and D. Scaramuzza, "Data-efficient decentralized visual S	outed mapping with privacy and communication constraints: Lightwo SLAM," ICRA'18	ight algorithms and object-based models," IJRR'17

🔊 🐨 İ

		Multi-use	er Demo		
		_	User 1 S dataset_name	creen	START COLLECTING
				START FILTER	Debug Mode: 🔲
User 2	User 1		IP: 192.168.43.228	192.168.43.22	8 EXPERIMENTAL
			s	START MAPPING	Debug Mode 🗹
		4:19 🛋	1		 • • • •
		Multi-use	er Demo		
	JIL		User 2 S	Screen	
			dataset_name	8	START COLLECTING
				START FILTER	Debug Mode:
			No WIFI Connection	192.168.43.22	8 EXPERIMENTAL
			S	START MAPPING	Debug Mode 🗹

4:19 🛋

Cooperative VIO/SLAM

- Data from multiple devices are fused to create an area representation
- Centralized [1,2]
 - Computation is offloaded from device
 - Require powerful server for processing
- Distributed [3,4]
 - All devices cooperate to compute a single area representation
- Multi-centralized [5,6,7]
 - Each device computes a map of the area

[5] A. Cunningham, V. Indelman, and F. Dellaert, "DDF-SAM 2.0: Consistent distributed smoothing and mapping," ICRA'13

[6] H. Zhang, X. Chen, H. Lu, and J. Xiao, "Distributed and Collaborative Monocular Simultaneous Localization and Mapping for Multi-robot Systems in Large-scale Environments," IJARS'18

[7] K. Sartipi, R. DuToit, C. Cobar, and S. Roumeliotis, "Decentralized Visual-Inertial Localization and Mapping on Mobile Devices for Augmented Reality," IROS'19

Interesting Research Directions

• Observability Analysis

- Additional unobservable directions [1]
 - scale under const. linear accel.
 - roll, pitch under const. orientation

[1] K. J. Wu, C. X. Guo, G. A. Georgiou and S. I. Roumeliotis, "VINS on Wheels", ICRA'17

Interesting Research Directions

Observability Analysis

- Additional unobservable directions [1]
 - scale under const. linear accel.
 - roll, pitch under const. orientation
- Types of Features: edges, lines, planes [2,3,4]
- IMU/Camera intrinsics, extrinsics, RS, TS

- Event-based camera [5,6]
 - Detect changes in intensity, low latency

Hybrid, Frame and Event based Visual Inertial Odometry for Robust, Autonomous Navigation of Quadrotors

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza

Incorporate system's dynamics

[1] K. J. Wu, C. X. Guo, G. A. Georgiou and S. I. Roumeliotis, "VINS on Wheels", ICRA'17

- [2] D. G. Kottas and Stergios I. Roumeliotis, "Exploiting Urban Scenes for Vision-aided Inertial Navigation," RSS'13
- [3] H. Yu and A. I. Mourikis, "Vision-Aided Inertial Navigation with Line Features and a Rolling-Shutter Camera", IROS'15
- [4] Y. Yang and G. P. Huang, "Aided inertial navigation with geometric features: Observability analysis", ICRA'18
- [5] E. Mueggler, G. Gallego, H. Rebecq, D. Scaramuzza, "Continuous-Time Visual-Inertial Odometry for Event Cameras," TRO'18
- [6] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, "Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios," RA-L'18
- [7] A. Ahmed and S. I. Roumeliotis, "A Visual-Inertial Approach to Human Gait Estimation", ICRA'18

• Information selection

<u>Geometry based (improve accuracy)</u>

- Greedy and consider user's intention [1]
- Heuristics: Long tracks, uniformly distributed, wide baseline, close-by [2]
- Multi-camera resource allocation [3]

[1] L. Carlone and S. Karaman, "Attention and anticipation in fast visual-inertial navigation," TRO'18

[2] D. G. Kottas, R. C. DuToit, A. Ahmed, C. X. Guo, G. A. Georgiou, R. Li and S. I. Roumeliotis, "A resource-aware vision-aided inertial navigation system for wearable and portable computers," ICRA'14 [3] K. J. Wu, T. Do, L. C. Carrillo-Arce, and S. I. Roumeliotis, "On the VINS Resource-Allocation Problem for a Dual-Camera, Small-Size Quadrotor," ISER'16

- Information selection
 - Geometry based (improve accuracy)
 - Greedy and consider user's intention [1]
 - Heuristics: Long tracks, uniformly distributed, wide baseline, close-by [2]
 - Multi-camera resource allocation [3]
 - <u>Semantic_[4,5] based (improve robustness)</u> exclude ephemeral parts of the scene

moving objects concern filtering

movable objects concern mapping

• Robust scene recognition using ML features [6]

Season/light Invariance

Viewpoint Invariance

Thank You!

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask RCNN," ICCV'17

[5] T. Pham, T. T. Do, N. Sünderhauf, and I. Reid, "Scenecut: Joint geometric and object segmentation for indoor scenes," ICRA'18

[6] Z. Chen, A. Jacobson, N. Sünderhauf, B. Upcroft, L. Liu, C. Shen, I. Reid and M. Milford, "Deep Learning Features at Scale for Visual Place Recognition," ICRA'17