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State	estimation	– target	applications

Videos:	courtesy	of	DARPA	&	ETH

Muddy	Tunnel	– DARPA	SubT (x3) City	of	Zurich	Sewer

EU	H2020	Project



State	estimation	– the	challenge

Dynamic	Walking	– at	0.5m/sec	on	Flat	Ground
Precise	Estimate	Not	Important

Static	Stair	Climbing
Precise	Estimate	due	to	slow	motion

Limitations	for	Dynamic	Control	e.g.	stair	climbing:
• Stronger	leg	motors.	Lighter	robot
• More	dynamic	control	algorithms
• Poor	elevation	mapping	due	to	poor	state	estimation

State	Estimate	for	Dynamic	Gaits	has	high	drift	due	to:
• Contact	Classification	Errors.	Structural	bending
• Rough	contact	events.	Soft	ground



State	estimation	– the	effect

• Essential	for	control,	motion	planning,	navigation,	etc.
• Traditionally,	legged	robots	rely	on	kinematic-inertial	inputs	and	suffer	from	drift.

Estimate	from	Kinematic-Inertial	Estimator	(TSIF)



State	estimation	– the	effect

• This	drift	can	cause	issues	for	other	systems	(e.g.	terrain	mapping)

Estimate	from	Kinematic-Inertial	Estimator	(TSIF)



Kinematic State	Estimation	- Overview

Goal:	To	estimate	the	state	of	the	robot:

• Position	and	orientation	of	base	(6)

• Linear	and	Angular	Velocities	of	base	(6)

• Angular	Rate	and	Acceleration	biases	(6)

• Joint	angles	and	velocities	(N*2)

For	a	quadruped:

• 6*2		+	12*2	+	6	biases		=		36	states

For	a	biped:

• 6*2	+	27*2	+	6	biases		=		72	states

2x	6	joint	legs

2x	6/7	joint	arms

floating	base



Kinematic State	Estimation	- Overview

Goal:	To	estimate	the	state	of	the	robot’s	base
• Position,	orientation	and	velocity	
• High	frequency	(250/400	Hz)
• Low	latency	(2-3	msec)

Main	Challenges:
• Despite	modelling,	behaviour	in	contact	is	unknown
• Latency	is	unacceptable:	estimate	used	in	control

Core	Approach:	(Extended)	Kalman Filter
• IMU-driven	process	model
• Leg	kinematics	used	to	measure	linear	velocity
• No	external	sensors	(cameras,	LIDAR)

• Crucial:	contact	classification	using	forces

Implementations:
• Anybotics/RSL:	TSIF
• Oxford:	Pronto

400Hz	IMU
Process/Prediction

400Hz	Kinematic
Measurement

gyro/accel sensing

Kinematics	/	foot	sensing

to	controller



Kinematic State	Estimation	- Examples

With	Boston	Dynamics	Atlas	Biped
A	few	cm	of	drift	after	15m	travelled
Used	in	DARPA	Robotics	Challenge

With	IIT	HyQ Quadruped
PhD	Research	of	Marco	Camurri



Kinematic State	Estimation	- Challenges
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Kinematic State	Estimation	- Overview

Goal:	To	estimate	the	state	of	the	robot’s	base
• Position,	orientation	and	velocity	
• High	frequency	(250-400	Hz)
• Low	latency	(2-3	msec)

Main	Challenges:
• Despite	modelling,	behaviour	in	contact	is	unknown
• Latency	is	unacceptable:	estimate	used	in	control

Core	Approach:	(Extended)	Kalman Filter
• IMU-driven	process	model
• Leg	kinematics	used	to	measure	linear	velocity
• Crucial:	contact	classification	using	forces
• No	external	sensors	(cameras,	LIDAR)

Implementations:
• Anybotics/RSL:	TSIF
• Oxford:	Pronto

TSIF	/	Pronto
(estimator)

Controller

Elevation	
Mapping

imu &
kinematics

Drifting	state	
estimate

Drifting	state	
estimate



Aim	to	combine	Leg	Odometry	and	VIO

Visual-Inertial	Odometry

• Mature	field
• Good	results	on	datasets
• Sliding	window	optimisation	
popular	(e.g.	ROVIO,	VINS-Mono)

Legged	Robot	State	Estimation

• Typically	fused	with	Kalman Filters:
• TSIF	[Bloesch]	- RSL	/	ANYbotics
• Pronto	[Nobili]	– MIT	/	Oxford

• Typically	uses	high	grade	sensors.

Bloesch et.	al:	State	Estimation	for	Legged	Robots	– Consistent	Fusion	of	Leg	Kinematics	and	IMU.	RSS	2013
Nobili	et.	al:	Heterogeneous	Sensor	Fusion	for	Accurate	State	Estimation	of	Dynamic	Legged	Robots.	RSS	2017



Visual	Inertial	Legged	Navigation	System	- Contributions

• VILENS	- First	algorithm	to	tightly	fuse	
vision,	IMU,	and	leg	odometry
• Extensive	Testing	with	250+	m	experiments
• Consumer	Grade	Cameras	(Intel	RealSense)

Previous	Systems:

• legged	odometry	centred
• with	optional	vision	(or	LIDAR)

Proposed	System:

• vision	centred
• with	optional	leg	odometry



Direction	of	Progress:	COTS	depth/stereo	cameras

ANYbotics ANYmal	Version	C Boston	Dynamics	Spot



VILENS	(Visual	Inertial	Legged	Navigation	System)

• IMU	(400Hz)

• Camera	(30Hz)

• Kinematics	(400Hz)

Control,
Mapping,
Navigation,
…

• State	
estimate

VILENS
Factor	Graph	
Optimization



VILENS	(Visual	Inertial	Legged	Navigation	System)

• IMU	(400Hz)

• Camera	(30Hz)

• Kinematics	(400Hz)

Control,
Mapping,
Navigation,
…

• State	
estimate

VILENS
Factor	Graph	
Optimization

priors

vision	priors kinematics

imu

vision



Factor	Definitions

Prior	Factors:

• Set	initial	conditions Leg	Odometry	Factors:

• Assuming	the	contact	points	are	
fixed,	estimate	the	relative	motion.
• Formulate	output	of	existing	
kinematic-inertial	TSIF	estimator	
(Bloesch et	al.)	as	a	relative	pose	
constraint.

IMU	Factors	(Forster	et	al):

• Difference	between	IMU	
preintegration &	estimate,	w/	biases.

iSAM2	– using	GTSAM:
• Sliding	window	batch	optimization

Forster,	Carlone,	Dellaert,	Scaramuzza.	RSS	2015.
IMU	Preintegration on	Manifold	for	Efficient	Visual-Inertial	Maximum-a-
Posteriori	Estimation.



Vision	Factors:

• Estimate	3D	location	of	landmarks.
• Minimise	reprojection	error	between	
estimate	and	measured:

• Add	prior	to	help	under-constrained	
landmarks:

Vision	Cost	Functions

Feature	Tracking	Front-End:

• Track	feature	through	successive	
frames	(KLT	feature	tracker).



Experimental	Results	- EUROC

• Standard	visual-inertial	
odometry	dataset.
• Qualitative	results,	
demonstrating	the	system	can	
function	as	a	stand-alone	VINS	
system.
• Comparable	performance	to	
state	of	the	art	VINS	systems.



Experimental	Setup	- ANYmal

Oil	Rig	Training	Site:	Realistic	Industrial	Mock-up
250m	of	continuous	walking.	Brightness	variation.	Climbing,	Trotting



Experimental	Setup	– Ground	Truth

Leica	TS-16	- Ground	Truth	Tracking



Oil	Rig	dataset	results



Analysis	+	Discussion

• We	outperform	the	baseline	kinematic-inertial	estimator	(TSIF)	
• 55%	in	RPE	and	76%	in	ATE.

• Our	algorithm	operates	even	when	off-the-shelf	VIO	fails.



Leg	Odometry	Biases

TSIF:	bad	yaw	bias	estimation
VILENS:	good	yaw	bias	estimation

TSIF:	drift	in	height.	Poorly	observed



Visual	Inertial	Legged Navigation	(VILENS)	- 2020
Current	Factor	Graph	(Under	Review)

Visual	features Leg	position Inertial	sensing

Previous	Factor	Graph	(IROS	2019)

Gyro	ang. velocity							Accelerometer

Leg	ang. velocity										Leg	linear	velocity



Visual	Inertial	Legged Navigation	(VILENS)	- 2020

Factor	Graph	Optimization

Preintegrated Velocity	Bias	Estimation	to	Overcome	Contact	Nonlinearities	in	Legged	Robot	Odometry
D.	Wisth,	M.	Camurri,	M.	Fallon.	Under	Review.	Available	on	Arxiv

Visual	features

Leg	position

Inertial	sensing

Intel	RealSense	Depth	Camera
D435i	Active	Depth	Camera	+	IMU

Tracker
(Ground	Truth)



Integration	into	real-time	system

Robot

TSIF	/	Pronto
(estimator)

VILENS
(visual	estimator)

Controller

Elevation	
Mappingcamera

images

imu &
kinematics

Drifting	state	
estimate

Bias	feedback	– not	implemented	yet

Robot

TSIF	/	Pronto
(estimator)

Controller

Elevation	
Mapping

imu &
kinematics

Drifting	state	
estimate

Drifting	state	
estimate

Default	System

Proposed	System



Local	Terrain	Map	Improvement

Using	vision	in	estimation	improves
terrain	map

VILENS	running	live	on	ANYmal



Local	Terrain	Map	Improvement

TSIF																											map	is	very	inaccurate VILENS																				accurate	reconstruction



Local	Terrain	Map	Improvement	- Live

Work	with	RSL	(ETH)



Implementation
• iSAM2	incremental	optimizer	(part	of	GTSAM	
library).

• Zero	velocity	states	based	on	average	feature	
movement.

• Works	reliably	with	D435	on	the	robot	at	15Hz
• Exploring	using	RealSense	T265
• Considering	mono-fisheye

• Multiple	Sensor	and	Processing	Message	Threads

• Tested	on	three	different	copies	of	ANYmal:
• Oxford
• RSL	(ETH)
• ANYbotics
• Contributing	to	ANYmal’s SLAM	in	DARPA	SubT

Cerberus



SLAM	or	Loop	Closure?

LIDAR	Pose-Graph	SLAM	with	Deep	Learning	Loop	Closure



Thank	You

ori.ox.ac.uk/drs

For	further	information:
David	Wisth

davidw@robots.ox.ac.uk

Data	with	ground	truth:

ori.ox.ac.uk/vilens

Thanks	to:
RSL	(ETH)	&	ANYbotics


