Robust VI-SLAM and HD-Map Reconstruction for Location-based Augmented Reality

Guofeng Zhang

State Key Lab of CAD&CG, Zhejiang University

- A Basic Problem in Robotics & Computer Vision
 - Simultaneously estimate the device pose and 3D scene structure in an unknown environment.
- Wide Applications
 - Augmented Reality, Virtual Reality
 - Robotics, Automated Driving

Visual-Inertial SLAM

Main Sensors

- Single or Multiple Cameras
- Inertial Measurement Unit

Advantages

- Low cost
- High localization accuracy at least in a small workspace
- Inside-out solution: no scene setup

Traditional SLAM Framework

Challenges of Visual SLAM and VI-SLAM

Key Idea for Robust Estimation

Outliers Detection and Removement

 Detect the changed 3D points and update the keyframes adaptively

Wei Tan, Haomin Liu, Zilong Dong, Guofeng Zhang and Hujun Bao. Robust Monocular SLAM in Dynamic Environments. International Symposium on Mixed and Augmented Reality (ISMAR), 2013.

RDSLAM

Visual-Inertial Odometry with Multi-Plane Priors

Motivation

PRCV 2019

- A fast and lightweight VIO method for low-end mobile devices.
- Planes commonly exist in human-made scenes, and can be utilized.

 $\epsilon_k = \sum \|u_{ik}(\lambda_k) - ilde{u}_{ik}\|^2, \quad \epsilon_k^\perp = \sum \|u_{ik}(\lambda_k^\perp) - ilde{u}_{ik}\|^2$

 $x_{sk} = (A_{sk}^{\top}A_{sk})^{-1}A_{sk}^{\top}b_{sk}$

Ordinary RPE Point-on-Plane RPE

 $r_P(\{{}^w_b p_i, {}^w_b q_i\}, n_s, d_s) = |n_s^{\top} x_{sk} - d_s|$

Minimize Point-to-Plane Distance Error

- Plane extraction and expansion from VIO point cloud
 - Reprojection Consensus
- Plane Constraints
 - VIP-PnP : solving the BA as if some points lying on planes
 - Structureless Plane-Distance Error

$$A_{sk} = \begin{pmatrix} A_k \\ w_k n_s^\top \end{pmatrix}, \ b_{sk} = \begin{pmatrix} b_k \\ w_k d_s \end{pmatrix}$$

Augmented triangulation with Plane Constraint

- Augment for degenerated constraints (insufficient parallax/observations)
- For 1 landmark, *m* reprojection error \rightarrow 1 structureless error

A Robust and Efficient Visual-Inertial Odometry with Multi-Plane Priors. Jinyu Li, Bangbang Yang, Kai Huang, Guofeng Zhang*, Hujun Bao*. Chinese Conference on Pattern Recognition and Computer Vision, 2019.

Experimental Results

Trajectories on TUM-VI Outdoors1

Dataset		ORB-SLAM2		SVO2		DSO	DSO VINS-Mono		PVIO	
		-Loop	+Loop	E+P	BA		-Loop	+Loop	-Plane	+Plane
IRoC 2	MH_01	0.02	0.03	0.10	0.06	0.05	0.16	0.15	0.19	0.13
	MH_02	0.03	0.03	0.12	0.07	0.05	0.18	0.26	0.16	0.21
	$MH_{-}03$	0.17	0.05	0.41	×	0.18	0.20	0.11	0.31	0.16
	MH_04	0.15	0.37	0.43	0.40	2.50	0.35	0.37	0.29	0.29
	$MH_{-}05$	0.06	0.04	0.30	×	0.11	0.30	0.28	0.79	0.34
	V1.01	0.03	0.03	0.07	0.05	0.12		0.10		0.08
	V1_01	0.03	0.03	0.07	0.05	0.12	0.05	0.10	0.10	0.08
ē	$V1_{02}$ V1_03	(0.13)	0.03	0.21	$\hat{}$	0.11	0.11	0.09		0.05
	v 1_00	(0.43)	0.10		^	0.55	0.13	0.10		0.10
	V2_01	0.03	0.03	0.11	×	0.04	0.09	0.08	0.11	0.05
	$V2_{-}02$	0.15	0.03	0.11	×	0.13	0.16	0.17	×	0.20
	V2_03	(0.73)	(0.40)	1.08	×	1.16	0.29	0.37	×	0.29
Ē	Room1	×	0.10	×	×	0.06	0.07	0.07	1.65	0.26
2	Room2	×	0.12	×	×	0.11	0.07	0.07	0.12	0.15
ΓΛ	Room3	×	(0.04)	×	×	0.12	0.12	0.12	0.18	0.18
 M	Corridor1		~		\sim	5.43		0.50		0.23
Б	Outdoors1	\sim	$\hat{\mathbf{v}}$	l û	~	0.45	74.55	81.57		22.26
F	Outdoors1	· ·	~		~		14.00	61.07	I ^	22.20

Trajectories on EuRoC

Single thread No loop-closure & relocalization

Key Idea for Efficient Estimation

- **Bundle Adjustment**
 - Jointly optimize all cameras and points
 - $\arg\min_{C_{1},...,C_{N_{c}},X_{1},...,X_{N_{p}}} \sum \|\pi(X_{i},C_{j})-x_{ij}\|^{2}$ Time-consuming and require large memory space

Sparse Bundle Adjustment

 $SO_{C} = -(u - WV V)$ $VO_{X} = -v - W^{T}O_{C}$

Compute cameras first (# cameras << # points) back substitution for points

Manolis I. A. Lourakis, Antonis A. Argyros: SBA: A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. 36(1) (2009)

Sparse Bundle Adjustment

• Runtime significantly increases with the number of cameras

• Incremental BA

Incremental BA

 C_2

 X_1

• Incremental BA

• Incremental BA

Incremental Bundle Adjustment

- Most cameras and points are nearly unchanged
 - Contribution of most projection functions nearly remains the same
 - No need to re-compute at each iteration
- Incremental approaches
 - iSAM, iSAM2, SLAM++
 - Our EIBA & ICE-BA

Key ideas

- $\begin{bmatrix} \mathbf{A} | \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{U} & \mathbf{W} & | \mathbf{u} \\ \mathbf{W}^T & \mathbf{V} & | \mathbf{v} \end{bmatrix}$ $\begin{bmatrix} \mathbf{A} | \mathbf{b} \end{bmatrix}^+ = \begin{bmatrix} \mathbf{A} | \mathbf{b} \end{bmatrix}^- + \begin{bmatrix} \sum_{k \in \mathcal{L}} \delta \mathbf{A}_k & | \sum_{k \in \mathcal{L}} \delta \mathbf{b}_k \end{bmatrix}$
- Incremental update: makes maximum use of intermediate computation for efficiency
- Detect the actually changed variables and adaptively update them

Factor graph representation

Haomin Liu, Mingyu Chen, Guofeng Zhang, Hujun Bao and Yingze Bao. ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

CVPR 2018

• New cameras or points come

CVPR 2018

• Points have changed after iteration

CVPR 2018

• Cameras have changed after iteration

Step1: Normal Equation

• Batch BA

• ICE-BA

U = 0; V = 0; W = 0; u = 0; v = 0for each point j and each camera $i \in \mathcal{V}_j$ that \mathbf{C}_i or \mathbf{X}_j is **for** each point *j* and each camera $i \in \mathcal{V}_i$ **do** changed **do** Construct linearized equation (11) Construct linearized equation (11) $\mathbf{S}_{ii} - = \mathbf{A}_{ij}^{\mathbf{U}}; \ \mathbf{A}_{ij}^{\mathbf{U}} = \mathbf{J}_{\mathbf{C}_{ij}}^{\top} \mathbf{J}_{\mathbf{C}_{ij}}; \ \mathbf{S}_{ii} + = \mathbf{A}_{ij}^{\mathbf{U}}$ $\mathbf{U}_{ii} + = \mathbf{J}_{\mathbf{C}_{ii}}^{\mathsf{T}} \mathbf{J}_{\mathbf{C}_{ij}}$ $\mathbf{V}_{jj} + = \mathbf{J}_{\mathbf{X}_{ij}}^{\top} \mathbf{J}_{\mathbf{X}_{ij}}$ $\mathbf{u}_{i} + = \mathbf{J}_{\mathbf{C}_{ij}}^{\top} \mathbf{e}_{ij}$ $\mathbf{v}_{j} + = \mathbf{J}_{\mathbf{X}_{ij}}^{\top} \mathbf{e}_{ij}$ $\mathbf{W}_{ij} = \mathbf{J}_{\mathbf{C}_{ij}}^{\top} \mathbf{J}_{\mathbf{X}_{ij}}$ $\mathbf{V}_{jj} = \mathbf{A}_{ij}^{\mathbf{V}}; \mathbf{A}_{ij}^{\mathbf{V}} = \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}; \mathbf{V}_{jj} + \mathbf{A}_{ij}^{\mathbf{V}}$ $\mathbf{g}_i - = \mathbf{b}_{ij}^{\mathbf{u}}; \ \mathbf{b}_{ij}^{\mathbf{u}} = \mathbf{J}_{\mathbf{C}_{ii}}^{\top} \mathbf{e}_{ij}; \ \mathbf{g}_i + = \mathbf{b}_{ij}^{\mathbf{u}}$ $\mathbf{W}_{ij} = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}$ Mark V_{ii} updated end for end for

Step2: Schur Complement

• Batch BA

ICE-BA

S = Ufor each point j that V_{ii} is updated and each camera pair **for** each point *j* and each camera pair $(i_1, i_2) \in \mathcal{V}_j \times \mathcal{V}_j$ $(i_1, i_2) \in \mathcal{V}_j \times \mathcal{V}_j$ **do** $\mathbf{S}_{i_1i_2} + = \mathbf{A}_{i_1i_2j}^{\mathbf{S}}$ $\mathbf{A}_{i_1i_2j}^{\mathbf{S}} = \mathbf{W}_{i_1j}\mathbf{V}_{jj}^{-1}\mathbf{W}_{i_2j}^{\top}$ do $\mathbf{S}_{i_1i_2} - = \mathbf{W}_{i_1j}\mathbf{V}_{jj}^{-1}\mathbf{W}_{i_2j}^{\top}$ end for $\mathbf{S}_{i_1i_2} - = \mathbf{A}_{i_1i_2j}^{\mathbf{S}}$ $\mathbf{g} = \mathbf{u}$ end for **for** each point *j* and each camera $i \in \mathcal{V}_i$ **do for** each point *j* that \mathbf{V}_{jj} is updated and each camera $i \in \mathcal{V}_i$ $\mathbf{g}_i - = \mathbf{W}_{ij} \mathbf{V}_{jj}^{-1} \mathbf{v}_j$ do end for $\mathbf{g}_i + = \mathbf{b}_{ij}^{\mathbf{g}}; \ \mathbf{b}_{ij}^{\mathbf{g}} = \mathbf{W}_{ij}\mathbf{V}_{jj}^{-1}\mathbf{v}_j; \ \mathbf{g}_i - = \mathbf{b}_{ij}^{\mathbf{g}}$ end for

Sub-track Improvement for Local BA

- In Local BA, most points may be observed by most frames in the sliding window
 - Dense Schur complement
 - A large portion need to be re-computed
- Split the original long feature track X_i into several short overlapping sub-tracks X_{i_1}, X_{i_2}, \cdots

Efficiency Comparison

- Local BA (LBA)
 - ICE-BA (50 frames)
 - Ceres (10 key frames)
 - LBA (old) LBA (new) 80 70 60 50 time (ms) 6 30 20 10 0 200 400 1200 1400 1000 600 800 frame index

- Global BA (GBA)
 - ICE-BA: almost *O*(1)
 - Ceres: $O(n^2)$

Efficiency Comparison

- Local BA (LBA)
 - ICE-BA (50 frames)
 - OKVIS (8 key frames)
 - 10x speedup

- Global BA (GBA)
 - ICE-BA: steady and smooth
 - iSAM2: steep and peaks
 - 20x speedup

Accuracy Comparison on EuRoc dataset

Seq.	Ours w/ loop	Ours w/o loop	OKVIS	SVO	iSAM2
MH_01	0.11	0.09	0.22	0.06	0.07
MH_02	0.08	0.07	0.16	0.08	0.11
MH_03	0.05	0.11	0.12	0.16	0.12
MH_04	0.13	0.16	0.18	-	0.16
MH _ 05	0.11	0.27	0.29	0.63	0.25
V1_01	0.07	0.05	0.03	0.06	0.07
V1_02	0.08	0.05	0.06	0.12	0.08
V1_03	0.06	0.11	0.12	0.21	0.12
V2_01	0.06	0.12	0.05	0.22	0.10
V2_02	0.04	0.09	0.07	0.16	0.13
V2_03	0.11	0.17	0.14	-	0.20
Avg	0.08	0.12	0.14	0.20	0.13

Comparison and Analysis

	iSAM2	EIBA / ICE-BA
Motion style	 keep forward to and fro	Suitable for any motion
Variable ordering	 By algebraic method The best ordering are changed time to time 	 By tricks of standard BA Don't care about which camera/point comes first Always marginalize points first PCG explicitly leverage sparsity of camera Hessian
Incremental calculation vs sparseness	 Trade off Fix linearization: matrix becomes denser and denser during to and fro motion. Reordering: re-calculation 	Re-linearize wherever necessary without affecting sparseness

Source Code: <u>https://github.com/baidu/ICE-BA</u>

Key Idea: Cloud-Edge-Terminal Combination

Visual Localization & AR Navigation

Localization & AR Navigation

Traditional Solutions

GPS

- Error up to 10 meters
- Not available in indoor environments

Visual Solutions

Advantages

- Low cost
- Non-intrusive
- High precision
- Intuitive with AR effect

WIFI, Blue Tooth

- Additional deployment
- Expensive hardware

Challenges

- Lack of visual features
- Environment change
- Heavy computation

Main Techniques in Visual Localization & AR Navigation

Sparse Map Reconstruction

- Extract visual features
- Recover the 3D structure

Dense Map Reconstruction

Visual Localization & Tracking

- Handling occlusions and collisions
- Free-viewpoint 3D navigation

Real-time 6DOF camera
 pose recovery for AR

Sparse Map Reconstruction

Challenges

- Many textureless regions
- Visual Ambiguity
- Large Scale

Key Ideas

- Capture Panorama Videos
- Integrating SLAM with SfM
- Divide and conquer

Dense Map Reconstruction

Þ

Challenges

- Many textureless regions
- Large-scale reconstruction

Key Ideas

- Accurate dense depth maps estimation and fusion
 - By multi-level feature matching
- Extendable accurate dense mesh reconstruction
 - Out-of-core reconstruction of large-scale meshes

Visual Localization & Tracking

Loose coupling

Challenges

- Real-time
- Long distance
- View point, illumination, appearance variations

Tight coupling

Key Ideas

- Cloud and terminal cooperation
- Tightly couple SLAM with global relocalization
- Learning based visual features

AR Multiple-Persons Sharing

Reconstructed 3D Map

Softwares

- ENFT-SFM or LS-ACTS
 - <u>http://www.zjucvg.net/ls-acts/ls-acts.html</u>
- RKSLAM: <u>http://www.zjucvg.net/rkslam/rkslam.html</u>
- RDSLAM: <u>http://www.zjucvg.net/rdslam/rdslam.html</u>
- ACTS: <u>http://www.zjucvg.net/acts/acts.html</u>
- SenseSLAM
 - <u>http://www.zjucvg.net/senseslam/</u>
 - <u>http://openar.sensetime.com/</u>

Source Code

- ENFT-SfM
 - <u>https://github.com/zju3dv/ENFT-SfM</u>
- Segment-based Bundle Adjustment
 - <u>https://github.com/zju3dv/SegmentBA</u>
- Efficient Incremental Bundle Adjustment
 - EIBA: <u>https://github.com/zju3dv/EIBA</u>
 - ICE-BA: <u>https://github.com/baidu/ICE-BA</u>

VSLAM/VISLAM Technology Trends (1)

Reduce Textureless Problem

- Edge Tracking
- Direct Tracking
- Learning based methods or incorporating scene prior/semantic information

(predict scene layout/semantic information, depth map and normal map)

Edge Feature (Klein et al., 2008)

Plane Feature (Concha et al., 2014)

Semi-dene Tracking (Engel et al., 2014)

Scene Layout (Salas et al., 2015)

Semantic SLAM (Nicholson et al., 2018)

Results on the Middlebury Benchmark

Predicted Normal Map

Disparity Map by MC-CNN-acrt

Our Recovered Disparity Map

VSLAM/VISLAM Technology Trends (2)

Multiple Sensors Fusion

• Combining GPS, depth camera, odometer, WiFi, 5G

Multiple Sensors Fusion https://www.intellias.com/sensor-fusion-autonomous-cars-helps-avoid-deaths-road/

Even-camera based VIO (Rebecq et al., 2017)

Survey of cellular mobile radio localization methods (Peral-Rosado et al., 2017)

VSLAM/VISLAM Technology Trends (3)

Dense 3D Reconstruction

- Real-time singe / multiple camera based methods
- Real-time depth camera based
 methods
- Real-time reconstruction of non-rigid objects

Keyframe-based Dense Planar SLAM (Hsiao et al., 2017)

CNN-SLAM (Tateno et al., 2017)

Dense 3D Reconstruction based AR application (Schöps et al., 2014)

MobileFusion (Ondrúška et al., 2015)

RKD-SLAM (Liu et al., 2017)

DynamicFusion (Newcombe et al., 2015)

Thanks!